{"created":"2023-07-25T11:06:39.946845+00:00","id":10142,"links":{},"metadata":{"_buckets":{"deposit":"b758f356-c74b-4a0a-a08a-c86ad67a7b0b"},"_deposit":{"created_by":27,"id":"10142","owners":[27],"pid":{"revision_id":0,"type":"depid","value":"10142"},"status":"published"},"_oai":{"id":"oai:nipr.repo.nii.ac.jp:00010142","sets":[]},"author_link":["18916","18917","18911","18912","18909","18910","18915","18918","18914","18913"],"item_10001_biblio_info_7":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2012-07","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"2","bibliographicPageEnd":"164","bibliographicPageStart":"155","bibliographicVolumeNumber":"6","bibliographic_titles":[{"bibliographic_title":"Polar science"},{"bibliographic_title":"Polar science","bibliographic_titleLang":"en"}]}]},"item_10001_description_5":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"We have been developing an accurate and efficient numerical scheme, which uses the finite-difference method (FDM) in spherical coordinates, for the computation of global seismic wave propagation through laterally heterogeneous realistic Earth models. In the field of global seismology, traditional axisymmetric modeling has been used widely as an efficient approach since it can solve the 3-D elastodynamic equation in spherical coordinates on a 2-D cross-section of the Earth, assuming structures to be invariant with respect to the axis through the seismic source. However, it has the severe disadvantages that asymmetric structures about the axis cannot be incorporated and the source mechanisms with arbitrary shear dislocation have not been attempted for a long time. Our scheme is based on the framework of axisymmetric modeling but has been extended to treat asymmetric structures, arbitrary moment-tensor point sources, anelastic attenuation, and the Earth center which is a singularity of wave equations in spherical coordinates. All these types of schemes which solve 3-D wavefields on a 2-D model cross-section are classified as 2.5-D modeling, so we have named our scheme the spherical 2.5-D FDM. In this study, we compare synthetic seismograms calculated using our FDM scheme with three-component observed long-period seismograms including data from stations newly installed in Antarctica in conjunction with the International Polar Year (IPY) 2007–2008. Seismic data from inland Antarctica are expected to reveal images of the Earth's deep interior with enhanced resolution because of the high signal-to-noise ratio and wide extent of this region, in addition to the rarity of sampling paths along the rotation axis of the Earth. We calculate synthetic seismograms through the preliminary reference earth model (PREM) including attenuation using a moment-tensor point source for the November 9, 2009 Fiji earthquake. Our results show quite good agreement between synthetic and observed seismograms, which indicates the accuracy of observations in the Antarctica, as well as the feasibility of the spherical 2.5-D modeling scheme.","subitem_description_type":"Abstract"}]},"item_10001_description_6":{"attribute_name":"内容記述","attribute_value_mlt":[{"subitem_description":" 我々は全地球を対象とした計算精度と効率の良い理論地震波形計算手法「球座標系2.5次元差分法」の開発を行ってきた.本論文では,この手法による理論波形を,世界中に分布した30点の広帯域地震計による3成分の観測波形と比較し,計算精度のチェックを行った.また現在,南極大陸内陸部の氷床上では,国際極年(IPY2007-2008)に伴うプロジェクトで多数の臨時地震観測点が展開されている.今回はこれら南極氷床上での観測波形と理論波形の比較も行い,氷床上でも上下動成分の観測精度が十分であることと,30 s程度の長周期では標準地球モデルによる理論波形でも観測を十分説明できることを示した.","subitem_description_type":"Other"}]},"item_10001_publisher_8":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"国立極地研究所"}]},"item_10001_relation_12":{"attribute_name":"論文ID(NAID)","attribute_value_mlt":[{"subitem_relation_type_id":{"subitem_relation_type_id_text":"110009443109","subitem_relation_type_select":"NAID"}}]},"item_10001_relation_14":{"attribute_name":"DOI","attribute_value_mlt":[{"subitem_relation_name":[{"subitem_relation_name_text":"10.1016/j.polar.2012.06.001"}],"subitem_relation_type_id":{"subitem_relation_type_id_text":"http://doi.org/10.1016/j.polar.2012.06.001","subitem_relation_type_select":"DOI"}}]},"item_10001_source_id_11":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AA12240481","subitem_source_identifier_type":"NCID"}]},"item_10001_source_id_9":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"18739652","subitem_source_identifier_type":"ISSN"}]},"item_access_right":{"attribute_name":"アクセス権","attribute_value_mlt":[{"subitem_access_right":"metadata only access","subitem_access_right_uri":"http://purl.org/coar/access_right/c_14cb"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Toyokuni, Genti"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Takenaka, Hiroshi"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Kanao, Masaki"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Wiens, Douglas A."}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Nyblade, Andrew"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Toyokuni, Genti","creatorNameLang":"en"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Takenaka, Hiroshi","creatorNameLang":"en"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Kanao, Masaki","creatorNameLang":"en"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Wiens, Douglas A.","creatorNameLang":"en"}],"nameIdentifiers":[{}]},{"creatorNames":[{"creatorName":"Nyblade, Andrew","creatorNameLang":"en"}],"nameIdentifiers":[{}]}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"Global waveform modeling","subitem_subject_scheme":"Other"},{"subitem_subject":"Finite-difference method (FDM)","subitem_subject_scheme":"Other"},{"subitem_subject":"Observed seismograms","subitem_subject_scheme":"Other"},{"subitem_subject":"International Polar Year (IPY)","subitem_subject_scheme":"Other"},{"subitem_subject":"Antarctica","subitem_subject_scheme":"Other"},{"subitem_subject":"Global waveform modeling","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"Finite-difference method (FDM)","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"Observed seismograms","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"International Polar Year (IPY)","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"Antarctica","subitem_subject_language":"en","subitem_subject_scheme":"Other"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"journal article","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"Comparison of global synthetic seismograms calculated using the spherical 2.5-D finite-difference method with observed long-period waveforms including data from the intra-Antarctic region","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"Comparison of global synthetic seismograms calculated using the spherical 2.5-D finite-difference method with observed long-period waveforms including data from the intra-Antarctic region"},{"subitem_title":"Comparison of global synthetic seismograms calculated using the spherical 2.5-D finite-difference method with observed long-period waveforms including data from the intra-Antarctic region","subitem_title_language":"en"}]},"item_type_id":"10001","owner":"27","path":["1348"],"pubdate":{"attribute_name":"公開日","attribute_value":"2014-10-16"},"publish_date":"2014-10-16","publish_status":"0","recid":"10142","relation_version_is_last":true,"title":["Comparison of global synthetic seismograms calculated using the spherical 2.5-D finite-difference method with observed long-period waveforms including data from the intra-Antarctic region"],"weko_creator_id":"27","weko_shared_id":27},"updated":"2023-07-25T16:21:43.361255+00:00"}