一報告一 *Report*

南極人工地震観測用ペネトレーター電源部の低温(-15°C)試験

渋谷和雄*

Low temperature $(-15^{\circ}C)$ operational test of the battery package in the Antarctic penetrator

Kazuo Shibuya*

(2004年6月28日受付; 2004年8月11日受理)

Abstract: In order to perform seismic explosion experiments in the crevassed area of the Antarctic ice sheet, a seismometer deployable from the air is desired. We have developed such a helicopter-deployable system (called the Antarctic penetrator), which consists of a Ground System Segment (GSS) and an Automatic Data Collection Segment (ADCS). Its test operation by the 43rd Japanese Antarctic Research Expedition (JARE-43) was, however, not successful. The reason was found to be leakage of 3.6 mA current from the battery package during transportation. In order to re-examine the life time of the battery package under an operational environment at -15° C, we tested the lithium thionyl chloride batteries in a laboratory cryostat. The operational scenario is as follows. After initialization of the GSS, it enters into a sleep mode of 20 days duration. At the 21st day, the GSS becomes awake and enters into the switching stage of 12 hours-awake and 12 hours-sleep modes for the following 20-30 days. During the awake-period, the radio-telemeter module becomes active and transmits commands and/or recovers stored data to the ADCS once or twice a day. The current consumption in the sleep-mode was 60 mA, while it was 135 mA during the awake-mode. The current consumption attained about 230 mA during the active mode, with an associated voltage fall of 0.5 V. With 8 TL5930 cells in parallel and 2 in serial (cell capacity 19 Ah; Tadiran Co., Ltd.), operation was successful with a life time of more than 50 days. The life limit can be predicted from the time when the voltage becomes lower than 4.8 V in the active mode. It was possible to recover the GSS-stored 4 event data (48 Kbytes) to the ADCS in about 40 s fifty times during the above 50 days.

要旨: 南極域で人工地震探査を行う時, クレバス地帯での安全行動を考慮する と,地上アクセスを必要としない投下式地震計の開発が急務である. そのため, ヘ リコプターから GSS (Ground System Segment) と呼ぶ無線モジュール付きの地震 計センサー部を投下して設置し, ADCS (Automatic Data Collection Segment) と呼 ぶ, ヘリコプター内から無線を用いて GSS の時刻同期やメモリー保存データを回 収できるシステムの開発を進めてきた. このような, 投下型地震計を南極ペネト レーター(以下ペネトレーターと略記)と呼び, 第43 次南極地域観測隊・夏隊(第 43 次夏隊) で使用したが, 電源部に不具合があり, 実用に至らなかった. 本報告

南極資料, Vol. 48, No. 3, 219-235, 2004

Nankyoku Shiryô (Antarctic Record), Vol. 48, No. 3, 219-235, 2004

^{*} 情報・システム研究機構国立極地研究所. National Institute of Polar Research, Research Organization of Information and Systems, Kaga 1-chome, Itabashi-ku, Tokyo 173–8515.

^{© 2004} National Institute of Polar Research

は、その原因を明らかにするとともに、南極人工地震実験での実際的な運用プラン における電池寿命を再検討するために実施した低温試験について報告する。上記 不具合は、電池パックに組み込んだ逆接続防止回路の複合トランジスター部で 3.6 mA という電流が常時流れたことによって、約3割の容量を輸送中に消耗して しまったことが主要因だった.この複合トランジスターをダイオードに変更し,塩 化チオニールリチウム電池セルの容量を 16.5 Ah から 19 Ah へ増量し, -15℃の 恒温槽内に Ground System Segment (GSS) を設置して負荷を与え,寿命を調べた. 初期設定後の20日間は待機(sleep)状態(Aモード)を続け、起動(wakeup)後 は12時間ごとに、無線機ONのコマンド待ち受け状態(Bモード)とAモードを 切り替え, B モードの時間帯において, 1 日約 1-2 回, コマンド送受信・データ転 送(Cモード)を行う、という運用プランをプログラムした. 無線機を含めた GSS の消費電流は、A モードで 60 mA, B モードで 135 mA, C モードでは 230 mA だっ た. 実験の結果,2直列8並列の電池パックを用いて,-15℃の環境下で50日以 上の寿命を持つことが確かめられた.GSSメモリーに収録された爆破地震波形4 イベント(48 kbytes)のデータを ADCS に回収するために必要な時間は約40秒で 設計通りだった. GSS の寿命のめどは C モード時における電圧が初期の 6.0 V か ら低下して 4.8 V を下回るあたりであるが、それまでの 50 日間にデータ回収操作 を無理なく 50 回以上行うことができた.

