-研究ノート-Scientific Note

蛍光 X 線分析装置による岩石の定量化学分析: 超塩基性岩の主要・微量元素

瀬野公美子・本吉洋一*

Quantitative chemical analyses of rocks with X-ray fluorescence analyzer: major and trace elements in ultrabasic rocks

Kimiko Seno and Yoichi Motoyoshi*

(2003年12月12日受付; 2004年3月25日受理)

Abstract: Analytical procedures for major and trace elements (SiO₂, TiO₂, Al₂O₃, Fe₂O₃, MnO, MgO, CaO, Na₂O, K₂O, P₂O₅, Ba, Co, Cr, Cu, Nb, Ni, Rb, Sr, V, Y, Zn, Zr) in ultrabasic rocks by means of an X-ray fluorescnece analyzer RIGAKU RIX3000 at the National Institute of Polar Research are summarized. Because ultrabasic rocks are generally characterized by relatively low SiO₂, high MgO and FeO, and extremely high concentration of Cr, Ni and Co, we newly draw calibration curves by synthesizing standard samples. These standards were prepared by mixing preexisting geochemical standards, chemical reagents and standard solutions for atomic absorption analysis in order to cover the possible chemical compositions of natural ultrabasic rocks. For the elemental analyses, glass beads were prepared from powder samples that were diluted two times by Spectroflux No. 100B (80% LiBO₂+20% Li₂B₄O₇). The matrix correction method and the peak-over-back method were adopted for the measurements of major elements and trace elements, respectively.

要旨: 国立極地研究所の蛍光 X 線分析装置(RIX3000 理学電機工業製: Rh/W デュアルターゲット X 線管球)による超塩基性岩試料中の主要元素(SiO₂, TiO₂, Al₂O₃, Fe₂O₃, MnO, MgO, CaO, Na₂O, K₂O, P₂O₅)と微量元素(Ba, Co, Cr, Cu, Nb, Ni, Rb, Sr, V, Y, Zn, Zr)の定量化学分析法をまとめた. 超塩基性岩類は,一般に SiO₂含有量が低く,一方 MgO や FeO に富んでいる.また, Cr, Ni, Co などは突出 して含有量が高い.そのため,地球化学的標準試料の混合試料と化学試薬に原子吸 光分析用標準溶液を加えた調合試料を調製して超塩基性岩の化学組成範囲をカ バーする検量線を新たに作成した.測定は粉末試料と融剤(Spectroflux No. 100B; 80% LiBO₂+20% Li₂B₄O₇)の希釈率を1:2(重量比)のガラスビードにして行っ た.検量線の補正方法として,主要元素は装置に組み込まれているマトリックス補 正方法を,微量元素は peak-over-back 方法を用いた.希釈率 1:2のガラスビードで の主要及び微量元素含有量の同時測定が可能となった.

南極資料, Vol. 48, No. 2, 98-109, 2004

Nankyoku Shiryô (Antarctic Record), Vol. 48, No. 2, 98-109, 2004

98

^{*} 情報・システム研究機構国立極地研究所. National Institute of Polar Research, Research Organization of Information and Systems, Kaga 1-chome, Itabashi-ku, Tokyo 173-8515.

^{© 2004} National Institute of Polar Research

1. はじめに

国立極地研究所に設置されている蛍光X線分析装置RIX3000(理学電機工業製: Rh/Wデュ アルターゲット X 線管球) を用いた岩石の定量分析方法については,本吉・白石 (1995),本 吉ら(1996),瀬野ら(2002)で報告した.当研究所では、旧地質調査所(現産業技術総合研 究所地質調査総合センター)調製の地球化学的標準試料(JG-1, JG-1a, JG-2, JG-3, JR-1, JR-2, JR-3, JA-1, JB-1, JB-1a, JB-2, JB-3, JGb-1, JGb-2, JF-1, JF-2, JH-1, JP-1)を検量線用の標準 試料として使用している.分析対象岩石が通常の火成岩の化学組成範囲内であれば,ほぼそ の検量線の組成範囲でカバーできるが、ある元素含有量が突出して高いような特異な組成の 岩石については,測定結果が検量線の内挿範囲を越えた分析値となり信頼性が低くなる.と くに超塩基性岩は、主要元素では一般に SiO2 含有量が低く、FeO や MgO に富む傾向があ る. 微量元素では Cr, Ni, Co といった元素が高濃度で, 共存元素による X 線強度の影響によ るマトリックス効果も通常の火成岩とは異なり,地球化学的標準試料のみを用いた検量線で は分析の信頼性が得られない、そこで瀬野ら(2002)は、天然の超塩基性岩の組成範囲をカ バーするために, 地球化学的標準試料 JP-1 (カンラン岩) に他の標準試料, 例えば JG-1a (花 こう閃緑岩)を混合し,希釈率(試料: 融剤の重量比)が 1:5の試料を作成して従来の標準試 料に追加し、超塩基性岩主要元素測定用の検量線とした。その結果、主要元素についてはほ ぼ満足できる結果が得られた.しかし、本吉ら(1996)および瀬野ら(2002)で設定した微 量元素測定用の検量線では, Cr については最大 425 ppm, Ni ついては最大 133 ppm までの組 成範囲しかカバーしておらず、通常これらの元素を1000 ppm 以上含むような超塩基性岩に 対しては事実上適用不可能であった.

