@article{oai:nipr.repo.nii.ac.jp:00010740, author = {Olaf Eisen and Coen Hofstede and Anja Diez and Yngve Kristoffersen and Astrid Lambrecht and Christoph Mayer and Rick Blenkner and Sverrir Hilmarsson and Olaf Eisen and Coen Hofstede and Anja Diez and Yngve Kristoffersen and Astrid Lambrecht and Christoph Mayer and Rick Blenkner and Sverrir Hilmarsson}, issue = {1}, journal = {Polar Science, Polar Science}, month = {Mar}, note = {We present implementations of vibroseis system configurations with a snowstreamer for over-ice long-distance seismic traverses (>100 km). The configurations have been evaluated in Antarctica on ice sheet and ice shelf areas in the period 2010–2014. We discuss results of two different vibroseis sources: Failing Y-1100 on skis with a peak force of 120 kN in the frequency range 10–110 Hz; IVI EnviroVibe with a nominal peak force of 66 kN in the nominal frequency range 10–300 Hz. All measurements used a well-established 60 channel 1.5 km snowstreamer for the recording. Employed forces during sweeps were limited to less than 80% of the peak force. Maximum sweep frequencies, with a typical duration of 10 s, were 100 and 250 Hz for the Failing and EnviroVibe, respectively. Three different concepts for source movement were employed: the Failing vibrator was mounted with wheels on skis and pulled by a Pistenbully snow tractor. The EnviroVibe was operated self-propelled on Mattracks on the Antarctic plateau. This lead to difficulties in soft snow. For later implementations the EnviroVibe with tracks was put on a polyethylene (PE) sled. The sled had a hole in the center to lower the vibrator baseplate directly onto the snow surface. With the latter setup, data production varied between 20 km/day for 6-fold and 40 km/day for single fold for 9 h/day of measurements. The combination of tracks with the PE-sled was especially advantageous on hard and rough surfaces because of the flexibility of each component and the relatively lose mounting. The systems presented here are suitable to obtain data of subglacial and sub-seabed sediment layers and englacial layering in comparable quality as obtained from marine geophysics and land-based explosive surveys. The large offset aperture of the streamer overcomes limitations of radar systems for imaging of steep along-track subglacial topography. With joint international scientific and logistic efforts, large-scale mapping of Antarctica's and Greenland's subglacial geology, ice-shelf cavity geometries and sea-bed strata, as well as englacial structures can be achieved., 氷上の長距離地震トラバース(>100 km)のための雪上ストリーマケーブル付きバイブロサイス(起震車)システムを開発し、2010-2014年に南極氷床と棚氷域で試験を行った。ここでは以下の2種類のバイブロサイス震源を議論する。1)Failing Y-1100;周波数帯域10-110 Hzで120 kNのピーク力、2)IVI EnviroVibe;周波数帯域10-300 Hz で66 kNのピーク力、をそれぞれ保有する。全ての実験は実績のある60チャネル、1.5 km長の雪上ストリーマケーブルを用いて記録し、また震源の移動は以下の3種類を用いた。1)Failing型は車輪ごとスキーに載せ、スノートラクタで牽引した。2)EnviroVibe 型は自己推進式履帯では軟雪は困難であり、3)ポリスチレン製橇に載せてトラックで牽引した。このシステムは氷床下及び海底下の堆積層、並びに氷河堆積層の検知に適し、データの質は海底の地球物理探査や陸上の爆破地震動探査と同等である。ストリーマの大きなオフセット径は、測線上の急峻な氷床下地形のイメージングのためのレーダシステム限界を克服した。}, pages = {51--65}, title = {On-ice vibroseis and snowstreamer systems for geoscientific research}, volume = {9}, year = {2015} }