1. はじめに

南極域は、その面積の97%以上が氷床で覆われ、人工地震による地設構造探査を行うにあ たって設営的な制約が大きい.従来、雪上車を用いたトラバース旅行によって、地震観測点 の設置、保守、時刻較正、記録データとレコーダーの回収を行ってきたが、必要人員・資材 は、例えば第21次南極地域観測隊(第21次隊)の例(伊藤ら、1983)が示すように、極め て大掛かりである.観測機器の進歩により、観測点設置・回収方法、時刻較正方法、デジタ ル記録の一次処理方法は第41次隊、あるいは第43次隊(例えば宮町ら、2003)において著 しく改善されたが、行動形態が旧来からの雪上車を用いたトラバース旅行であることにかわ りはない.

クレバス地帯での安全行動を考慮すると、地上アクセスを必要としない投下式地震計の活 用が課題である.このための具体的計画が 10 年来、研究されてきたが(例えば Shibuya et al., 1991)、ヘリコプターから GSS (Ground System Segment) と呼ぶ無線モジュール付きの地震 計センサー部を投下して設置し、ADCS (Automatic Data Collection Segment) と呼ぶ、ヘリ コプター内から無線を用いて GSS の時刻同期やメモリー保存データを回収できるシステム の開発が基本になっていた(例えば渋谷ら、1991、1992).このような、ヘリコプターから投 下して設置できる南極での人工地震用地震計を南極ペネトレーター(以下ペネトレーターと 略記) と呼んでいる.

第43次隊の人工地震実験においても、測線の一部でペネトレーターを利用する予定だった.しかし、いくつかの不具合が発生し、本実験に用いることが出来ず、試験観測として使用するにとどまった.試験観測としての成果は、松島ら(2003)に記述されている.

不具合のうち、最大の要因は輸送中での電池の消耗だった。昭和基地に到着したペネト

レーターの電池電圧は、本来なら7.2V あるはずだったが、すべて 6.4-6.7V 程度まで下がっ ていた. ペネトレーターが内蔵している電池は、タディラン社製の塩化チオニールリチウム 電池 (TL2300) だったが、新品単体時で1 セルあたり 3.6V の電圧がある.2 直列 8 並列で電 源として使用していたが、現地到着時に明らかに消耗していたため、スイッチオンすると、 電池パックの電圧は 6.4-6.7V からさらに低下して 6V 以下に落ちてしまったと報告されて いる. この放電原因を調べるとともに、小規模の設計改修で、南極での実際のオペレーショ ンに再使用できるかどうか、室内低温実験を基に再検討したので、報告する.

2. 第43次隊実験での電源不具合について

ペネトレーターの電池パックには、当初、逆接続防止回路として、ダイオードを使用していた.しかし、ダイオードは約0.6 Vの電圧降下をともなうので、コマンド送信時にさらに低下して、しきい値(約5V)までの寿命が短くなることを恐れ、このダイオードを電気的には等価とみなして複合トランジスター (NEC FP1A3M;電圧降下は0.3 V)に変更してしまった.電池パックを筐体に組み込んでも全体のスイッチをOFFにしておけば、電流は流れないと思い込んでしまったが、実際には図1の模式的回路図に示すように、OFF用接点がベースと接続しているので、7.2 V/(1k Ω +1k Ω)=3.6 mAの電流が常時流れる状態になってしまった.電池組み付けから「しらせ」積み込み、輸送、開梱、使用までの約60日間での消耗分は3.6 mA×24h×60 days=5184 mAh ~ 5.2 Ah と見込まれる.TL2300はノミナル容量が16.5 Ah (図 2a 点線参照)なので、全並列について約3割の容量が到着時に既に失われていた計算になる.

電池は一般に低温下では常温時にくらべて実効容量が低下するが,TL2300においてもそうである.電流負荷総量は無線機 OFF の待機時,無線機 ON の受信待ち受け状態,コマンド

- 図 1 トランジスター FP1A3M を通って電流が漏洩した. 60 日間の輸送中, 3.6 mA が常時流 れることになってしまった.
- Fig. 1. Leakage of 3.6 mA current through transistor FP1A3M occurred constantly during 60 days' transportation by the icebreaker "Shirase".

送信時でそれぞれ,60mA,135mA,230mA と見込まれたが,8並列あるので1列あたりで は、それぞれ、約7.5mA,17mA,30mA の負荷に相当する.電池セル単体の規格によると −15℃では30mA の連続負荷に対してほぼ8Ah という50%の能力しか出ず(図2a破線), 20mA 負荷では電圧も3.2V へ落ちるため(図2b),結局,初期設定、テスト送受信を繰り返 すたび、急速に能力不足に陥ったものと思われる.