今回,地球化学的標準試料以外に,市販の試薬に原子吸光分析用標準溶液を加えた調合試 料を作成し超塩基性岩用の検量線を作成した.同一ガラスビードで主要元素と微量元素が測 定できるように希釈率も試料:融剤=1:2に設定した.これらの分析方法を用いて天然の超塩 基性岩を測定したところ,主要元素,微量元素ともに良好な結果が得られたので報告する.

さらに本稿では、市販の試薬に原子吸光分析用標準溶液を加えて作成したガラスビードを 機器較正試料用に作成した点と、ガラスビードを作成する前に磁性ルツボで試料を強熱し白 金ルツボの傷みを軽減させた点についても報告する.

2. 検量線用試料の調製

検量線作成用および機器較正用に準備・調製した試料は以下のとおりである. なお,使用 した試薬および原子吸光分析用標準溶液の一覧を表1に示す.

2.1. 地球化学的標準試料(以下,標準試料と記す)

JG-1, JG-1a, JG-2, JG-3, JR-1, JR-2, JR-3, JA-1, JB-1, JB-1a, JB-2, JB-3, JGb-1, JGb-2, JF-1,

瀬野公美子・本吉洋一

Chemicals Co.
Chemicals Co.
da Chemicals Co.
ıti Chemicals Co.
Chemicals Co.
Chemicals Co.
son Matthey Co.

表 1 化学試薬および原子吸光分析用標準溶液 Table 1. List of chemical reagents and standard solutions for atomic absorption analysis.

JF-2, JH-1, JP-1を使用した. 標準試料の推奨値は, 産業技術総合研究所のウェブサイト: http://www.aist.go.jp/RIODB/geostand/welcomej.html に公表されている値を使用し, 主要 元素である SiO₂, TiO₂, Al₂O₃, Fe₂O₃, MnO, MgO, CaO, Na₂O, K₂O, P₂O₅については, 全鉄を Fe₂O₃に換算するとともに, H₂O⁻ と H₂O⁺ を差し引いた後に総量を 100% に規格化した. 微 量元素(Ba, Co, Cr, Cu, Nb, Ni, Rb, Sr, V, Y, Zn, Zr) については, ウェブサイトに公表され ている値をそのまま使用した(表 2).

2.2. 混合試料

地球化学的標準試料 JP-1 と JG-1a を 1:1 または 2:1 に調製し,混合試料とした.他の標準 試料 (JA-1 など) についても同様である (表 3).例えば JP-1 と JG-1a が 1:1 の混合比の場 合, JP-1 と JG-1a を 0.9000 g 電子天秤で正確に秤量し,また 2:1 の場合は,JP-1 を 1.2000 g と JG-1a を 0.6000 g 秤量し,融剤である Spectroflux No. 100B 3.6000 g で希釈した.

2.3. 調合試料

Cr と Ni の原子吸光分析用標準溶液は、天然の超塩基性岩の組成に近づくように Cr と Ni の含有量を調節して、試薬については、SiO₂, Al₂O₃および超塩基性岩に多く含まれる Fe₂O₃, MgO を選び段階的に試薬の量を調節、これらの試料名を AU-1~AU-6 として 6 点用意した(表 4). 調製方法は、Cr, Ni 標準溶液をマイクロピペットで白金ルツボに秤量して乾燥後、SiO₂, Al₂O₃, Fe₂O₃, MgO 各試薬を電子天秤で秤量し、最終的に試料: 融剤が 1:2 になるように Spectroflux No. 100B で希釈した.

