—報告— *Report*

第40次南極地域観測隊気象部門報告1999

東島圭志郎・佐藤 健・安ヶ平一也・村方栄真・河原恭一*

Meteorological observations at Syowa Station in 1999 by the 40th Japanese Antarctic Research Expedition

Keishiro Higashijima, Tatsuru Sato, Kazuya Yasugahira, Eishin Murakata and Kyouichi Kawahara*

(2003年5月6日受付; 2003年5月26日受理)

Abstract: This report presents the results of meteorological observations at Syowa Station from February 1, 1999 through January 31, 2000, carried out by the 40th Japanese Antarctic Research Expedition (JARE-40). The meteorological observation method, measuring instruments, means to compile statistics, and other aspects of the work were almost the same as those used by the 39th Japanese Antarctic Research Expedition.

Remarkable weather phenomena during the wintering period are as follows: 1) In the surface weather observations, in July, December and January, the atmospheric temperature was significantly lower recorded compared to normal average years, and also the atmospheric pressure was significantly lower in May, October, December and January. The lowest sea level pressure, 932.1 hPa was recorded during a severe blizzard on October 5 for the JARE-40 period (the 2nd lowest in history). There were 25-blizzards of which 4 were class A, 10 class B, and 11 class C, the same level as

in a normal year.

2) As a result of total ozone observation, the large-scale ozone hole was observed, as in the previous year, and the monthly average amount of total ozone in November recorded the lowest ever. Then, the ozone hole disappeared in mid-December, however, the recovery of the total amount of ozone was the slowest in years.

3) Because, the temperature rise for the stratosphere was delayed, record-low monthly average temperature was observed in the lower stratosphere in springtime.

4) By observing with an aerosol sonde, we observed cloud particles of polar stratospheric cloud (PSCs), which are thought to be the most important cause of ozone holes formed in the Antarctic lower stratosphere in springtime.

5) In observation of surface ozone concentration, the rapid decrease of surface ozone concentration has been observed continuously, since JARE-38 started this observation.

要旨: これは,第40次南極地域観測隊気象部門が,1999年2月1日から2000 年1月31日まで,南極昭和基地において気象観測を行った結果の報告である.気 象観測の方法,測器,統計方法等は,第39次隊とほぼ同様である. 越冬期間中,特記される気象現象として,次のものがあげられる.

1) 地上気象観測において、7月、12月、1月の気温、5月、10月、12月、1月の

南極資料, Vol. 47, No. 2, 171-271, 2003

Nankyoku Shiryô (Antarctic Record), Vol. 47, No. 2, 171-271, 2003

© 2003 National Institute of Polar Research

^{*} 気象庁. Janan Meteorological Agency, Otemachi 1-chome, Chiyoda-ku, Tokyo 100-8122.

気圧が平年に比べ著しく低かった. 10月5日に最低海面気圧932.1 hPa(歴代2位)を記録した. ブリザードは, A級が4回, B級が10回, C級が11回の計25回あり, 平年並みであった.

2) オゾン全量観測において,昨年に引き続き大規模なオゾンホールを観測し,11 月の月平均オゾン全量は過去最低を記録した. その後,12月中旬にオゾンホール は消滅したが,オゾン全量値の回復は過去一番遅かった.

3) それに伴い, 成層圏の昇温が遅れ, 春季に下部成層圏で記録的に低い月平均気 温を観測した.

4) エアロゾルゾンデ観測において,春期南極上空で形成されるオゾンホールの 重要要因となっていると思われる極成層圏雲(PSCs)の雲粒子の分布状況を観測 した.

5) 地上オゾン濃度観測において, 観測を始めた第 38 次隊以来連続して地上オゾン濃度急減現象を観測した.

1. はじめに

日本の南極地域における気象観測は,昭和32(1957)年に実施された国際的な学術調査, IGY(第2回国際地球観測年)を契機として,第1次隊(昭和31年)が昭和32年1月,前人 未踏の地に昭和基地を開設して以来,一時閉鎖した期間(昭和36-39年)を除き,昭和基地 を中心に行ってきた.第40次南極地域観測隊気象部門は,昭和基地において1999年2月1 日に第39次観測隊より定常気象観測業務を引き継ぎ,2000年1月31日までの1年間越冬観 測を行った.

昭和基地における定常気象観測は、地上気象観測、高層気象観測、オゾン観測、地上日射 放射観測、特殊ゾンデ観測等である.これらの観測は表1にあるような、それぞれの規定に 従って観測を行っている.

地上気象観測において,第40次隊は,第39次隊が更新した総合気象観測装置に新たに視 程計を取り付け正式に運用を開始すると共に,第39次隊に引き続き新旧観測装置の比較観 測を行った.

地上日射放射観測において,第 39,40次隊の2年計画でBSRNの基準に適合するように 整備を行った.第 39次隊では上向き,第40次隊では下向きの直達日射,全天日射,紫外域 日射,散乱日射,赤外放射,地表反射放射の各観測の毎秒サンプリングシステムを導入し, 極域の数少ない BSRN 観測点として,精度の良い観測を開始した.

特殊ゾンデ観測において、オゾンゾンデ観測は、ほぼ毎週1回、計54台を飛揚した.また、 第40次隊から定常観測となったエアロゾルゾンデ観測は、季節変動を把握するため計8台 飛揚した.