タディラン社製の塩化チオニールリチウム電池電圧には姿勢依存性があり、倒立状態(負極を鉛直上方向)で使用すると電圧が低下するとの記述がある.現地報告による分解検査では、正立状態(正極が上)になっており、姿勢は間違えていない.しかし、GSSから取り出した電池パックの電圧測定では、正立鉛直状態で3.06 V、45 度傾き状態で5.43 V、横倒し状態で6.05 V、倒立鉛直状態では6.08 Vと姿勢により大きく変化し、ペネトレーターを地面に横倒した状態では無線機が動作しても、鉛直に立てると動作停止に陥るなどの現象が起きている. このほかにも、不安定な動作がいくつか報告されたが、これらはいずれも、電池の能力低下による駆動力不足が主要因と思われる.

3. 電池寿命の再吟味

ペネトレーターの運用にあたっては、波形データ収録のスケジュールや時刻同期などの初期設定後、(1) 20日間連続の待機(sleep) モード、(2) 21日目に起動(wakeup)後、12時間は awake モード(08-20LTの間、無線機を受信モードにしてこの間に約40秒間データ送信する active モードを1回程度おり込む)で、その後の12時間(20-08LT)は待機モードに入る、(3)以後、最低19日間(2)を繰り返す、ことを想定している。図3は、このような40日間の運用プランにおける負荷電流の時間変化を模式的に示したものである。図中、Aモードは無線機 OFF の待機状態(sleep mode)に対応して 60 mA, Bモードは無線機 ON での受信可能状態(awake mode)に対応して135 mA, Cモードは無線機の送信状態(active mode)に対応して、コマンド送受信(C1 mode)の場合 170-180 mA, 記録波形データの回収(C2 mode)の場合 230-250 mA 必要なことを示している。

- 図 2 タディラン社製リチウム電池 TL2300 と TL5930 の性能比較. 点線が TL2300 (ノミナル 容量 16.5 Ah) で,実線が TL5930 (ノミナル容量 19 Ah) である. (a) 負荷電流の関数と しての容量,(b) 温度による電圧変化. 10, 20, 60 mA の常時電流をパラメーターとし ている. TL2300 と TL5930 でほぼ同じ変動を示すので,実線のみ示す.(c) 25℃におけ る放電特性. 10, 20 mA に対する変化曲線は,カタログでは与えられていない.
- Fig. 2. Comparison of specifications of lithium battery cells. The solid curve is for the TL5930 (19 Ah), while the dotted curve is for the TL2300 (16.5 Ah), both made by the Tadiran Co. Ltd. (a) Capacity versus current. (b) Voltage versus temperature as a function of load current (10, 20, 60 mA). Dotted curves are not drawn because TL2300 shows almost the same pattern as that of TL5930 by solid curves. (c) Discharge characteristics at 25°C. Curves for 10 and 20 mA are not given in the manufacturer's catalogue.

上記運用プランでの必要電流容量は、 $60 \text{ mA} \times 24 \text{ h} \times 20 \text{ day} + 135 \text{ mA} \times 12 \text{ h} \times 20 \text{ day} + 250 \text{ mA} \times 1/60 \text{ h} \times 20 \text{ day} + 60 \text{ mA} \times 12 \text{ h} \times 20 \text{ day} - 75680 \text{ mAh} x \text{ oor}, 8 並列あれば 1 列あたり、約 9460 \text{ mAh} ~ 9.5 \text{ Ah} 必要になると見込まれる. また、40 日間での平均負荷は 1 列あたり 10 mA である. 逆接続防止回路として使用していた複合トランジスターをショットキーバリ ア・ダイオードに戻し、TL2300 と同じ D 型径長のセルだが若干、容量の大きい TL5930 (19 Ah) を用いて低温試験を実施することにした. TL5930 の規格によると平均 10 mA の連続負荷に対して 0°C で約 1400 h (~58 日) の容量がある (図 2a 実線). <math>-15^{\circ}$ C では総容量が約 15 % 低下するが、それでも 40 日の設定寿命には耐えると思われる.

-15℃でC2モードに対応した1列あたり30mAの電流出力を得ようとすると電池単体の電圧は図2bが示すように3.1-3.2Vに低下する.1直列に対してダイオードでの約0.5Vの降下を差し引くと、5.7-5.9Vが供給電圧となる.リチウム系列の電池は、電流取り出しの時間経過に対して、電圧は比較的安定して一定値を保ち、突然、限界に達する傾向がある(図2c).電圧が限界まで一定値であることは望ましいが、回路駆動限界(5.0V付近)までのマージンが約1.0Vと小さいので、40日経ってもデータ回収が出来る能力が残っているかどうかが実験の焦点である.