	JP-1		43.82	0.01	0.68	8.65	0.125	46.12	0.57	0.02	0.003	0.002	100		19.5	116	807	6.72	1.48	1460	0.80	3.32	27.6	1.54	41.8	5.92
	1-Ht		49.13	0.68	5.77	10.47	0.194	17.06	15.32	0.72	0.54	0.101	100		106	51.5	616 2	8.6	4.2	58.2 2	14.4	153	228	13.7	61.8	48.3
	JF-2		65.75	0.01	18.65	0.06	0.001	0.004	0.09	2.41	13.03	0.003	100		298	0.68	2.47	0.78	0.70	1.38	218	200	4.86	2.67	1.40	6.73
) 95, 1999	JF-1		67.25	0.01	18.23	0.08	0.001	0.006	0.94	3.40	10.07	0.010	100		750	0.12	5.48	0.82	0.74	1.36	266	172	5.43	2.84	4.41	38.6
95, 1999) et al., <i>1</i> 9	JB-3		50.77	1.43	17.13	11.78	0.176	5.17	9.75	2.72	0.78	0.293	100		245	34.3	58.1	194	2.47	36.2	15.1	403	372	26.9	100	97.8
et al., 19 al (Imai	JB-2		52.96	1.18	14.56	14.17	0.217	4.59	9.77	2.03	0.42	0.100	100		222	38.0	28.1	225	1.58	16.6	7.37	178	575	24.9	108	51.2
I (Imai di 100% tot	JB-la		53.01	1.29	14.62	9.15	0.150	7.920	9.42	2.76	1.42	0.263	100		504	38.6	392	56.7	26.9	139	39.2	442	205	24.0	82.1	144
と規格値 <i>dlized to</i>	JB-I		53.02	1.34	14.71	9.10	0.155	7.805	9.36	2.80	1.45	0.258	100		493	38.2	425	55.1	33.3	133	41.3	444	211	24.3	85.2	141
奨分析値 les norme	I-Al		64.41	0.86	15.33	7.12	0.158	1.58	5.74	3.87	0.78	0.166	100		311	12.3	7.83	43.0	1.85	3.49	12.3	263	105	30.6	90.9	88.3
式料の推 urd samp	JR-3		73.63	0.21	12.04	4.78	0.084	0.05	0.09	4.75	4.34	0.017	100		65.8	0.98	3.5	2.9	510	1.6	453	10.4	4.2	166	209	1494
\$的標準記 al stando	JR-2		76.96	0.07	12.93	0.78	0.114	0.04	0.51	4.06	4.52	0.012	100		39.5	0.46	3.10	1.36	18.7	1.99	303	8.11	3.00	51.1	27.8	96.3
地球化学 eochemic	JR-1		76.51	0.11	13.01	0.90	0.100	0.12	0.68	4.08	4.47	0.021	100		50.3	0.83	2.83	2.68	15.2	1.67	257	29.1	7.0	45.1	30.6	6.66
更用した tlues of g	JGb-2		47.13	0.57	23.81	6.78	0.132	6.27	14.30	0.93	0.06	0.017	100		36.5	25.8	125	11.4	1.9	13.6	2.9	438	174	4.5	48.5	11.6
×報告で(vended va	JGb-1		43.99	1.61	17.62	15.17	0.190	16.7	11.99	1.21	0.24	0.056	100		64.3	60.1	57.8	85.7	3.34	25.4	6.87	327	635	10.4	109	32.8
表 2 才 Recomm	JG-3		67.82	0.48	15.60	3.72	0.072	1.80	3.72	3.99	2.66	0.123	100		466	11.7	22.4	6.81	5.88	14.3	67.3	379	70.1	17.3	46.5	144
able 2.	JG-2		77.36	0.04	12.56	96.0	0.016	0.04	0.70	3.56	4.74	0.002	100		81.0	3.62	6.37	0.49	14.7	4.35	301	17.9	3.78	86.5	13.6	97.6
L	JG-1a		72.91	0.25	14.42	2.02	0.057	0.70	2.15	3.42	3.99	0.084	100		470	5.9	17.6	1.67	11.4	6.91	178	187	22.7	32.1	36.5	118
	JG-1		72.71	0.26	14.32	2.19	0.063	0.74	2.21	3.40	4.00	0.100	100		466	4.06	53.2	2.52	12.4	7.47	182	184	25.2	30.6	41.1	111
		(wt%)	SiO_2	TiO_2	Al_2O_3	$\mathrm{Fe}_{2}\mathrm{O}_{3}$	MnO	MgO	CaO	Na_2O	K_2O	P_2O_5	Total	(mqq)	Ba	Co	cr	Cu	Nb	in	Rb	Sr	>	Y	Ζn	Zr