地上オゾン濃度観測において、データセレクションを新たに見直した.

その他,海氷上に設置した雪尺による積雪深観測,S16に設置された気象ロボットによる気 象観測,内陸旅行時の地上気象及び大気混濁度観測,「しらせ」船上における大気混濁度観測 を行った.また,気水圏研究グループ並びに国立環境研究所との協力観測として,ILAS-II

第40次南極地域観測隊気象部門報告1999

								通報及び報告	·
御	見測種別		基準	きとなる	規定		形態	時期	報告場所
 地	也上気象			000	GC	0S	SYNOP CLIMAT	リアルタイム	GTS
肩	高層気象			GUS	GCOS	GUAN	TEMP CLIMAT TEMP	リアルタイム	(WRMC)
Ħ	射放射	WMO	WCRP	GEWEX	BS	RN		越冬後	(WRMC)
+) !) /	地上オゾン		ADED		ĊAW			越冬後	(WDCGG)
A 7 7 -	オゾン全量 オゾンゾンデ		AKEP		GAW		電子メール	準リアルタイム	WMO事務局 (WOUDC)

表1 昭和基地における気象観測の国際的位置付け Table 1. International positioning of meteorological observations in Syowa Station.

AREP :大気調査・環境計画(Atmospheric Research and Environmental Programme)

BSRN :基準地上放射観測網 (Baseline Surface Radiation Network)

GAW :全球大気監視計画 (Global Atmosphere Watch)

GEWEX :全球エネルギー・水循環研究計画 (Global Energy and Water Cycle Experiment)

GOS :全球観測システム (Global Observing System)

GCOS :全球気候観測システム (Global Climate Observing System)

GTS :全球気象通信網 (Global Telecommunication System)

- GUAN : 高層気象ネットワーク (GCOS Upper Air Network)
- WCRP :世界気候研究計画 (World Climate Research Programme)
- WDCGG :世界温暖化ガスデータセンター(World Data Center for Greenhouse Gases)

WMO :世界気象機関 (World Meteorological Organization)

- WOUDC :世界オゾン・紫外線データセンター(World Ozone and Ultrabiolet Radiation Data Center)
- WRMC :世界放射モニタリングセンター (World Radiation Monitoring Center)

(Improved Limb Atmospheric Spectrometer)の基礎データ取得等を目的とした 24 回のオゾン ゾンデ観測,気水圏部門と共同して大気微量成分観測及びエアサンプリングを実施した.

これらの観測から得られたデータは Antarctic Meteorological Data, Vol. 40 (Japan Meteorological Agency, 2000) として CD-ROM で発表した.

ここでは、観測の経過と結果の概要を述べる.

なお、本報告中の1999年1月のデータは第39次観測隊の観測による.

2. 地上気象観測

2.1. 観測方法と測器

観測は地上気象観測指針(気象庁,1993a)及び世界気象機関(WMO)の技術基準に基づいて行い,統計処理については,地上気象観測統計指針(気象庁,1990a)に基づき行った.

観測結果は国際気象通報式(気象庁, 1990b)の SYNOP 及び CLIMAT 形式で,気象衛星 通報局装置(以下「DCP 装置」という)によって,ヨーロッパの静止気象衛星 METEOSAT 経由でドイツのダルムシュタット地上局へ送信され,そこからさらに全球気象通信網 GTS (Global Telecommunication System)回線を経由して直ちに世界の気象機関へ通報される.

観測項目と使用測器等を表2に示す.

(1) 総合自動気象観測装置による自動観測

気圧,気温,湿度,風向・風速,全天日射量,日照時間,積雪深及び視程については,総合自動気象観測装置(地上系)により連続観測及び毎正時の観測を行った.なお,視程計(現象判別付)及び降雨強度計付視程計(WIVIS)は目視観測の補助測器として運用した.測器感部の設置位置を図1に示す.

第39次隊まで使用していた AMOS-2(地上系)は引き続き運用し,総合自動気象観測装置 (地上系)との比較データを取得した.その結果については,別に報告する.

(2) 目視観測

雲, 視程については, 目視により1日8回 (00, 03, 06, 09, 12, 15, 18, 21 UTC)の観 測を行った. また, 大気現象については, 随時観測を行った.

(3) 海氷上積雪深観測

北の浦の海氷上に20m四方,10m間隔に9本の竹竿を利用した雪尺を立て,週1回の割 合で雪尺の雪面上の長さを測定し,前観測との差を9本平均して前回の積雪深に加算したも のを積雪深観測値とした.なお,積雪深は雪尺設置時点を0cmとして起算する.

2.2. 観測経過

総合自動気象観測装置(地上系)系統の各測器は、概ね順調に作動した.

同装置は 1999 年 2 月 1 日に正式運用を開始し,国内の保守要領に準じて保守・点検を実施した.

時刻差は±3 秒以内に保ち,これを超えたときに時刻規正を実施したが,この際にシステム障害が発生することが時々あった.この障害のため,1999年3月25日には1分間のデータの欠落が発生し,1999年11月7日及び2000年1月26日には日照,日射などの積算カウンタが異常となった.ただし,手計算によってデータを補う等の処置を施し,いずれも欠測には至らなかった.

