{"created":"2023-07-25T11:07:18.599562+00:00","id":11042,"links":{},"metadata":{"_buckets":{"deposit":"64f977c2-32db-4969-93ab-9f960ec50547"},"_deposit":{"created_by":27,"id":"11042","owners":[27],"pid":{"revision_id":0,"type":"depid","value":"11042"},"status":"published"},"_oai":{"id":"oai:nipr.repo.nii.ac.jp:00011042","sets":[]},"author_link":["25781","25780"],"item_10001_biblio_info_7":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2016-03","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"1","bibliographicPageEnd":"23","bibliographicPageStart":"11","bibliographicVolumeNumber":"10","bibliographic_titles":[{"bibliographic_title":"Polar Science"},{"bibliographic_title":"Polar Science","bibliographic_titleLang":"en"}]}]},"item_10001_description_5":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"In order to model the thermal structure of polythermal ice sheets accurately, energy-conserving schemes and correct tracking of the cold–temperate transition surface (CTS) are necessary. We compare four different thermodynamics solvers in the ice sheet model SICOPOLIS. Two exist already, namely a two-layer polythermal scheme (POLY) and a single-phase cold-ice scheme (COLD), while the other two are newly-implemented, one-layer enthalpy schemes, namely a conventional scheme (ENTC) and a melting-CTS scheme (ENTM). The comparison uses scenarios of the EISMINT Phase 2 Simplified Geometry Experiments (Payne et al., 2000, J. Glaciol. 46, 227–238). The POLY scheme is used as a reference against which the performance of the other schemes is tested. Both the COLD scheme and the ENTC scheme fail to produce a continuous temperature gradient across the CTS, which is explicitly enforced by the ENTM scheme. ENTM is more precise than ENTC for determining the position of the CTS, while the performance of both schemes is good for the temperature/water-content profiles in the entire ice column. Therefore, the one-layer enthalpy schemes ENTC and ENTM are viable, easier implementable alternatives to the POLY scheme with its need to handle two different numerical domains for cold and temperate ice.","subitem_description_type":"Abstract"}]},"item_10001_description_6":{"attribute_name":"内容記述","attribute_value_mlt":[{"subitem_description":"ポリサーマル氷河の氷温度分布を正確に計算するためには、エネルギー保存の法則に従うとともに、融点にある氷と融点以下の氷の境界(CTS)の位置を正確に知ることが必要である。我々は4つの異なる熱力学方程式の解法を氷床モデル(SICOPOLIS)で比較した。2つの手法は既存の二層ポリサーマル法(POLY)と単一相寒冷氷法(COLD)で、他の2つは本研究で初めて導入した単一相エンタルピー法、すなわち従来法(ENTC)と融解CTS法(ENTM)である。これらの手法の比較には、第2期EISMINTの単純地形シナリオを用いた(Payne et al., 2000, J. Glaciol. 46, 227–238)。基準となるPOLYの計算結果と比較することで、他の手法について検討を行った。COLDおよびENTCはCTSにおいて温度勾配を連続に保つことができなかったが、ENTMでは強制によってその連続が常に成り立っている。ENTCとENTMのどちらの手法からも氷河内の氷温と含水率の分布を推定することができるが,ENTMはCTSの位置に関してはENTMよりも正確であった。以上の結果から、融点以下と融点以上の氷について領域が設定されるPOLYと比較して、単一相エンタルピー法であるENTCとENTMはより実用的で簡便な手法といえる。","subitem_description_type":"Other"}]},"item_10001_relation_14":{"attribute_name":"DOI","attribute_value_mlt":[{"subitem_relation_name":[{"subitem_relation_name_text":"10.1016/j.polar.2015.12.004"}],"subitem_relation_type_id":{"subitem_relation_type_id_text":"http://doi.org/10.1016/j.polar.2015.12.004","subitem_relation_type_select":"DOI"}}]},"item_10001_source_id_9":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"1873-9652 ","subitem_source_identifier_type":"ISSN"}]},"item_access_right":{"attribute_name":"アクセス権","attribute_value_mlt":[{"subitem_access_right":"metadata only access","subitem_access_right_uri":"http://purl.org/coar/access_right/c_14cb"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Ralf Greve","creatorNameLang":"en"}],"nameIdentifiers":[{"nameIdentifier":"25780","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"Heinz Blatter","creatorNameLang":"en"}],"nameIdentifiers":[{"nameIdentifier":"25781","nameIdentifierScheme":"WEKO"}]}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"Ice sheet ","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"Thermodynamics ","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"Polythermal ice ","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"Enthalpy method ","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"Modeling","subitem_subject_language":"en","subitem_subject_scheme":"Other"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"journal article","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"Comparison of thermodynamics solvers in the polythermal ice sheet model SICOPOLIS","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"Comparison of thermodynamics solvers in the polythermal ice sheet model SICOPOLIS"},{"subitem_title":"Comparison of thermodynamics solvers in the polythermal ice sheet model SICOPOLIS","subitem_title_language":"en"}]},"item_type_id":"10001","owner":"27","path":["1493"],"pubdate":{"attribute_name":"公開日","attribute_value":"2016-03-16"},"publish_date":"2016-03-16","publish_status":"0","recid":"11042","relation_version_is_last":true,"title":["Comparison of thermodynamics solvers in the polythermal ice sheet model SICOPOLIS"],"weko_creator_id":"27","weko_shared_id":-1},"updated":"2023-07-25T16:19:40.061843+00:00"}