4. 実 験

4.1. 実験の概要

運用プランに沿った負荷状態での実際の電流と電圧を時系列データとして取得・記録する ために, Digital Multimeter (DMM) 2 台を図4の模式図に示すように GSS 回路に組み込ん だ. A, B, C の全モードについて1 秒間隔でデータをサンプルし,詳細な変動記録がとれるよ うにした. そして, 10 サンプルの平均値を 10 分間隔でパソコン (PC) データ記録できるよ うにソフトプログラムを組んだ. なお,電流値に大きな変化 (10 mA/s 以上) があった場合 は, 10 分間隔にこだわらず, 10 サンプル平均値をデータとして記録するようにした. また, GPS 時計による時刻同期は実際には行わず,時刻データのコマンド送信では GSS 内部時計 の値をそのまま取り出すことにした. 前節で述べた C1 モードはキャリア検出後の時刻同期 または時刻較正コマンドの送受信だけでデータ回収を行わない場合に対応し, C2 モードは, GSS 内部メモリーに記録されていた 1 波形 (100 Hz サンプリング, 60 秒長の 6000 データ) 4 イベント分 (48 kbytes) の転送・回収に対応していて, 10 サンプル平均値では各々170-180 mA, 230-250 mA の負荷に相当するはずである.

まず、常温での履歴をとるため 2003 年 8 月 20 日から 10 月 21 日まで、室内放置の状態で データを取得、記録した.その後、同じ GSS の負荷回路と新しい電池パックを内部筐体に組 み込み、実際の姿勢になるように正立鉛直状態で恒温槽に入れ、−15℃一定の状態でデータ を取得した.松島ら (2003)の図 11 によると、みずほルート上の標高 1000 m、1 m 深さでの

224

mA) corresponds to the awake stage with rf power ON and modem power OFF. C-mode (230 mA) corresponds to the active stage with both Fig. 3. Operation scenario of the GSS. A-mode (60mA) corresponds to the sleep stage with both rf power and modem power OFF. B-mode (135 rf power and modem power ON.

- 図 4 低温実験の模式図. デジタルマルチメーター2台を回路中に組み込み, 1台を電圧測定, 1台を電流測定に用いた. GSS コントロール基板から トリガー信号をもらい,サンプルデータを PC へ送り,1 秒間隔 10 サンプルの平均値を基本的には 10 分間隔で記録した.
- Schematic diagram of the low-temperature experiment. Two digital multimeters (DMM) were inserted into the circuits. The trigger signal from the control circuit board of the GSS was interfaced with the I/F block, and voltage and current samples were recorded in a PC memory as time-series data. Fig. 4.

226

雪中温度は-13から -15° Cであり、低温試験としては -15° Cの状態で正常動作が継続する ことを確かめたい.使用している抵抗、コンデンサー、トランジスター類は民生用規格なの で保証温度は 0° C以上だったが、 -15° Cでの使用に問題はなかった.制御用 IC である PLD のみ、安全を見込んで -20° C保証のものを用いている.

低温実験は神奈川県高度技術支援財団の恒温恒湿槽(タバイ PL-3FPW)を用いて行った. 図 5a はデータ取得のために使用した機器類を示す.図 5b は恒温槽内に設置した筐体である.恒温槽内外間での無線通信はそのままではできないので、ケーブル取り出し用の穴から 無線アンテナケーブルを引き延ばして取り出し、コマンド送受信を行った.ケーブル改変に よる電界強度ロスは無視し得ると思われる.

4.2. 常温試験データ

常温試験は8月20日13時30分頃から始めた. 室温は25℃前後である. 電源ONで初期 設定時の電圧は6.3-6.6Vで,電流は160-250mAであった. 1357にはsleep コマンドが働い てAモードに入り,使用電流が約60mAに落ち着いた. 8月21日から9月10日までの1時 間値をみると,小さな振幅の時間変動が見られるものの,電圧が6.7-6.8V,電流が59mA前 後でほぼ一定している. 開始日(8月20日)の初期設定時とスリープモード中の8月22日-25日の6時間おきリサンプル編集データを表1aに示す.