観測種目	観測 時刻	観測 最小単位	使用測器等	型式	備考
現地気圧	連続・ 毎正時	0.1 hPa	電気式気圧計 (静電容量型)	PTB220	フォルタン型水銀気圧計により 比較点検(毎日)
	毎正時		フォルタン型水銀気圧計		比較観測に使用
海面気圧	同上	0.1 hPa	-		気温・現地気圧から算出
気圧変化量 · 気圧変化型	毎正時	0.1 hPa	_		現地気圧から算出、決定
気温	連続・ 毎正時	0.1 °C	電気式温度計	Pt100	アスマン通風乾湿計により 比較点検(週1回)
	14-17-14J		アスマン通風乾湿計		比較観測に使用
湿度	同上	1 %	電気式湿度計 (静電容量型)	HMP 233L JM	アスマン通風乾湿計により 比較点検(週1回)
			アスマン通風乾湿計		比較観測に使用
蒸気圧	同上	0.1 hPa			気温・湿度観測値から算出
露点温度	同上	0.1 C			気温・湿度観測値から算出
風向	同上	1 °	風東型風向風凍計	FF-11	測風塔(10.1m)上に設置
	同上	0.1 m/s			
全天日射量	同上	0.01 MJ/m	全天電気式日射計	MS-62F	2000年1月1日, 前室屋上から旗台地に移設
日照時間	同上	0.1 h	太陽追尾式日照計	MS-101D	2000年1月1日, 前室屋上から旗台地に移設
積雪深	同上	1 cm	超音波式積雪計	CF-212	観測棟下海側斜面で観測
雲量・雲形・ 向き・高さ	定時		目視		
			目視		
視程	定時	10 m	視程計 (現象判別付)	TZE-6P	参考測器
	(目視)	(目視)	視程計	WIVIS	参考測器 (第37次隊で設置)
			目視		
大気現象	常時		視程計 (現象判別付)	TZE-6P	参考測器
			視程計	WIVIS	参考測器 (第37次隊で設置)

表2 昭和基地における地上気象観測使用測器等一覧表(1999年2月~2000年1月)

Table 2. Observation elements, frequency, minimum unit, instruments at Syowa Station (Feb. 1999– Jan. 2000).

※観測時刻の「定時」は00, 03, 06, 09, 12, 15, 18, 21UTCの8回

越冬中,計画停電及び事故停電が数回あり,積雪計は UPS による給電を行っていないた め,その都度欠測した.また,2000年1月14日には UPS のバックアップ時間を超えたため に,全要素のデータが1分間欠落した.

装置には自己診断用の基準信号発生部(CHECKER 基板)が実装されており、1時間に 1回,気温,湿度,風向・風速,日照,日射の各要素の基準信号を発生して,データ変換部 (CONV.基板)の点検を自動的に行う.通常,湿度の基準信号は0%,50%,100%に対して ±2%以内を許容範囲として設定するが,第39次隊の試験運用期間中に,この範囲を超える

東島圭志郎ら

ことがしばしばあったため,許容範囲を±2.1%として運用し,第40次隊で CONV. 基板の 予備を持ち込んだ.第40次隊越冬開始後も許容範囲±2.1%での運用を継続したが,実際の 点検値は±2%の範囲内に収まっていたため,基板交換等は行わなかった.しかし,2000年 1月3日に自己診断異常(湿度基準信号100%に対して変換基板出力97.8%)が発生し,時別 値の欠測を生じた.CHECKER 基板の調整を実施したが自己診断異常は回復しなかったた め,CONV.基板の異常と判断して基板を交換し,その後は通常の許容範囲内で経過した.

風向風速変換部(J1 基板)は,第41次隊が風向監視器付の新型を持ち込み,2000年1月 8日に交換した.

観測装置処理部の処理ソフト(SOPS, Surface Observation Data Processing System)は、第 41次隊が最新バージョンを持ち込み、2000年1月8日にインストールを行ったが、SYNOP の時刻設定等に一部不具合があったため旧バージョンに戻した。その後、1月28日にメー カーから気象庁経由でメールにより送られたモジュールをインストールし、良好に動作し た.

176

(1) 気圧

気象棟観測室内に設置した電気式気圧計により通年観測した.測器の精度監視と器差補正 値算出のために,基準器であるフォルタン型水銀気圧計との比較観測を毎日 09LT に行っ た.比較観測では,器差が±0.2 hPa 以内であることを確認するとともに,1ヵ月間の器差の 平均を翌月の電気式気圧計の補正値とした.補正値は,4月が+0.3 hPa であったほかは,年 間を通じて+0.1-+0.2 hPa であり,動作状況は良好であった.

(2) 気温,湿度

両測器とも百葉箱(強制通風式)内に置いて通年観測した.ブリザードの際には,百葉箱 内に雪が詰まることがしばしばあり,その都度除雪を行った.

比較観測はアスマン通風乾湿計により週1回行い,アスマンの観測値を基準として,観測 装置の値が気温においては±0.4℃,湿度は±4%の許容範囲内にあることを確認した.比較 結果は概ね良好であったが,アスマンによる湿度観測値の誤差は,気温-10℃以下では±5 %を超える(気象庁,1993a)ため,観測装置の値が許容範囲外となることもあった.比較結 果が許容範囲外の場合は,その結果は記録に残した上で,改めて条件の良いときに比較観測 を実施した.

(3) 風向,風速

風車型風向風速計を測風塔上に設置し通年観測した.

