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Abstract: Paleomagnetic and rockmagnetic studies were carried out in order to

investigate the characteristics of natural remanent magnetization (NRM) of deep-sea

sediments cored from o#shore Wilkes Land, East Antarctica. The core is /.* cm
long. Alternating-field (AF) demagnetization experiments using a stepwise AF field

from / to +**mT were conducted on all of the samples. The NRM intensities are +*�
+** times higher than those commonly obtained from di#erent localities. In the upper

.0* cm of the core, most samples had stable single component magnetization, and

remarkable high-stability components which survived up to +**mT were observed.

In the lower section of the core, in contrast, many samples showed more unstable

(zigzag) demagnetization curves and secondary acquired magnetizations. The opti-

mum AF demagnetization field intensity was assumed to be -*mT, because the

secondary magnetizations of every sample seemed to be completely demagnetized at
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that AF field. The down core NRM variation after demagnetization by the optimum

field revealed that the core contains - polarity intervals. By using smaller cubic

samples of + cc volume, the time resolution of the paleomagnetic record was much

improved. Anhysteretic remanent magnetization (ARM) experiments were also con-

ducted on all of the samples. The results of the AF demagnetization of ARM imply

that the samples showing only soft NRM component possibly acquired their magneti-

zation under a weak geomagnetic field.

+. Introduction

Deep-sea sediments provide continuous records of the past geomagnetic field, and

numerous paleomagnetic studies, using sedimentary sequences, have been done to

investigate the behavior of Earth’s magnetic field in the past. However, the number of

paleomagnetic records from the Antarctic regions, involving both direction and intensi-

ty of geomagnetic field for over + Ma, still seems to be small, as compared with those

from other regions. For understanding of the evolution of the global-scale geomagnet-

ic field, it is essential to obtain continuous paleomagnetic records from the Antarctic

regions.

In the Antarctic region, several magnetostratigraphic studies have been done (e.g.,

Sakai et al., +33*; Keating and Sakai, +33+; Sakai and Keating, +33+; Inokuchi and

Heider, +33,; Florindo et al., ,**-). Though their paleomagnetic records span over a

million years, such records possibly contain many fragments and their time resolutions

are insu$cient for studying geomagnetic field behavior in many cases. Brachfeld et al.

(,***) did a paleomagnetic study on five sedimentary sequences cored in the western

margin of the Antarctic Peninsula. The two cores were collected by the United States

Antarctic Program (USAP), while the other three were cored during the Ocean Drilling

Program (ODP) Leg +12. They conducted paleomagnetic measurements on these

cores and evaluated their inclination records to determine the discrepancies between

split-core and U-channel measurements from the same core. In that study, a single

continuous record of inclination and relative paleointensity over the past 3*** yr was

obtained as the first high-resolution record of paleosecular variation for the Antarctic

Peninsula region. Guyodo et al. (,**+) provided a paleomagnetic record for a part of

the Matuyama Chron, derived from sediments collected from drift deposits o# the

Western Antarctic Peninsula continental margin, at ODP Site ++*+ (Leg +12). The

inclination record over the time interval *.1�,.+ Ma, the relative paleointensity record

over the *.1�+.+ Ma interval and a comparison with eight other paleointensity records

over the *.3/�+.+ Ma interval were reported. They constructed a composite record of

relative paleointensity for the Jaramillo subchron with nine records from di#erent

oceans in the study. Sagnotti et al. (,**+) investigated the climatically induced

magnetic mineralogy changes on three cores obtained from a hemipelagic sediment drift

on the continental rise of the Pacific margin of the Antarctic Peninsula during the

Sediment Drifts of the Antarctic O#shore (SEDANO) project (Lucchi et al., ,**,).