スケジュール通り、21日目の9月10日0800に無線機が目覚め B モードに入ったが、その 時の電流は162mA であった。1000前後に時刻同期操作を行うと、約176mA への電流増加 が認められた。設定通り、12時間後の2000に再度、待機状態(A モード)に入り、使用電流 は132.8 (1948)→88.2 (1958)→58.4 (2008) mA へと変化し、60mA 付近で落ち着いた。9月 12日には GSS 収録データの ADCS による読み出しと PC へのデータ転送と記録操作を3回 行って、電流変化時系列を記録した。表 1b はその時のサンプルデータであるが、A モードで の 60 mA 前後、B モードでの120-140 mA、C1 モードの150 mA 前後、C2 モードでの220 mA 前後は、ほぼ予測通りである。このようにして、さらに 40日後の10月21日まで、12時 間毎の A モードと B モード切り替えの実施と、この間の C モードに対応した時刻同期及び 較正、メモリーデータ回収(1回あたり4 イベント分のデータを約 40 秒で転送)を行った。

表 1c は C モード時の電流と電圧の変化を示したものである. C モードの通算回数が電池 の消耗に関係するので, コメント欄にその回数を記載してある. 実験開始時(8月20日)の 電圧は 6.3 V であったが, 15回 C モードを実施した 10月14日まで, ほぼ同じ電圧を維持し ていたのに, 10月20日にデータ回収を2回行った(通算17回)後では6.0 V に低下したこ とを示している. さらに 10月21日において 0950-1050間に10回データ回収を行ったとこ ろ(通算 C モード 27回) 5.6 V へ低下するなど, 消耗が進んだ. 実験はこの時点で打ち切っ たが, 送受信能力はまだ十分保持しており, 常温時では通常の使い方で2ヵ月以上の寿命を

持つことが示された.

4.3. 低温試験データ

低温試験は 2004 年 1 月 5 日 11 時 30 分頃から始めた. 恒温槽内の温度は−15℃ 一定に設定した. 電源スイッチ ON の初期設定時の電圧はまだ電池が冷えていなかったので 6.4–6.7 Vで,電流は 120–240 mA だった. 1200 には sleep コマンドが働いて A モードに入り,使用電流は約 62 mA(常温時より約 2–3 mA 多い)に落ち着いた. 1 月 6 日から 1 月 26 日までの 1 時間ごとの電流値をみると,小さな振幅の時間変動が見られるものの,61–62 mA でほぼ一定している. 一方,電池電圧は常温時の 6.7 V に比べて約 0.5 V 低い 6.2 V で推移している. 表 2 a は 1 月 5 日から 1 月 10 日までのリサンプルデータを示している.

スケジュール通り、21日目の1月26日0800頃に無線機が目覚めたが、その時の電流は約137mA だった。1030-1050頃にはGSS収録データのADCSによる読み出し、PCへのデータ転送・記録操作を3回行った。そして、設定通り、12時間後の2000に再度、待機状態に入ったところ、使用電流が130mA から62mA へと減少し、60mA 付近で落ち着いた。表 2bは1月26日の電流変化時系列をリサンプル記録したものである。A モード時の60mA 前後、B モード時での130mA 前後、C1 モード時の190mA 前後、C2 モード時での210-230mA は、

- 図 5 実験風景. (a) 測定に関係した機器類. (b) GSS はタバイ PL-3FPW の恒温槽に実際の設 置姿勢で入れ, −15℃に設定した. 無線アンテナは筐体上部から,ケーブルで延長し, 側面の孔から外へ引き出した. GSS の中間から出ているケーブル2本は I/F 回路につな がっている.
- Fig. 5. (a) Snapshot of the experiments. The name of each instrument is labeled in the figure. (b) GSS was housed in a Tabai PL-3FPW cryostat under the operational attitude and environmental temperature at -15°C. The radio-telemeter antenna at the top was cabled to the outside of the cryostat through the hole in the left-side wall. Two cables taken out from the GSS hole go to the I/F circuit for DMM data triggering and acquisition.

常温での測定値とあまり変わらない.

このようにして,以後,12時間ごとにA,B二つのモード切り替えを実施した.さらに17 日後(通算37日後)の2月12日までの間,Cモードに対応した時刻較正またはメモリー データ回収(1回あたり約40秒)をほぼ毎日1-2回以上,合計43回(通算48回)行った.

(b)

表1 室温実験下における電圧と電流の変動

 Table 1.
 Time variation of voltage and current during test at room temperature.

(a) 初期設定時の時末列 ノーク	(a)	初期設定時の時系列デー	タ
-------------------	-----	-------------	---

 $(a)\,$ Time series data at the beginning stage of the test

Y M D	H M S	V	mA
2003/08/20	13:34:53	5.216	188.5
2003/08/20	13:37:44	6.500	164.8
2003/08/20	13:38:06	6.312	256.9
2003/08/20	13:40:23	6.465	163.3
2003/08/20	13:42:28	6.332	251.0
2003/08/20	13:47:35	6.582	104.8
2003/08/20	13:57:35	6.715	59.53
2003/08/20	14:07:35	6.727	59.56
2003/08/20	17:37:34	6.744	59.65
2003/08/22	0:37:31	6.732	59.37
2003/08/22	6:37:31	6.739	59.31
2003/08/22	12:37:30	6.737	59.26
2003/08/22	18:37:30	6.744	59.11
2003/08/23	0:37:29	6.743	59.31
2003/08/23	6:37:29	6.733	61.91
2003/08/23	12:37:28	6.736	59.13
2003/08/23	18:37:27	6.726	59.15
2003/08/24	0:37:27	6.747	59.20
2003/08/24	6:37:26	6.758	59.33
2003/08/24	12:37:26	6.729	59.21
2003/08/24	18:37:25	6.737	59.13
2003/08/25	0:37:25	6.761	58.95