蛍光 X 線分析装置による岩石の定量化学分析: 超塩基性岩

101

	the second s	a state of the sta										
	JG-1a	JGb-1	JGb-2	JR-3	JA-1	JB-1a	JB-3	JH-1	JG-1a	JR-3	JA-1	JB-1a
	:JP-1	:JP-1	:JP-1	:JP-1	:JP-1	:JP-1	:JP-1	:JP-1	:JP-1	:JP-1	:JP-1	:JP-1
				1	1:1					1	:2	
(wt%)											
SiO ₂	58.55	43.91	45.49	58.89	54.25	48.47	47.36	46.50	53.68	53.90	50.81	46.93
TiO ₂	0.13	0.82	0.29	0.11	0.44	0.66	0.73	0.35	0.09	0.08	0.29	0.44
Al_2O_3	7.64	9.26	12.36	6.42	8.10	7.73	9.06	3.24	5.34	4.52	5.65	5.40
Fe_2O_3	5.29	11.96	7.71	6.69	7.88	8.91	10.24	9.57	6.40	7.34	8.13	8.82
MnO	0.091	0.158	0.129	0.104	0.142	0.138	0.151	0.16	0.102	0.111	0.136	0.133
MgO	23.12	26.77	26.00	22.84	23.55	26.81	25.26	31.49	30.72	30.54	31.01	33.2
CaO	1.37	6.35	7.50	0.33	3.19	5.04	5.25	7.99	1.10	0.41	2.32	3.56
Na ₂ O	1.74	0.62	0.48	2.41	1.97	1.41	1.40	0.38	1.17	1.62	1.33	0.95
K ₂ O	2.023	0.120	0.030	2.196	0.394	0.717	0.397	0.270	1.360	1.470	0.270	0.48
P_2O_5	0.043	0.030	0.010	0.010	0.085	0.134	0.150	0.052	0.030	0.007	0.058	0.09
Total	100	100	100	100	100	100	100	100	100	100	100	100
(ppm)											
Ba	244.8	41.9	28.0	42.7	165.3	261.8	132.3	62.8	169.7	34.9	116.7	181.0
Co	61.0	88.1	70.9	58.5	64.2	77.3	75.2	83.8	79.3	77.7	81.4	90.2
Cr	1412.3	1432.4	1466.0	1405.3	1407.4	1599.5	1432.6	1711.5	1877.2	1872.5	1873.9	2002.0
Cu	4.2	46.2	9.1	4.8	24.9	31.7	100.4	7.7	5.0	5.4	18.8	23.4
Nb	6.4	2.4	1.7	255.7	1.7	14.2	2.0	2.8	4.8	171.0	1.6	10.0
Ni	1233.5	1242.7	1236.8	1230.8	1231.7	1299.5	1248.1	1259.1	1642.3	1640.5	1641.2	1686.3
Rb	89.4	3.8	1.9	226.9	6.6	20.0	8.0	7.6	59.9	151.5	4.6	13.6
Sr	95.2	165.2	220.7	6.9	133.2	222.7	203.2	78.2	64.5	5.7	89.9	149.5
v	25.2	331.3	100.8	15.9	66.3	116.3	199.8	127.8	26.0	19.8	53.4	86.7
Y	16.8	6.0	3.0	83.8	16.1	12.8	14.2	7.6	11.7	56.4	11.2	9.0
Zn	39.2	75.4	45.2	125.4	66.4	62.0	70.9	51.8	40.0	97.5	58.2	55.2
Zr	62.0	19.4	8.8	750.0	47.1	75.0	51.9	27.1	43.3	501.9	33.4	51.9

表 3 本報告で使用した地球化学的標準試料の混合試料 Table 3. Compositions of synthetic samples prepared by mixing geochemical standard samples.

表 4 人工的に調合した超塩基性岩調合試料 Table 4. Artificially synthesized samples of ultrabasic composition.

	AU-1	AU-2	AU-3	AU-4	AU-5	AU-6
(wt%)						
SiO_2	35	40	45	47	50	55
Al ₂ O ₃	5	7	9	11	13	15
Fe ₂ O ₃	5	7	9	11	13	15
MgO	55	46	37	31	24	15
(ppm)						
Cr-ppm	6000	5000	4000	3000	2000	1000
Ni-ppm	4000	3000	2500	2000	1000	500

3. ガラスビード作成と分析条件

Johnson-Matthey 社の融剤 Spectroflux No. 100B は, 980℃ で 20 時間 (一晩) 空焼きした新 しい磁性ルツボに入れ,山田ら (1995)の方法に従って 450℃ の電気炉内で 4 時間以上乾燥 させた後,デシケーター内で保存した.

岩石試料は白金ルツボで1200℃で溶融する前に,揮発性成分を除き炭質物や硫化物などの白金ルツボを傷める物質を軽減させる為,空焼きした磁性ルツボに入れて980℃に設定し

た電気炉内で4時間以上乾燥した後,45分間放冷した.白金ルツボを傷める原因として試料中に含まれる炭質物や硫化物などがあり、これらを大気中で高温にして CO_2 あるいは SO_2 として気化させることで白金ルツボの傷みを軽減させた.揮発成分の多い試料の場合は,980°Cの電気炉に入れると磁性ルツボ内から試料が吹きこぼれることがあるので、500°C、700°C、980°Cと30分間隔で徐々に設定温度を上げる作業が必要である.温度設定を980°Cとした理由は、 CO_2 の揮発する温度がおよそ900°Cであるためである(後藤ら、2002).また、同様な処理を行った標準試料の測定から、揮発成分以外の散逸は認められなかった.