They obtained inclination records, relative paleointensity records and rock magnetic

data spanning the last +0* kyr. Escutia et al. (,**-) performed paleomagnetic meas-

urements on several cores collected across the eastern part of the Antarctic Wilkes Land

margin during the Deep Freeze 13 cruise (Domack, +32,) and the United States Geo-
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logical Survey +32. cruise (Hampton et al., +321a, b). However, their paleomagnetic

data are available only for magnetostratigraphy; they are not su$cient for the study of

paleosecular variation, since the study was directed at understanding the age and

process of sedimentation across the margin. They collected 0�+, discrete samples at +/�
,* cm intervals from each of the five cores and measured their inclinations. Neverthe-

less, the one core yielded continuous inclination and declination data using U-channel

samples; low sedimentation rates of around *.*+ cm/kyr and the presence of hiatuses

limited the time resolution of their data.

The core used in this study was collected on the TH3. cruise (+33.�+33/) of R/V

Hakurei-maru, carried out by the Technology Research Center, Japan National Oil

Corporation (Ishihara et al., +330). A fundamental paleomagnetic study of this core

was performed by Sakai et al. (+332) using discrete samples of 1 cc collected from one

side of the core divided in half. They applied AF demagnetization up to 2* mT in / mT

steps in order to identify the optimum demagnetization level only for several pilot

samples, whereas demagnetization was done up to -* mT with few steps on the residual

samples. However, such demagnetizations performed only on pilot samples might be

insu$cient to determine how large soft (secondary) magnetization was acquired by all

of the samples. In this study, we studied the stability of the natural remanent magneti-

zation (NRM) based on the AF demagnetizations of NRM and investigated the ability

of the sediments to acquire magnetization based on anhysteretic remanent magnetiza-

tion (ARM) experiments, using the other side of the core (archived halves of cores).

According to Sakai et al. (+332), the average sedimentation rate of this core was very

slow, about / mm/kyr. The low sedimentation rate severely restricts the time resolu-

tion of paleomagnetic data. However, sediments deposited slowly in an oxidized envi-

ronment, can provide a paleomagnetic record of high reliability, because the magnetic

minerals in such sediments presumably su#er less alteration in early diagenesis than

those in reduced sediments deposited at a high sedimentation rate (e.g., Yamazaki,

+333). In our case, the paleomagnetic record derived from 1 cc samples is likely to

su#er from the time-averaging e#ect caused by the thickness of samples, though 1 cc

samples are most commonly used as discrete samples in various paleomagnetic studies.

Kawai et al. (+310) and Sato and Kobayashi (+323) succeeded in obtaining high time

resolution records by using thin sections of ,..�,..�*..- cm. For investigating both

declination and inclination, however, the magnetic measurements using cubic-shaped

samples should be much preferable. Thus we performed the magnetic measurements

by employment of + cc cubic samples in order to obtain a higher time resolution record.

,. Geological setting and sampling

The Wilkes Land continental margin formed by the breakup of Australia and

Antarctica, which was estimated at // Ma on the basis of magnetic anomaly patterns by

Weissel and Hayes (+31,), was estimated at 3*�++, Ma in subsequent revision of the

anomaly interpretations by Cande and Mutter (+32,) and at 3/�/ Ma by Veevers

(+321). From the eastern part of the Wilkes Land margin, a number of geophysical

and geological data have been reported (e.g., Tanahashi et al., +321; Eittreim and Smith,

+321; Hampton et al., +321a, b; Eittreim et al., +33/); in contrast, only a few have been
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obtained from the western part of the Wilkes Land margin (e.g., Hayes et al., +31/;
Tsumuraya et al., +32/; Ishihara et al., +330). In the vicinity of our study area, Hayes

et al. (+31/) reported the lithology of the sequence cored from about -/**m deep at site

,02 (0-�/0.33�S, +*/�*3.-.�E) of the Deep Sea Drilling Project (DSPS). The coring

site is depicted in Fig. +. They divided the core of .1.m into three units as shown in