1999 年 2 月に感部設置方位が, CW 方向に 5[°] ずれていることが分かり, 2 月 23 日に修正 した. 2 月 1–23 日の風向の時別値及び日最大風速と日最大瞬間風速の風向は, 処理部に保存 されている 10 秒生データを補正して再計算した.

1999年8月14-15日のブリザード時に高温で湿った雪が付着し,その後の気温低下により 風向感部が凍結したため,8月17-18日の2日間にわたって断続的に欠測したが,感部の交 換により復旧した.また,除雪中の事故で感部ケーブルの風向信号線が損傷し,12月17-21 日の5日間,風向を欠測した.12月21日にケーブルの断線個所を修復して復旧したが,この 作業のために12月21日は風速も欠測した.

感部の塗装は、国内仕様よりも厚めとしたが、低温と強風により、部分的にひび割れや剝 離を生じた.メーカーからの指示により、瞬間接着剤で応急的に補修し、観測には影響な かった.

(4) 日照時間, 全天日射量

感部は気象棟前室屋上に設置し、日照時間は太陽追尾式日照計で、全天日射量は全天電気 式日射計で通年観測した.

1999年2月2日に追尾装置の不具合が発生し、両要素が欠測となったが、追尾装置及び感 部を交換して復旧した.不具合の発生した追尾装置は、ノイズ等により追尾プログラムの学 習機能が誤動作していたことが判明したため、保守プログラムによって学習機能をリセット したところ正常に動作した.

1999年12月31日に測器感部を気象棟前室屋上から旗台地へ移設したが、この際、感部定数の設定ミスにより、全天日射量を欠測した.移設直後の自己診断異常で設定ミスに気づき修正したため、欠測は12月31日の1日のみであった.

(5) 積雪深

超音波式積雪計を観測棟北側の北の浦に下る斜面に設置し,通年観測した.

超音波式積雪計は、地面に向けた送受波器から超音波のパルスを発射し、雪面で反射した パルスを受信するまでの時間から、感部と雪面との距離を計測する測器である。新積雪が深 くかつ低温の場合や、ふぶきの場合などに受信波のレベルが低下して測定不能となることが 度々あり、時別値で約370個、日最深積雪で1999年7月18日と9月6-8日の計4日間欠測 した。1999年1月、高周波ケーブルにシールドを実施し、さらに、7月以降は感部取り付け 向きの調整、変換部アースの変更、感部の交換等を実施したが、顕著な改善は見られなかっ た.積雪計の設置位置は、北側に向かって傾斜しており、このことも受信波のレベル低下を もたらす一因となっていると考えられる。このようなことから、今後の運用にあたっては、 感部設置位置の整地等も含めて、受信波レベルの向上とノイズの低減のための対策を検討す る必要がある。

(6) 視程(視程計による参考記録)

1999年1月に総合自動気象観測装置(地上系)の感部の一つとして,視程計(現象判別付) を管制棟裏に設置した.

目視による観測値との対応は良く、参考測器として通年運用し、視程障害時の目視観測の 補助や、大気現象発現時刻の決定等に利用した.

投受光部は主風向側に,基線が主風向と直交するように設置したが,ブリザードの際には 雪が詰まって測定不能となることもあった.投受光部フードのヒーターは,感部への結氷を 助長する恐れがあることから,使用しなかった.

(7) 海氷上の積雪深観測

第39次隊まで観測を行った場所が,夏期氷上輸送中にできたドリフトによって観測に不 適切となったため雪尺の設置位置を北東に約100m移動し,海氷上での行動が解禁された 3月下旬から観測を行った.

1999年12月までは、9本の雪尺は全て良好な状態であったが、2000年1月に入ると海氷の表面が緩み、4本程度が大きく傾いて測定不能となった.このため、その後1月末までは直立した雪尺のみを選択して観測を継続した.

2.3. 観測結果

月別気象表を表3に、年間の海面気圧、気温、風速、雲量、日照時間の旬毎の経過を図2

178

	Station.
贰象表	t Syowa
〔象観測月别≶	observations a
る地上気	surface
Ð	of
和基地にお	summaries
È	v_{i}
表3	Month
	Table 3.