(b) 9月12日のサンプルデータ.データ回収を3回行っている.

(b) Sample data during Sep. 12 while memory data were retrieved three times.

	• •	-			
Y M D	H M S	v	mA	mode	
2003/09/12	0:48:05	6.737	58.39	А	
2003/09/12	6:48:04	6.758	58.34	Α	
2003/09/12	7:48:04	6.754	58.34	А	
2003/09/12	7:58:03	6.669	120.8	В	
2003/09/12	8:08:01	6.620	155.6	C1	
2003/09/12	8:18:01	6.626	132.7	В	
2003/09/12	9:38:00	6.622	133.1	В	
2003/09/12	9:45:20	6.584	152.9	C1	
2003/09/12	9:46:50	6.448	217.5	C2	
2003/09/12	9:56:50	6.575	138.3	В	
2003/09/12	12:36:49	6.550	133.4	В	
2003/09/12	12:43:52	6.521	153.5	C1	
2003/09/12	12:45:22	6.420	217.4	C2	
2003/09/12	12:46:21	6.517	158.5	C1	
2003/09/12	12:47:51	6.415	217.3	C2	

2003/09/12	12:57:51	6.555	138.2	В
similar current	data are given d	uring the epo	och	
2003/09/12	19:07:50	6.424	132.5	В
2003/09/12	20:07:53	6.713	58.27	Α
2003/09/12	23:07:53	6.742	58.45	Α

(c) データ回収時の電圧,電流,積算Cモード実施回数

 $(\ensuremath{\mathsf{c}})$ Time-series data during data retrieval

Y M D	H M S	V	mA	Cumulative number of C mode
2003/08/20	13:38:06	6.312	256.9	1
2003/08/20	13:42:28	6.332	251.0	2
2003/09/11	10:12:09	6.463	203.0	3
2003/09/12	9:46:50	6.448	217.5	4
2003/09/22	15:54:29	6.380	218.1	7
2003/09/24	15:40:27	6.374	213.0	11
2003/10/14	9:53:46	6.343	233.0	15
2003/10/20	12:08:47	6.006	270.2	17
2003/10/21	9:57:26	5.842	219.9	18
2003/10/21	10:18:36	5.847	209.5	21
2003/10/21	10:25:19	5.731	225.5	24
2003/10/21	10:40:13	5.636	227.4	27

表 2 – 15℃実験下における電圧・電流変化

Table 2. Time variation of voltage and current during test at -15° C.

- (a) 初期設定時の時系列データ
- $(a)\;$ Time series data in the beginning stage

 YMD	НМS	V	mA
		-	
2004/01/05	11:48:12	6.650	228.9
2004/01/05	11:49:42	6.567	143.8
2004/01/05	11:50:01	6.404	247.1
2004/01/05	11:50:38	6.395	234.2
2004/01/05	11:58:47	6.606	71.12
2004/01/05	12:08:47	6.716	62.32
2004/01/05	18:08:46	6.715	62.23
2004/01/06	0:08:45	6.273	61.57
2004/01/06	12:08:49	6.220	61.68
2004/01/07	0:08:48	6.213	61.49
2004/01/07	12:08:47	6.211	61.27
2004/01/08	0:08:45	6.209	61.58
2004/01/08	12:08:44	6.209	61.25
2004/01/09	0:08:42	6.208	61.58
2004/01/09	12:08:41	6.209	61.54
2004/01/10	0:08:39	6.209	61.63