Table +. The site has experienced dominantly terrigenous sedimentation and the

sediments are chiefly silty clays with the transition from diatom-bearing or diatom-rich

above, to nanofossil-rich below (Hayes et al., +31/; Kemp et al., +31/). Other geolog-

ical and geophysical data from the western part of Wilkes Land margin were obtained

from Tsumuraya et al. (+32/) and Ishihara et al. (+330).
The core used in this study was obtained from a continental rise site -*0*m deep at

the western part of the Antarctic Wilkes Land margin. The core was collected with a

gravity corer. The position of the coring site is 0-�.-.+-�S, ++,�,*.*0�E (Fig. +).
The total length of the core is /.* cm. The surface sediments, at least ,* cm, were lost

while recovering. The core was estimated to have been collected perpendicularly,

while the north direction of the core was unknown. Subsequently the core was sepa-

rated into 0 sub-cores (numbers: + to / and C) of +m length keeping their orientations

and was split in half lengthwise. They were then sealed in split core shaped plastic

cases and stored at / degrees centigrade to minimize dehydration of the sediments.

Table +. Lithologic Units, DSDP Site ,02 (Hayes et al., +31/).

Unit Lithology
Subbotom
depth (m)

Unit
thickness (m)

Age

+
,

Clay, silty clay, sand, and diatom ooze

Clay, silty clay, sand, and nano ooze

*��+0*
�+0*�,,2

�+0+
�02

Pliocene to Quarternary

Early Miocene

- Silty clay, laminated silty clay and
clayey silt, and chert

,,2��.1../ �,/0./ Mid-Oligocene or older to
Early Miocene

Fig. +. Map showing the coring site (0-�.-.+-�S, ++,�,*.*0�E).
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The ,-0 discrete samples of 1 cc (edge length is ,.- cm) and .-0 discrete samples of +
cc (edge length is +., cm) were sequentially taken from the archive halves of sub-cores

in August ,**+. All the samples were then sealed to minimize dehydration of the

sediments.

The sediment material was siliceous silt of brownish gray color. Abundant

foraminiferal skeletons in good preservation were observed throughout the core.

Paleoclimatically induced lithological variations were not observed. This implies that

the sediment was deposited in an environmentally stable condition.

-. Measurements

-.+. AF demagnetization of NRM using 1 cc samples

The magnetic instrument used in this study was a SQUID magnetometer with a

static three-axis alternating AF demagnetizer and an ARM acquisition coil, which was

produced by ,G Enterprises. The magnetometer is installed in a low magnetic field

room in the National Institute of Polar Research in Tokyo, Japan. All samples were

demagnetized up to +**mT in steps of /mT. The representative AF demagnetization

curves described by Zijderveld projections are shown in Fig. ,. In general, almost all

samples from the surface to .0* cm depth have very stable NRM as shown in Fig. ,(a);
the NRM of sample +-M++ (,-.2 cm) was gradually demagnetized linearly toward the

coordinate axes for both the vertical and horizontal components. The NRM of these

samples were on the order of +*�,A/m in intensity and were magnetized to the normal

polarity (upward). In the lower section of the core, in contrast, many samples showed

more unstable (zigzag) demagnetization curves. The demagnetization curve of sample

/-M,2 (.0,.* cm) showed at least , component magnetizations, as shown in Fig. ,(b).
The soft component of the normal polarity was demagnetized to ,*mT, while the hard

component of the reversed polarity seemed to survive up to +**mT. The intensity was

more than +* times weaker than that of the sample +-M++. A similar demagnetization

curve and intensities appeared in sample C-M*1, as shown in Fig. ,(c), while the

Fig. ,. Representative results of progressive AF demagnetization of specimens. Solid/open circles

show projections on the horizontal/vertical plane.
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polarities were opposite for the hard and soft components. However, a few samples

showed only soft NRM components as shown in Fig. ,(d). The NRM was demag-

netized linearly up to -*mT, but it underwent drastic zigzag variations. The NRM

intensity of this sample was on the order of +*�-A/m. The linear demagnetization

between * and -*mT is due to only the soft component. Throughout the demagnetiza-

tion curves, the optimum AF demagnetization field intensity was inferred to be -*mT,

because the soft NRM components of every sample seemed to be demagnetized

completely before -*mT.