任	┠	1900													0006
j		-	2	3	4	5	9	7	8	6	10	11	12	全年	-
平均海面気圧 最低海面気圧 (≤970hPa) 1	hPa hPa	988.2 -	988.8 967.6	984.8 968.4	979.6 961.7	980.2 941	995.7 -	985.3 953.4	988 965.4	989.4 -	974.9 932.1	984.4 967.3	981 960.6	985 932.1	982.5 968.4
超日		1	25	2	20	23	ı	26	17	'	2 C	30	8		Η
平均気温	ပ	-1.2	-3.8	-7.5		-12.7	-13.8	-21.1	-21.2	-19.4	-14.6	-7.4	-3.5	-11.4	-2.3
最高気温の平均 車所有油モンも	ւր	1 2 2	-1.2	-10 -5		-9.7	-10.6	-17.5	-17.2	-16 -93 E	-11.8	-4.5	-0.7	-8.5	0.6
取凶入頃や十分 是真信祖	ړ د	6.9	1 6	-10.2	-4.5	-9 5	-3 1	9-	-4.8	-6 4 -6 4	11	0.8	- 0	-14.0 6 3	0.0
)	15	1.7	9 4	n	23	25		14	17	17	2.0	11.0	0.0	61
最低気温	ç	-7.1	-13.5	-25	-26	-27.2	-27.1	-37.7	-36.1	-35.8	-25.7	-22	-9.9	-37.7	-11.9
超日		24	4	27	26	15	2	19	22	8	17	-	27		24
最低気温 0℃以上の日数		1	ł	ı	I	1	١	1	1	1		1	1	I	1
平均気温 0℃以上の日数	ш	2	ł	2	ı	ı	ı	•	ı	ı	ı.	ı	1	6	2
最高気温 0℃以上の日数	ш	24	80	4	1	ı	ı	ı	,	1	ı	ŝ	12	51	19
最高気温 -10℃以上の日数	ш	31	28	27	22	17	15	9	9	4	11	29	31	227	31
最低気温 -20℃未満の日数	Ш	1	ı	ŝ	2	2	8	22	24	21	14	-	1	102	۱
平均気温 -20℃未満の日数	ш	ı	ı	-		-	5	18	19	12	2	ı	1	59	ı
最高気温 -20℃未満の日数	ш	1	ı	•	1	-	I	Ξ	=	∞	1	1	1	31	1
平均蒸気圧	hPa	4.1	2.9	2.6	2.1	1.9	1.6				1.3	2.5	3.1	2.1	3.6
平均相対湿度	%	72	62	67	75	26	67	69	68	99	65	68	66	68	70
平均風速	∎∕s	7.7	7.1)	8.6	10.1	8.3	8.8	6.5 	5.4)	5.6	5.5	5.5	5.1)	2	4.7)
最多風向 167.	方位	NE	ENE	ENE	ENE	NE	NE .	NE	NE)	NE .	ENE	NE	NE)		NE .
最大風速	m/s	29.9	26.4	38	29.9	40.3	41.1	38.8	32.4	22.4	36.2	26.8	21.4	41.1	26.1
一 風向 起日	•	NE 28	E 25	ENE 5	ENE 20	ENE 23	NE 25	NE 2	NE 14	NE 27	ENE 5	NE 3	ENE 8		ENE 10
最大瞬間風速	ш/s	37.5	34.2	48.4	38.2	50.3	54.6	51.8	40.9	30.6	46.7	34.4	28.4	54.6	33.7
風向起日		ENE 28	ENE 25	ENE 5	NE 20	E 23	NE 25	NE 2	NE 30	NE 11	ENE 5	NE 3	ENE 9		ENE 10
最大風速 10.0m/s以上の日数		21	17	25	21	20	19	17	14	16	15	15	13	213	Ξ
15.0m/s以上の日数		12	×	15	15	12	13	б	9	Π	12	1	4	124	ŝ
30.0m/s以上の日数	ш	•	-	-	•	2	2	2	2	1	-		1	10	•
日照時間	- 2	262	210.4)	122.7	40.6	10.5	ł		62.2	135.6	208.6	266.6	450.5	1772.7	404.7
日照半びたり計算	% <u>`</u>	31	(04 (1 1 1	31 15	0] ,	л с с		- م د	67 I	40 2	44	2 F C	10	1	16
		6. 1 .3	1.11	9 9	+ -7 -7	۰. ۲	30 0	1.0	r · 1	÷ •	51	6.4.J	1.70	151	0.12
小派山教 亚伯肇春		7 3	, - , ,	17	- -	8.6	7.8	6.2	6 9	1.7	- 2	7 2	6 9	7 5	7 U 10
平均31日15未満の日数	Π	4	4	2			. 1	9	~	2	2	2	5	29	
8.5以上の日数		19	16	- 11	24	22	18	13	14	16	20	15	15	211	~~~
雪日数	ш	20	10	19	22	23	15	16	17	16	19	13	10	200	10
霧日数	ш		ı		1	ı ·	1	1	1	°	2	ı	I	2	2
プリザード日数	ш	2	-	0	7	6	2	6	2	4	4	~	0	50	0
1)統計方法は「地上気象観測統計: 2)5月29日から7月14日までは、計3	指針」	(気象庁) 大陽中心は)たよる. (地平線上)	に現れない	、 不照日箋	後はこの期	間の日数(17日)を含む	5						
3) [)」付の値は、期間中に50%以 4) ブリザードの基準については、2	К 8 8 8 8 8	ス渕があっ 「ブリザー	ったことをご-ド統計」	示す. を参照.											

179

図2 昭和基地における地上気象旬別経過図(1999年1月~2000年1月) Fig. 2. Time series of ten-day mean surface meteorological data at Syowa Station (Jan. 1999–Jan. 2000).

に、海氷上の積雪深の経過及び、1974年7月~1999年1月の月最深積雪から求めた月別累年 平均値とその標準偏差,最大・最小値を図3に示す.また,極値・順位値の更新記録を表4 に、各月のブリザードの内容を表5に示す.