ガラスビードの作成には、ビードサンプラーの溶融時間を 1200℃ で 420 秒間 (うち揺動時 間 290 秒間),冷却時間を 190 秒間にそれぞれ設定し、出来上がったガラスビードを裏返して 再溶融した.その結果、底面に沈んだ融け残りや濃度の偏った部分がなくなり、均質なガラ スビードが作成出来るようになった.

白金ルツボの洗浄方法は従来,希釈した塩酸を用いていたが,クエン酸1規定溶液での洗 浄に変更した.塩酸に比べて危険も少なく有効な方法である.白金ルツボは研磨材を用いて ルツボ研磨機で適宜鏡面研磨した.これによりガラスビード底面の凹凸が少なくなり,ひび 割れたり三日月型になることも少なく,ガラスが剥離しないで白金ルツボ内に残存する割合 も軽減した.

各元素の分析条件は、白木ら(1996)、角縁ら(1997)、山田ら(1998)などを参考にして 設定した(表 5). 主要元素 1 試料の測定時間は約 10 分である. 微量元素の測定条件は、 Co-K_a, Cr-K_a については、ピーク測定時間を 100 秒から 80 秒に、バックグラウンド測定時 間を 50 秒から 40 秒にそれぞれ変更し、Ni-K_a については、ピーク測定時間を 100 秒から 90 秒に、バックグラウンド測定時間を 50 秒から 45 秒に若干短く設定した. また、重なり補正 のために Ti-K_b, Fe-K_b も測定した. これにより 1 試料に対する蛍光 X 線の照射時間を若干 であるが短縮出来た. 他の元素については、本吉ら(1996)、瀬野ら(2002)と同じである. 測定時間は 1 試料約 50 分で測定回数は 1 回とした. 試料が充分均一であれば微量元素の測 定回数による測定結果に違いはみられなかった.

4. 検量線作成と補正方法

4.1. 主要元素

主要元素の検量線は,共存する元素によるマトリックス効果の影響を考慮し,本吉・白石 (1995)を参考に補正を加えた(表 6).検量線作成用のガラスビードは,平均組成値ができる だけ超塩基性岩の組成値に近づくように,JP-1のみ,JP-1:標準試料(JGb-1,JGb-2,JH-1)= 1:1で混合したものを3個,JP-1:標準試料(JG-1a,JR-3,JA-1,JB-1a)=2:1で混合したもの 4個の計8個準備した.

検量線作成では超塩基性岩の SiO₂, MnO, MgO は元素組成範囲が小さく内挿範囲が限られ

瀬野公美子・本吉洋一

	表 5 各元素の分析条件	
Table 5.	Measuring conditions for each element	t.

Target		D ;1+.	or Slit	Cructal D	ataat			20	
14	igei	rm	of Sht	Ciystal D	eicen	51 1.11.A.	Peak (s)	BG1(s)	BG(2)
Si-K α	Rh	-	Coarse	PET	PC	100-300	109.050 (20)	106.490 (10)	110.990 (10)
Ti- K α	W	-	Coarse	LiF (200)	SC	100-300	86.100 (20)	84.585 (10)	87.645 (10)
Al- K α	Rh	-	Coarse	PET	PC	100-300	144.750 (20)	140.950 (10)	147.350 (10)
Fe- K α	Rh	-	Coarse	LiF (200)	SC	100-350	57.500 (20)	56.020 (10)	59.020 (10)
Mn- K α	Rh	Ti	Coarse	LiF (200)	SC	100-300	62.960 (20)	61.925 (10)	63.765 (10)
Mg- Kα	Rh	-	Coarse	TAP	РС	100-300	45.250 (20)	43.000 (10)	47.600 (10)
Ca- K α	W	-	Coarse	LiF (200)	PC	100-300	113.150 (20)	110.870 (10)	115.120 (10)
Na- K α	Rh	-	Coarse	TAP	PC	100-300	55.200 (20)	53.350 (10)	56.700 (10)
K- Κ α	W	-	Coarse	LiF (200)	РС	100-300	136.700 (20)	133.520 (10)	139.220 (10)
Ρ-Κα	Rh	-	Coarse	Ge	PC	150-300	141.100 (20)	139.065 (10)	143.315 (10)
Ba-Lα	W	-	Coarse	LiF (200)	SC	100-300	87.100 (100)	84.380 (50)	87.840 (50)
Co- Κ α	W	-	Fine	LiF (200)	SC	100-300	52.760 (80)	50.800 (40)	53.020 (40)
Cr- K α	W	-	Coarse	LiF (200)	SC	100-300	69.340 (80)	68.200 (40)	70.760 (40)
Cu- Kα	Rh	Fe	Coarse	LiF (200)	SC	100-300	45.020 (100)	44.740 (50)	45.380 (50)
Nb- K α	Rh	-	Fine	LiF (200)	SC	100-300	21.340 (100)	20.960 (50)	21.700 (50)
Ni- K α	Rh	Fe	Coarse	LiF (200)	SC	100-300	48.660 (90)	47.960 (45)	49.500 (45)
Rb- K α	Rh	-	Fine	LiF (200)	SC	100-300	26.600 (100)	26.300 (50)	26.860 (50)
Sr- Kα	Rh	-	Coarse	LiF (200)	SC	100-300	25.140 (100)	24.780 (50)	25.500 (50)
V- Κ α	W	-	Fine	LiF (200)	SC	100-300	76.920 (100)	76.360 (50)	77.680 (50)
Υ- Κ α	Rh	-	Fine	LiF (200)	SC	100-300	23.780 (100)	23.100 (50)	24.400 (50)
Zn- Kα	Rh	Fe	Coarse	LiF (200)	SC	100-300	41.800 (100)	41.400 (50)	42.200 (50)
Zr- K α	Rh	-	Coarse	LiF (200)	SC	100-300	22.500 (100)	22.200 (50)	23.000 (50)
Ti- Kα	W	-	Coarse	LiF (200)	SC	100-400	86.100 (100)	84.920 (50)	87.300 (50)
Ti-K β 1	W	-	Fine	LiF (200)	SC	100-300	77.240 (100)	78.000 (50)	75.060 (50)
Fe- K β 1	W	-	Fine	LiF (200)	SC	100-350	51.720 (100)	49.800 (50)	52.900 (50)