The AF demagnetization curves of the normalized NRM intensities are shown in

Fig. - for the representative 0 samples (sample numbers and depths are given in the

figure) collected from each core. The unusual almost straight demagnetization curves

(samples +-M++, ,-M*., --M*0 and .-M+*) appeared for the samples from up to .0*
cm depth. The intensities of the other , samples (/-M,2 and C-M*1) collected from

lower locations than that depth increased up to ,*mT and then decreased gradually due

to the overprints of the normal and reversed NRM components. The residual NRM

intensities after AF demagnetization to +**mT were ,-�-,� of their original in-

tensities. The median destructive field (MDF) was in the range of /2.0�2+.0mT

(average 1+.2mT). These tendencies of the residual NRM and MDF values were

consistent throughout the samples.

-.,. AF demagnetization of ARM using 1 cc samples

ARM was imparted on the every sample by superimposing a DC biasing field of *.+
mT on a smoothly decreasing AF field with a peak of +**mT, and then ARM was AF

demagnetized up to +**mT. Since our cores were obtained from the Antarctic polar

region, the dominant NRM component is vertical, as supported by the AF demagnetiza-

tion results (Fig. ,), and it was not demagnetized completely for almost all cores even

if the demagnetization field was +**mT (Figs. ,, -). Therefore, ARM was imparted

toward the horizontal direction of the core to minimize the e#ect of the residual NRM

Fig. -. NRM intensity decay plots in AF demagnetization.
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after the demagnetization.

The AF demagnetization curves of ARM (magnetized toward the �y axis)

described in the Zijderveld projections are shown in Fig. . for samples +-M++ and C-M

*,. The former sample had only stable NRM, while the latter one had relatively

unstable NRM as shown in Fig. , (a and d). The respective ARM intensities 2./0�
+*�, and 3.22�+*�,A/m were not so di#erent and the curves showed almost the same

demagnetization. During the demagnetization of the ARM, the directions of the

ARM components did not shift by +**mT in either of the samples. From these

viewpoints, it can be concluded that very stable and almost equal ARM intensities were

acquired by both samples.

-.-. Downcore variation of NRM using 1 cc samples

The downcore NRM variation after demagnetization by the optimum field (-*mT)

was obtained by using 1 cc samples (Fig. /). The intensity change curve shows four

large peaks with +..1�+*�+A/m (1* cm depth) for the maximum intensity in the upper

.0* cm and remarkably small values with 3.+*�+*�.A/m (.1- cm depth) for the

minimum intensity below the upper region. The declination curve shows relatively

small zigzag changes around the zero declination line (relative declination) up to .0*
cm, but the amplitudes of the variation are much larger below that depth. The incli-

nation change curve was almost stabilized at�10.1 degrees with small variations up to

.0* cm, but it shifted suddenly to about�1../ degrees at .0* cm and changed again to

�0,.3 degrees at /+* cm. The drastically changed declination and inclination curves

seem to be synchronized with each other, where the change occurred at .0* cm for the

first one, /*. cm for the second one and /,0 cm for the third one.

Fig. .. Examples of stepwise AF demagnetization of ARM. Solid/open

circles show projections on the horizontal/vertical plane.
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-... Downcore variation of NRM using + cc samples

The downcore NRM variation after demagnetization by the optimum field (-*mT)

was obtained by using + cc samples (Fig. 0). The intensity curve exhibits high-

frequency oscillations of small amplitudes and four large peaks with +.-.�+*�+ A/m

(31 cm depth) for the maximum intensity, while remarkably small values appears in the

lower .0* cm depth. The declination curve exhibits high-frequency oscillations around

the zero declination line (relative declination) up to .0* cm. The higher amplitude

fluctuations in the declination curve appear at ++, -+, +01, -+3, --2 and -3/ cm in the

part of upper part than that depth. The reliabilities of the fluctuations at -+3 cm and

--2 cm might be insu$cient, because the inclinations at those depths are fairly high

(�2/.3 degrees for -+3 cm and �21.1 degrees for --2 cm). The inclination change

curve was almost stabilized between �/2./ and �23.+ degrees (average: �11., de-

grees) with small but high-frequency variations up to .// cm. Sets of large-amplitude

oscillations occur lower than that depth in both the declination and inclination curves.