図2で見ると、4月上旬までは各要素とも変動はあるが平年値との差は概ね標準偏差の範囲内となっている。4月中旬から7月上旬にかけての旬平均雲量は、平年よりも多目で経過しており、この期間にブリザードが頻繁に来襲したことと対応している。特に4月中旬にはブリザードが3回来襲し、その合計時間が100時間を超えたことにより、旬平均風速の大きさが突出している。7月中旬は一転して好天となり、旬平均気温、旬平均風速、旬平均雲量が

Month (Feb. 1999 - Jan. 2000)

- 図3 海氷上(雪尺)と昭和基地内(積雪計)の積雪深観測値の比較(1999年2月~2000年1月) 昭和基地:(積雪深計)
 - -◆- 積雪深(1999年2月~2000年1月)
 - 海氷上 : (雪尺)
 - 積雪深(1999年2月~2000年1月)
 - 月最深積雪から求めた月別累年平均値とその標準偏差(1974年7月~1999年1月)
 - ▼, ▲ 月最深積雪から求めた月別累年値の最大,最小値(1974年7月~1999年1月)
 - Fig. 3. Comparison of snow cover between sea ice and Syowa Station (Feb. 1999-Jan. 2000).

ともに小さい値となっている.7月下旬以降は各要素とも変動を繰り返しながら経過したが, 越冬前半に比べて気圧の変動が大きく,長波の谷が周期的に昭和基地に接近したことを示し ている.

図3から,第40次隊越冬期間中を通じて,海氷上の積雪深は非常に小さく経過していたこ とがわかる.7月になってようやく14cm程度の積雪が定着したが,その後の増大はほとん どなく,平年の1/3-1/5程度の状態が夏まで続いた.比較のために残した第39次隊設置の雪 尺(2本)による観測値も同程度であったことから,積雪深が小さく経過したことは,設置位 置の変更による影響ではない.

天気概況の詳細は,表6に述べる.また,1999年10月5日1658LTに昭和基地で観測開始 以来,歴代第2位の最低海面気圧932.1hPaをもたらした低気圧について第9章で報告する.

3. 高層気象観測

3.1. 観測方法及び測器

高層気象観測指針(気象庁, 1995)に基づき,毎日 00,12 UTC の 2 回, RS2-91 型レーウィ ンゾンデをヘリウムガス充塡の自由気球に吊り下げて飛揚し,気球が破裂する上空約 30 km までの気圧,気温,風向・風速及び気温が-40℃に達するまでの相対湿度を観測した.

ゾンデ信号の受信と測角には自動追跡型方向探知機(モノパルス方式 MOR-22 型)を用

一年	月		月別値				旬別	刂値		
1999	2	月平均蒸気圧	2.9	hPa	1位(低)	旬平均気温	(上旬)	-4.3	C	2位(低)
						旬平均雲量	(上旬)	4.3		2位(少)
	3	月最低気温	-25.0	C	1位(低)	旬平均気温	(下旬)	-11.7	C	1位(低)
		月最大風速	38.0	m/s	1位(大)					
		月最大瞬間風速	48 4	m/s	2位(大)					
	Δ	日最高気温	-4 5	9 9	1位(任)	旬亚均海面复正	(下旬)	976 9	hPa	9位 (任)
	Т	日亚梅雷县	4.0	C	1位(因)	句平均每面风江	(1-6)	_12 2	nn a m	1位(低)
		月十号云里	9.0		112 (39)	时干朽 风值 句亚 拍 录具	(工列) (工石)	-12.2	C	1位(因)
						间平均要重	(下明)	9.4	- /-	
						旬平均風迷	(甲旬)	15.5	m/s	
						日照時間旬合計	(甲旬)	3.1	n	1位(少)
	5	月半均現地気圧	977.6	hPa	2位(低)	旬半均海面気上	(甲旬)	976.4	hPa	3位(低)
		月平均海面気圧	980.2	hPa	2位(低)	旬平均雲量	(上旬)	9.4		1位(多)
		月最低海面気圧	941.0	hPa	1位(低)	旬平均雲量	(下旬)	9.0		2位(多)
		月平均相対湿度	76.0	%	1位(高)	日照時間旬合計	(下旬)	0.0	h	1位(少)
		月平均雲量	8.6		1位(多)					
		月最大風速	40.3	m/s	3位(大)					
		月最大瞬間風速	50.3	m∕s	3位(大)					
	6	月平均現地気圧	993.0	hPa	3位(高)	旬平均風速	(下旬)	9.8	m/s	1位(大)
		月平均風速	8.8	m∕s	3位(大)					
		月最大瞬間風速	54.6	m/s	2位(大)					
	7	月平均気温	-21.1	Ĉ	3位(低)	旬平均気温	(中旬)	-27.8	C	1位(低)
		最高気温日平均	-17 5	ñ	3位(低)	旬亚均重量	(中旬)	2 6	•	1位(少)
		日最大瞬間風速	51.8	m/s	1位(大)	有亚均属速	(山旬)	2.0	m/s	3位(小)
	Q	/ I AX / CIOT III JAWKE	01.0	ш/ З		句亚均重量	(山句)	0 1	ш/ 5	1位(名)
	0					日昭時間旬合計	(中旬)	1 0	h	3位(少)
	Q	日亚均租地与正	086 6	hDa	3位 (室)	<u>白</u> 瓜 内 前 内 口 们 句 亚 拘 童 景	(下旬)	9.0		9位(夕)
	5	日星十届古	99 A	m/c	3位(同) 9位(小)	可干朽云重	(1 +9)	5.2		202 (39)
	10	日亚均租地与正	079 9	hDa	1位(斤)	旬亚均海面与正	(上句)	071 0	hPa	9位 (任)
	10	月平均先地风压	074 0	hDo	1位(低)	句千均每面风几	(上句)	0 6	m a	1位(国)
		月千岁何回风庄	514.5	hDe	1位(低)	刊十号 会里 日如吐明句 <u></u> 会到	(上司)	10 9	h	1位(多)
		月取抵供回风压	932.1	IIF a	1位(抵)	口照时间月口前	(上可) (由句)	10.0	11 L	1位(少)
		月平均烝风庄	1.3	nPa	31位(低)	日照時间旬合訂	(中市)	110.1	n	3位 (多)
		月平均芸重	1.9		31位(多)					
		月最大風速	36. Z	m/s	3位(天)					
		月最大瞬间風速	46.7	m/s	3位(天)		(1.6)		*	0/1- (-+-)
	11					间平均気温	(上旬)	-5.0	C	2位(高)
						旬平均気温	(下旬)	-8. Z	Ċ	2位(低)
						11平均風速	(卜旬)	3.7	m/s	3位(小)
						日照時間旬合計	(卜旬)	57.5	h	3位(少)
	12	月平均現地気圧	978.4	hPa	1位(低)	旬平均海面気圧	(上旬)	973.1	hPa	1位(低)
		月平均海面気圧	981.0	hPa	1位(低)	旬平均気温	(下旬)	-4.0	C	1位(低)
		月最低海面気圧	960.6	hPa	2位(低)					
		月平均気温	-3.5	C	1位(低)					
		最高気温月平均	-0.7	C	1位(低)					
		最低気温月平均	-6.7	C	2位(低)					
		月最高気温	3.0	C	3位(低)					
		月平均蒸気圧	3.1	hPa	2位(低)					
2000	1	月平均現地気圧	980.0	hPa	2位(低)	旬平均海面気圧	(上旬)	982.1	hPa	2位(低)
		月平均海面気圧	982.5	hPa	1位(低)	旬平均海面気圧	(中旬)	977.5	hPa	1位 (低)
		月平均気温	-2.3	C	1位(低)	旬平均気温	(下旬)	-4.2	С	1位(低)
		最低気温月平均	-5.6	C	2位(低)					
		月最低気温	-11.9	ĉ	3位(低)					