P.H.A. : pulse height analyzer, (s) : fixed time (second)

表 6 希釈率 1:2 のガラスビード使用による主要元素のマトリックス補正係数 *Table 6. Theoretical matrix correction constants for 1:2 diluted glass beads.*

Matrix				Analyt	ical eleme	nts				
	SiO ₂	TiO ₂	Al_2O_3	Fe_2O_3	MnO	MgO	CaO	Na ₂ O	K ₂ O	P ₂ O ₅
TiO ₂	-0.00242	-	0.00207	0.01621	0.01555	0.00222	-0.00366	0.00235	-0.00364	-0.00302
Al_2O_3	0.00026	-0.00077	-	-0.00087	-0.00085	-0.00043	-0.00070	-0.00041	-0.00065	-0.00041
Fe_2O_3	-0.00057	-0.00356	0.00563	-	0.00134	0.00545	-0.00331	0.00534	-0.00309	-0.00127
MnO	-0.00092	-0.00363	0.00493	0.04680	-	0.00480	-0.00360	0.00472	-0.00339	-0.00163
MgO	0.00000	-0.00120	0.01578	-0.00136	-0.00132	-	-0.00110	0.00527	-0.00104	-0.00078
CaO	-0.00286	0.01461	0.00994	0.01646	0.01594	0.00813	-	0.00786	-0.00328	-0.00343
Na ₂ O	-0.00056	-0.00184	0.01460	-0.00206	-0.00201	0.01249	-0.00170	-	-0.00162	-0.00122
K_2O	-0.00325	0.01402	0.00926	0.01623	0.01564	0.00745	0.01263	0.00719	-	-0.00377
P_2O_5	-0.00307	0.00050	0.00919	0.00063	0.00060	0.00712	0.00042	0.00670	0.00038	-
Flux*	0.20414	0.15846	0.71133	0.15204	0.15331	0.63210	0.16384	0.61989	0.16703	0.18424
Base(wt%)	48.13	0.30	5.81	8.57	0.13	31.98	3.73	0.82	0.50	0.04

*Flux : Spectroflux No.100B (LiBO₂80% • Li₂B₄O₇20%)

るため1次式とした.残りのTiO₂, Al₂O₃, Fe₂O₃, CaO, Na₂O, K₂O, P₂O₅は2次式で近似した. 各主要元素の検量線を図1に示す.

Fig. 1. Calibration curves for major elements based on the theoretical matrix correction method. : Uncorrected value, •: Corrected value based on the theoretical matrix correction, R: Correlation coefficient

4.2. 微量元素

超塩基性岩は Cr, Ni の含有量が非常に高いことから, SiO₂+Al₂O₃+Fe₂O₃+MgO に標準 溶液を加えたもの 6 個, SiO₂だけのブランク試料 1 個, JG-1, JG-2, JG-3, JR-1, JR-2, JA-1, JB-1, JB-2, JB-3, JGb-1, JF-1, JF-2, JP-1 の標準試料 13 個, JP-1: 他の標準試料 (JG-1a, JR-3, JA-1, JB-1a, JB-3, JGb-1, JGb-2, JH-1)=1:1 の割合で混合したものを 8 個, JP-1: 他の標準試 料 (JG-1a, JR-3, JA-1, JB-1a)=2:1 の割合で混合したものを 4 個, 計 32 個の検量線用試料を 準備した. 検量線の補正は本吉ら (1996) と同様の peak-over-back 方法で行った. これはピー クでのネット強度をバックグラウンド強度で割ることによってマトリックス効果を相殺する 方法である. 重なり補正係数は本吉 (1996) の計算方法で瀬野ら (2002) に設定した値を使 用した. 図 2 に得られた微量元素の検量線グラフと重なり補正係数を示す.