-./. Downcore variation of ARM

The downcore variations of ARM intensities after demagnetization by the optimum

field (-*mT) were obtained by using 1 cc samples (Fig. /) and + cc samples (Fig. 0).
The two variations agree well with each other, though the ARM curve obtained from +
cc samples shows higher-frequency oscillations than the variation obtained from 1 cc
samples. Both curves exhibit humps at about -* cm and 3* cm, and depict depression

in the lower section between .*/ and .0* cm. The average value of ARM is *.+,A/m

Fig. /. Downcore variations of the NRM intensity, direction and ARM intensity after AF

demagnetization at -* mT with the magnetostratigraphy of Cande and Kent (+33/).
The declinations are relative because the core was not azimuthally oriented. The

profiles were obtained by using 1 cc samples.
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in both variations. The ARM curve obtained from 1 cc samples varies from a mini-

mum of *.*1A/m to a maximum of *.,+A/m, while the ARM curve obtained from

+ cc samples does from a minimum of *.*0A/m to a maximum of *.,-A�m.

.. Discussion

The NRM intensities are +*�+** times higher than those commonly obtained from

di#erent localities, though such high values are sometimes reported from mid or high

latitudes (e.g., Channel et al., +331; Guyodo et al., ,**+). The unusual straight demag-

netization curves (Fig. -) observed in many samples indicate that each sample has a

fairly flat distribution of coercivity of NRM carrier grains. The high coercive compo-

nents of NRM have never been demagnetized completely as the residual NRM of ,-�
-,� can survive, even if the samples are demagnetized up to +**mT (Fig. -). The

high MDF value of average 1+.2mT also suggests remarkably high stability of NRM.

The downcore NRM variations obtained from the 1 cc and + cc samples, in general,

showed coincident changes with each other (Figs. /, 0), though the higher amplitudes

of oscillations in declination and inclination curves and the much shorter-term changes

appear in variations obtained from + cc samples. Significant switching fluctuations of

high amplitude were observed in both declination and inclination curves of + cc samples

below .// cm, which have never been detected using 1 cc samples. Such results are

possibly attributed to the time-averaging e#ect caused by the thickness of 1 cc cubes.

The two downcore variations of ARM, the one obtained by using 1 cc samples and

Fig. 0. Downcore variations of the NRM intensity, direction and ARM intensity after AF

demagnetization at -* mT with the magnetostratigraphy of Cande and Kent (+33/).
The declinations are relative because the core was not azimuthally oriented. The

profiles were obtained by using + cc samples.
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the other by using + cc samples, show good agreement in their trends of intensity

variations, average values, maxima and minima despite the di#erence of frequencies of

their oscillations. The ARM varies only by a factor of ,.3 (maximum/minimum of

ARM intensities) in the former variation and by a factor of -.0 in the latter one, which

shows that the ability of the sediments to acquire magnetization might not di#er much

overall.

The ARM intensities and AF demagnetization curve of the ARM suggest that the

samples +-M++ and C-M*, have the same magnetic characteristics as the stable and

strong ARM. Namely, both samples are able to have stable NRM. However, the

NRM stabilities of these samples were quite di#erent; the former magnetized stable

NRM but the latter was unstable. This di#erence can be explained by assuming that

the former sample acquired the NRM under a reasonably strong geomagnetic field,

while the latter acquired it in a rather weak that field.