表4 昭和基地における地上気象観測極値・順位更新記録(1999年2月~2000年1月) Table 4. Updated records of surface meteorological extreme and ranking at Syowa Station (Feb. 1999–Jan. 2000).

9. 中			1502 (15) -1527 (15) 0620 (17) -0950 (17)					1820 (23) -1920 (23)		2110(7)-2250(7)																2140(3)-1330(4)
ī気圧 (hPa)	起時		0749(16)	1832 (20)	0132(3)		0404(17)	0943 (23)						0511(2)	0417(6)*		0958(26)			1825(14)				1942(2)	1658(5)	
最低海祖			963.9	961.7	967.7		951.3	941.0						962.7	965.9		953.4			966.6				964.1	932.1	
₹ (m/s)	起時	0957(13)	1518(16)	1834(20)	0132(3)	1514(4)	0111(17)	0801 (23)	1154(26)	1444(7)	1400(11)	2039(25)	2156 (30)	0551(2)	1545(5)	1902 (23)	2345 (25)	0914(29)	1309(8)	1346(14)	2203 (30)	0100(5)	1342 (27)	1829(2)	1657(5)	1733(3)
瞬間風退	風向	ENE	NE	NE	NE	ENE	ല	ш	NE	NE	ENE	NE	NE	ЯË	NE	NE	പ	NE	NNE	NE	BE	NNE	NE	NE	ENE	NE
最大		30.9	33.8	38.2	37.7	32.6	39.2	50.3	27.7	29.9	39.9	54.6	35.5	51.8	28.9	42.5	35.2	26.2	32.5	40.9	40.9	29.4	29.7	32.5	46.7	34.4
u/s)	起時	1000(13)	1520(16)	1840(20)	0140(3)	1650(4)	0400(17)	0920(23)	1130(26)	1450(7)	1440(11)	2140(25)	1710(30)	0530(2)	1550(5)	1910(23)	2350(25)	0900(29)	1150(8)	1450(14)	2210(30)	0110(5)	0630(27)	1850(2)	1710(5)	1530(3)
天風速(1	風向	ENE	NE	ENE	NE	ENE	പ	ENE	RE	ENE	ENE	NE	ENE	NE	NE	NE	ഫ	NE	NE	NE	NE	NNE	NE	NE	ENE	NE
愚		25.5	25.5	29.9	28.5	23.2	30.7	40.3	20.8	23.8	29.6	41.1	28.3	38.8	21.5	32.0	28.1	20.8	22.0	32.4	31.1	20.5	22.4	24.7	36.2	26.8
階級		B	В	в	ပ	ပ	в	A	ပ	ပ	в	A	ပ	в	ပ	в	в	ບ	ပ	A	в	ບ	В	c	A	ပ
継続時間		32時間40分	60時間40分	30時間 0分	11時間20分	9時間 0分	19時間10分	45時間40分	6時間58分	18時間50分	31時間 0分	33時間50分	9時間50分	15時間40分	10時間10分	19時間40分	26時間 0分	26時間 0分	7時間33分	20時間33分	14時間30分	12時間23分	33時間30分	20時間24分	23時間59分	22時間 0分
× 7	月日時分	4 13 15 40	4 17 23 40	4 21 15 40	5 3 8 40	5 4 21 20	5 17 11 40	5 24 16 20	5 26 15 28	6 8 10 10	6 12 17 20	6 26 19 30	7 1 1 30	7 2 13 10	7 5 22 50	7 24 3 10	7 26 10 10	7 29 20 24	8 8 17 23	8 15 8 39	8 31 8 10	9 5 7 40	9 27 22 20	10 3 2 19	10 6 11 20	11 5 0 30
*	年	1999	1999	1999	1999	1999	1999	1999	1999	1999	1999	1999	1999	1999	1999	1999	1999	1999	1999	1999	1999	1999	1999	1999	1999	1999
開始	月日時分	4 12 7 0	4 15 7 5	4 20 9 40	1 5 2 21 20	1 5 4 12 20	0 5 16 16 30	0 5 22 17 40	0 5 26 8 30	0 6 7 13 40	0 6 11 10 20	0 6 25 9 40	0 6 30 15 40	7 1 21 30	7 5 12 40	1 7 23 7 30	3 7 25 8 10	3 7 28 18 24	3 8 9 50	3 8 14 12 6	3 8 30 17 40	9 9 4 19 17	9 9 26 12 50	3 10 2 5 55	9 10 5 11 21	9 11 3 10 40
* 王	^{四世} 年	1 1999	2 1999	3 1999	4 1999	5 1999	6 1999	7 1999	8 1999	9 1999	10 1999	11 1999	12 1999	13 1999	14 1999	15 1999	16 1999	17 1999	18 1999	19 1995	20 1995	21 1995	22 1995	23 1995	24 1995	25 1995