(b) Sample data during Jan. 26 when ri is awake							
Y M D	H M S	V	mA	mode			
2004/01/26	0:04:55	6.216	61.23	А			
2004/01/26	6:04:55	6.215	61.30	Α			
2004/01/26	7:54:54	6.215	61.27	Α			
2004/01/26	8:01:15	6.105	61.3	Α			
2004/01/26	8:11:13	5.973	136.7	В			
2004/01/26	8:21:13	6.034	143.6	В			
2004/01/26	8:31:13	6.036	130.0	В			
2004/01/26	10:23:35	6.028	130.1	В			
2004/01/26	10:25:05	5.882	169.1	C1			
2004/01/26	10:27:49	5.982	196.6	C1			
2004/01/26	10:31:27	5.791	194.9	C1			
2004/01/26	10:33:00	5.991	235.9	C2			
2004/01/26	10:36:37	5.799	194.8	C1			
2004/01/26	10:38:20	6.002	235.8	C2			
2004/01/26	10:39:59	5.837	188.5	C1			
2004/01/26	10:49:59	6.014	211.9	C2			
2004/01/26	10:59:59	6.048	130.6	В			
2004/01/26	12:09:59	6.046	130.5	В			
2004/01/26	18:09:58	6.046	130.1	В			
2004/01/26	20:00:11	6.057	130.0	В			
2004/01/26	21:00:10	6.217	62.04	А			
2004/01/26	23:00:10	6.215	62.00	Α			

(b) 無線機 ON 状態にある 1 月 26 日のサンプルデータ

	((b)	Sample	data	during	Jan.	26	when	rf	is	awa	k
--	---	-----	--------	------	--------	------	----	------	----	----	-----	---

(c) データ回収時の電圧,電流,積算Cモード実施回数

 $(\ensuremath{\mathsf{c}})$ Time-series data during data retrieval

Y M D	H M S	V	mA	Cumulative number of C mode
2004/01/05	11:50:01	6.404	247.1	1
2004/01/06	10:02:12	5.786	252.9	4
2004/01/26	10:33:00	5.991	235.9	8
2004/01/27	9:55:57	5.979	211.8	13
2004/01/28	10:47:07	5.943	227.1	15
2004/01/29	10:25:05	5.908	207.9	17
2004/01/30	10:20:54	5.796	226.9	20
2004/02/01	10:00:49	5.895	193.7	25
2004/02/02	10:22:31	5.790	236.0	30
2004/02/03	10:06:07	5.831	212.1	31
2004/02/04	10:38:45	5.801	226.9	35
2004/02/05	10:19:27	5.832	207.7	36
2004/02/06	10:22:52	5.78	227.5	39
2004/02/09	10:10:11	5.859	204.4	44
2004/02/12	10:13:15	5.615	242.9	48
2004/02/18	10:22:25	5.433	220.3	51
2004/02/23	10:20:49	4.862	199.7	53
2004/02/24	10:08:16	4.643	185.0	55
2004/02/24	10:10:17	4.464	210.6	56
2004/02/24	10:12:33	4.461	210.1	57
2004/02/25	9:55:06	4.361	177.4	58

2004/02/25	9:56:44	4.661	159.5	data transfer failed
2004/02/26	7:50:54	5.471	61.67	
2004/02/26	8:00:53	4.714	119.1	radio link failed
2004/02/26	8:10:51	4.636	129.2	radio link failed

表 2b によると、 A, B, C モードの区別なく常温時の電圧変動に – 0.5 V の下駄をはかせれば - 15℃の時の電圧を与えている.

通算 50 日後の 2 月 24 日では A モード時の電圧が 5.64–5.76 V で,実験前半(1月 26 日) にくらべ,0.5–0.6 V 低下していた.電池が消耗してくると,B モードは実現できても,一時 に大きな消費電流を必要とする C モードについては,その時に電圧が「しきい値」以下に低 下して,データ回収が実現しないということが起こりえる.表 2c は C モードという最大負 荷での電圧の減少傾向をたどったものである.A,B 切り替えが始まった 1 月 26 日の 5.99 V を起点に,5.80 V (1/30)→5.83 V (2/5)→5.62 V (2/12)→5.43 V (2/18)→4.86 V (2/23) と, 常温時の – 0.15 V/monthより約 6 倍早い, –0.87 V/monthの低落傾向を示している.2 月 24 日の 1010,1012 付近で行ったメモリー格納地震波形データ読み出し時(210 mA の電流値で 示される)には,電圧が 4.46 V まで低下した.この時はデータ回収に成功したが,2 月 25 日 では 0955 の時刻較正データの読み出し(177 mA)には成功したものの,地震データ回収には 失敗した.2月 26 日にはついに,通信自体が不可能になった.このように,消耗が進むと電 圧降下量が増大し,58 回の C モード実施(このうちメモリー格納地震データ回収に対応する C2 モード実施は 29 回)で,電池が急激に消耗し,能力限界に至ったことがうかがえる.