The brownish gray color of the core is inferred to be strongly oxidized sediment.

It is supported by the presence of foraminiferal skeletons consisting of Ca, because in the

reduced condition such Ca rich fossils should disappear. Such a condition might imply

the presence of iron oxide minerals as the dominant magnetic carrier. The absence of

color variations in the core, the ARM demagnetization properties of the stable NRM

sample and the unstable sample (Fig. .), and the downcore variations of ARM imply

that the magnetic carrier minerals may not be so di#erent throughout the core.

The normal and reversed polarities of NRM after AF demagnetization to -*mT

can be compared with the magnetostratigraphy of Cande and Kent (+33/). The most

plausible fitting of the inclination and declination profiles derived by using 1 cc samples

is represented in Fig. /; from the surface to .0* cm depth for Brunhes Chron, from

lower than .0* cm for Matuyama Chron and /*. to /,0 cm for Jaramillo Subchron.

In profiles from measurements using + cc samples (Fig. 0), however, the upper and

lower boundaries of the Jaramillo Subchron seem to be defined at .3/ cm and /,1 cm.

Because of its higher time resolution, the results using + cc samples should be preferred

over the results using 1 cc samples. Those boundaries of the Chron and Subchron are

assigned to *.12, *.33 and +.*1Ma respectively. Sakai et al. (+332) showed the

downcore variations of inclination after AF demagnetization at -*mT, and suggested

the negative high inclination up to .0* cm depth, and subsequently positive and negative

ones. Our profiles of the inclination and declination (Figs. /, 0), also demagnetized by

-*mT, are generally consistent with their results. As the soft NRM component VRM

was completely demagnetized, the reliability of NRM seems to be enough. Therefore,

the similarity of these profiles strongly suggests that the NRM is uniform at the same

level of both split cores.

This magnetostratigraphy suggests that the core recorded geomagnetic secular

variations up to +.*1Ma. It is consistent with Sakai et al. (+332), but the reliability of

NRM was much improved. As the NRM intensity profile (Fig. /) used only stable

NRM components, the variation should be reflected in the amount of the magnetic

grains and intensity of the geomagnetic field. The amount of magnetic minerals might

not vary throughout the core, estimated by the downcore variations of ARM intensities

(Figs. /, 0). Therefore, the very low NRM intensities observed in the Matuyama

Chron seem to be attributed to the weak geomagnetic field, though such a result has
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been reported by only a few studies (e.g., Sakai et al., +332; Guyodo et al., ,**+).
Otherwise, the drastic change of the magnetic minerals and/or their grain sizes possibly

occurred around the Brunhes/Matuyama boundary.

/. Conclusions

We investigated the characteristics of the NRM of a sedimentary sequence ob-

tained from o#shore Wilkes Land. In order to obtain high time resolution data from

the core, the magnetic measurements were performed using not only 1 cc samples but
also + cc small samples. The downcore variations obtained from 1 cc samples and those
obtained from + cc samples agreed well with each other, while the higher oscillation
amplitudes and shorter-term changes appeared in the variations obtained by using + cc
samples. The AF demagnetization of NRM revealed that the sediments have fairly

stable NRM components and the soft components of NRM were perfectly demag-

netized by a -*mT AF field. The remarkably high values of NRM intensity, the

unusual straight demagnetization curves and the high-stability components which

survived up to +**mT, were observed. The ARM was stable and only small changes

were observed in its downcore variations, which indicate that the ability of the

sediments to acquire magnetization does not so di#er overall. Thus the samples

showing only soft NRM components possibly acquired their magnetization under a

weak geomagnetic field. Our downcore NRM variations were mostly consistent with

Sakai et al. (+332), but the time resolution of the paleomagnetic record was much
improved by employment of + cc samples. Since the stability of NRM was proved in

this study and the magnetostratigraphy showed that the core recorded geomagnetic

secular variations up to +.*1Ma, further investigation should be done for paleointensity
estimates with this core.
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