Ni と Cr のグラフに見られるように, 調合試料 AU-1 から AU-6 の 6 試料も岩石試料と同様の検量線上にプロットした. Zr-K_a を Sr-K_a のスペクトルで重なり補正をする Zr 元素の検量線にややばらつきがみられたが, その他の元素については良好な検量線となった.

5. 分析結果と考察

JP-1 および南アフリカ・キンバレー産の超塩基性岩試料の主要元素測定結果の比較を表7 に示す. 超塩基性岩では Cr, Ni は主成分として扱われることが多いが, 微量元素測定の ppm オーダーでより正確な値が得られるのでここでは微量元素として扱っている. 主要元素につ いては, 瀬野ら (2002) で報告した希釈率 1:5 の方法および今回新たに作成した希釈率 1:2 の方法とも良好な結果が得られた.

図1および2の検量線を用いてJP-1とJP-1:JB-1a=1:1, JP-1:JG-1a=2:1の混合試料の3 試料を用いて定量を行った.主要元素の分析値については、すべて無水、合計100%に規格 化されている.表8に示すように良い一致を示した.とくに、CrおよびNiに関して検量線 の適用組成範囲を大幅に拡張したために、超塩基性岩のNiおよびCrの値も検量線の内挿範 囲にプロットされるようになった.これにより同一ガラスビードで超塩基性岩の主要・微量 元素の同時測定が可能となった.

これらのことから,標準試料同士を混合させた試料,瀬野ら(2002)で作成した標準試料 に原子吸光用標準溶液を加えた試料,今回報告した市販の試薬と原子吸光用標準溶液を用い た試料を用いれば,特殊な組成の岩石についても精度の高い定量分析が可能になると考えら れる.

謝 辞

千葉大学理学部の廣井美邦博士には,南アフリカ・キンバレー産のカンラン岩を提供して いただいた.高知大学理学部の石塚英男博士には白金ルツボの手入れ方法について,岡山大

106

Fig. 2. Calibration curves for trace elements based on the peak-over-back correction method.
•: Peak-over-back value, □: Synthetic standard sample, R: Correlation coefficient

瀬野公美子・本吉洋一

表 7 地球化学的標準試料 JP-1 と南アフリカ・キンバレー産カンラン岩(A, C, D, E, F; 未知データ) に対する分析比較と結果

Table 7. Comparison of analyses for geochemical standard sample JP-1 and peridotites from Kimberley, South Africa (A, C, D, E, F; unpublished data).

		JP-1	А	С	D	E	F
	(n.v)	(1:2) (1:5)	(1:2) (1:5)	(1:2) (1:5)	(1:2) (1:5)	(1:2) (1:5)	(1:2) (1:5)
(%)							
SiO ₂	43.82	42.84 42.41	44.39 42.88	47.93 46.96	46.24 44.43	44.18 42.90	43.88 42.66
TiO ₂	0.01	0.01 0.01	0.07 0.07	0.01 0.01	0.04 0.04	0.03 0.03	0.02 0.02
Al_2O_3	0.68	0.68 0.68	1.96 1.89	1.99 1.96	1.43 1.39	0.67 0.71	1.28 1.26
Fe_2O_3	8.65	8.68 8.68	7.41 7.57	6.56 6.70	7.19 7.37	7.05 7.27	7.81 8.07
MnO	0.13	0.13 0.12	0.12 0.11	0.11 0.11	0.12 0.11	0.10 0.11	0.11 1.26
MgO	46.12	46.43 46.70	44.69 44.08	41.65 42.06	43.24 42.73	47.17 47.01	45.31 45.17
CaO	0.57	0.58 0.58	0.61 0.60	0.96 0.95	0.96 0.94	0.43 0.43	0.83 0.81
Na ₂ O	0.02	0.01 0.03	0.08 0.09	0.08 0.09	0.12 0.15	0.07 0.08	0.07 0.07
K_2O	0.003	0.00 0.00	0.02 0.02	0.02 0.02	0.08 0.07	0.02 0.02	0.04 0.03
P_2O_5	0.002	0.00 0.00	0.03 0.03	0.02 0.02	0.03 0.03	0.04 0.04	0.03 0.03
total	100.00	99.37 99.64	99.38 97.33	99.34 98.88	99.45 97.26	99.76 98.58	99.36 98.23

(n.v.): Values that sum of anhydrous oxides (major elements) normalized to 100 wt%.

表8 分析値既知試料に対する測定結果

 Table 8.
 Comparison of analyses for geochemical standard sample JP-1

 and mixed standards samples.