5. 考察と今後の展望

sleep コマンドが使用できないと無線機 ON の 130 mA が消費電流の最低ベースになるた め、-15℃では電池寿命が待機ありの時の寿命に比べ約6割の30日に減ってしまう.第43 次隊の運用においては、「wakeup command」がうまく動作せず、指定日時になっても無線モ デムに電源が入らないため、データリンクが行えない、という不具合が指摘された.復旧に はメインスイッチ OFF/ON が必要なため、取得した波形データが消去されてしまうことに なり、二重に問題であった.その結果、A モードを使用することができず電池の消耗をさら に早めることになった.このバグは、今回の低温実験でも、当然、対策が必要な事項であり、 修復した.月日切り替わりに関するバグだったが、この詳細を含め、ユーザーインターフェ イスソフトについては別途、報告する.

図 5b に示すように、金属外装を持つ恒温槽に GSS の無線機アンテナが包含された状態では、ADCS と無線リンクが取れなくなるため、アンテナケーブル(RG58U 相当品)を引き延ばし、側面の孔から GSS アンテナを外へ引き出した。両アンテナ間の距離は実験室内で可能

な限り延ばしても 10m なので、本来的な意味での長距離(500m)通信感度測定の意味をな さなかったが、低温時でも常温時と同じ電界強度(80 dBµ)が得られた. 第43次隊の実験で は、昭和基地では地上どうしで 200m 以上届くことが確認される場合でも、内陸氷床上実験 では電界強度が弱くなり、ごく近距離(10m 以下)でしか無線リンクがとれないという不具 合が指摘されたが、これについても、電池の低温下における能力低下が電波出力低下につな がったことが主要因と推測される.

AモードとBモードの12時間ごとの切り替えは、ヘリコプターの運行時間を0800-2000 に設定したことによる.発破総点数を第43次隊の場合の7発から12発に増やしたとして も、約40秒で4発分の地震波形データを回収できるので、1地点あたり3回のデータ回収操 作を行えばすべて回収できる.このために必要なデータ転送時間はロスを見込んでも4分で あろう.ヘリコプター1フライトの飛行時間を最大2時間と見込んで、0900-1859の10時間 をBモードの時間帯に設定しても、この間に1日2フライトは実施できるだろう.この2フ ライトで最低30地点分の波形データが回収可能である.従って、現用でも寿命を現在より1 割(5日)程度、延ばすことができると思われる.

現用のペネトレーター無線機は,耐衝撃性能が確認済みの10年前に製作されたものである. 部品も基本的には10年前のままなので,所要電力が大きく,作動電圧の「しきい値」も 4.8-5.0Vである.本実験を通じて,小規模の改修でさらに省電力化が実現できると期待される.

6. おわび

本報告に示した第43次夏隊での電源不具合は、ペネトレーターの設計・製作を指揮した 筆者の開発スケジュール管理の失敗が主要因であって、第43次夏隊隊員諸氏の怠慢に起因 するものではない.「しらせ」出航間際までトラブルシュートに追われる事態を招き,電流漏 洩の可能性を見過ごした初歩的なミスが最大の原因であり,関係者に深くおわびする.

文 献

- 伊藤 潔・伊神 輝・渋谷和雄・神沼克伊・片岡信一 (1983): 南極における人工地震観測の概要 (続). 南極資料, 79, 107-133.
- 松島 健・山下幹也・安原達二・堀口 浩・宮町宏樹・戸田 茂・高田真秀・渡邉篤志・渋谷和雄 (2003): 投下型地震計(ペネトレータ)の南極・みずほ高原での試験観測―第43次夏隊報告―. 南 極資料,47,395-408.
- 宮町宏樹・戸田 茂・松島 健・高田真秀・高橋康博・神谷大輔・渡邉篤志・山下幹也・柳沢盛雄 (2003): 東南極みずほ高原における屈折法及び広角反射法地震探査―観測概要(第43次夏隊報告) ―. 南極資料, 47, 32-81.
- Shibuya, K., Kaminuma, K., Ito, K., Yamada, I., Ikami, A., Mizutani, H., Fujimura, A., Tsukamoto, S. and Kanazawa, T. (1991): Planned explosion seismic experiments in East Queen Maud Land using a penetrator. Proc. NIPR Symp. Antarct. Geosci., 5, 29–38.

渋谷和雄・神沼克伊・水谷(仁・藤村彰夫・塚本茂樹・山田功夫・伊藤 潔・金沢敏彦・高崎政之・伊

賀 章 (1991): 南極人工地震観測用ペネトレーターの開発(1) 1989 年経過報告. 南極資料, 35, 92-117.

渋谷和雄・神沼克伊・早川雅彦・藤村彰夫・塚本茂樹・水谷 仁・山田切夫・小山順二・笠原 稔・伊藤 潔・金沢敏雄 (1992): 南極人工地震観測用ペネトレーターの開発(2) 1990 年度経過報告. 南極資料, 36, 310-340.