	J	P-1	JP-1:J	B-1a=1:1	JP-1:JG-1a =2:1		
	n.v.	XRF	c.v.	XRF	c.v.	XRF	
(wt%	;)						
SiO ₂	43.82	42.84	48.47	48.13	53.68	53.37	
TiO ₂	0.01	0.01	0.66	0.66	0.09	0.09	
Al_2O_3	0.68	0.68	7.73	7.84	5.34	5.26	
Fe ₂ O ₃	8.65	8.68	8.91	8.73	6.40	6.44	
MnO	0.125	0.13	0.138	0.14	0.102	0.10	
MgO	46.12	46.43	26.81	26.45	30.72	30.65	
CaO	0.57	0.58	5.04	5.02	1.10	1.11	
Na ₂ O	0.02	0.01	1.41	1.36	1.17	1.16	
K_2O	0.003	0.003	0.717	0.72	1.360	1.36	
P_2O_5	0.002	0.002	0.134	0.14	0.030	0.03	
total	100	99.37	100	99.19	100	99.56	
(ppn	ı)						
Ba	19.5	36.3	261.8	245.8	169.7	187.3	
Co	116.0	73.6	77.3	59.3	79.3	59.2	
Cr	2807.0	2780.0	1599.5	1563.9	1877.2	1980.0	
Cu	6.7	3.8	31.7	25.8	5.0	2.8	
Nb	1.5	1.5	14.2	10.7	4.8	2.1	
Ni	2460.0	2075.1	1299.5	1137.4	1642.3	1508.5	
Rb	0.8	1.2	20.0	23.0	59.9	71.0	
Sr	3.3	0.6	222.7	228.9	64.5	62.6	
V	27.6	29.8	116.3	133.8	26.0	13.3	
Y	1.5	2.2	12.8	16.8	11.7	16.9	
Zn	41.8	49.9	62.0	56.2	40.0	37.3	
Zr	5.9	11.6	75.0	73.2	43.3	54.6	

n.v: Values that sum of anhydrous oxides (major elements) normalized to 100 wt%.

c.v.: Calculated values by mixing

学教育学部(現九州大学大学院)の小山内康人博士には試料の高温乾燥方法についてそれ ぞれ有益なご助言をいただいた.以上の方々にお礼申し上げる.なお,本研究は平成14年度 国立極地研究所リーダーシップ経費および日本学術振興会科学研究費補助金(課題番号 13440151,研究代表者:白石和行)の成果の一部である.

文 献

- 後藤晶子・堀江太一郎・大場 司・藤巻宏和 (2002): 珪酸塩岩から炭酸塩岩までの広範囲の組成におけ る主成分元素および微量成分元素の XRF 低希釈率ガラスビード分析. 岩石鉱物科学, **31**, 162–173.
- Imai, N., Terashima, S., Itoh, S. and Ando, A. (1995): 1994 compilation of analytical data for minor and trace elements in seventeen GSJ geochemical reference samples, "Igneous rock series". Geostand. Newsl., 19, 135–213.
- Imai, N., Terashima, S., Itoh, S. and Ando, A. (1999): 1998 compilation of analytical data for five GSJ reference samples: the "Instrumental analysis series". Geostand. Newsl., 23, 223–250.
- 角縁 進・永尾隆志・山田康治郎・河野久征・白木敬一(1997): 低希釈率ガラス円板を用いた岩石中の 希土類元素の定量.山口大学機器分析センター報告, 5, 16-25.
- 小出良幸・山下浩之・川手新一・平田大二 (2000): 蛍光 X 線分析装置による岩石主要元素の分析.神奈 川県立博物館研究報告(自然科学), 29, 107-125.
- 本吉洋一・白石和行 (1995): 蛍光 X 線分析装置による岩石の定量化学分析 (1) 主要元素. 南極資料, 39, 40-48.
- 本吉洋一・石塚英男・白石和行 (1996): 蛍光 X 線分析装置による岩石の定量化学分析 (2) 微量元素. 南極資料, 40, 53-63.
- 瀬野公美子・石塚英男・本吉洋一・白石和行(2002): 蛍光 X 線分析装置による岩石の定量化学分析(3) 希土類元素. 南極資料, 46, 13-33.
- 白木敬一・大和田正明・永尾隆志・山田康治郎・河野久征(1996): 全自動蛍光 X 線分析装置理学/RIX 3000. 山口大学機器分析センター報告, 4, 7-19.
- 山田康治郎・河野久征・村田 守(1995): 低希釈率ガラスビード法による岩石の主成分と微量成分分 析. X線分析の進歩, 26, 33-44.
- 山田康治郎・河野久征・白木敬一・永尾隆志・角縁 進・大場 司・川手新一・村田 守 (1998): Rh/ W デュアル X 線管を用いた低希釈率ガラスビード法による岩石中の主成分, 微量成分および希土 類の分析. X 線分析の進歩, 29, 47-70.