Summaries of heavy snowstorms (blizzards) at Syowa Station (Feb. 1999-Jan. 2000). 表5 昭和基地におけるブリザードの概要(1999年2月~2000年1月) Table 5.

> 階級区分は次による. **±**)1.

A: 視程100m未満かつ風速25m/s以上で継続時間が6時間以上 B: 視程1km未満かつ風速15m/s以上で継続時間が12時間以上 C: 視程1km未満かつ風速10m/s以上で継続時間が6時間以上

1. 極値については、それぞれのブリザードをもたらした寝乱の影響を受けている期間内で求めた.
 3. 最低佈面気圧は970hPa以下の場合のみ記録してある.
 4. 起日の「*」は、ブリザード日数対象外の日に発現したことを示す.

183

表6 昭和基地の天気概況 Table 6. Weather summaries at

年・月		天気概況
	月の初ぬ 多かった で経過し	かと終わりは極冠高気圧の張り出しで乾燥寒冷な気団の支配を受けたことや、北からの気圧の峰の伸張により晴天で日照時間が と、また、放射冷却により気温が低かった、一方、中旬は大陸周辺を次々と通過した気圧の谷の影響を受けるようになり、曇天 した、10日頃と25日頃には発達した低気圧が近傍を通過し強風となったが、降雪は弱く、プリザードとはならなかった。
1999年 2月	上旬	晴天で日照時間が多く、平均雲量は2月上旬としては少ない方から累年の第2位となった、平均気温が2月上旬としては低い方 からの累年の第2位となったのは、寒冷な気団の支配に加えて夜間の放射冷却量が大きかったことに起因する。
	中旬	上旬とは一変して曇天が続き、平均雲量は2月中旬としては多い方からの累年の第4位となった.
	下旬	中旬から引き続き曇天が続いたが、旬の後半は再び晴天となった。25日は発達した低気圧が昭和基地の近傍を通過し、最低海 面気圧は967.6hPa,伴う風は最大風速26.4m/sを記録した。
	南緯60月 高気圧な たが,こ	度以南を通過した低気圧の影響で,曇天の日が多く日無時間は少なかった.しかし,月の終わりには大陸の強い寒気域が拡大し が張り出したため,晴天で気温の低い日が続いた.月の初め,低気圧の接近通過に伴う記録的な強風が基地施設に被害を及ぼし プリザードにならなかった.
1999年	上旬	昭和基地北方を次々に通過した低気圧の影響で暴天やふぶきの日が多かった。特に4~6日にかけ通過した低気圧に伴う5日の 日最大風速38.0m/sは、3月としては累年の極値を更新した。
зн	中旬	天気は周期的に変化した.20日にはやや強い降雪があった.
	下旬	旬の前半は低気圧が次々に通過したため曇天や雪の日が多く,後半は大陸の高気圧の張り出しを受け晴天が続いた.また後半 は、強い寒気に覆われたため気温が低く、27日の日最低気温-25.0℃は3月としては累年の極値、旬平均気温は3月下旬として は低い方からの累年の極値をそれぞれ更新した.
	低気圧な 累年の根 ザードか	✓南極大陸沿岸のごく近くを通過したため、悪天ないしは曇天の日が多かった。月平均雲量の9.0は、4月としては多い方からの 転値を更新した。特に中旬は上空の気圧の谷が深まったことにより、低気圧が大きく発達し、加えて動きが遅かったためプリ <%いた。プリザードはB級が3回であった。
1999年 4月	上旬	1日にふぶきとなった他は晴天の日もあり、天気は比較的穏やかであった一方、気温が低く経過した。1日に記録した月最高気 温-4.5℃は、4月としては低い方から累年の極値、旬平均気温-12.2℃も4月としては低い方からの累年の極値をそれぞれ更 新した。
	中旬	全般的に悪天に支配されたため,旬合計日照時間3.1時間は4月中旬としては低い方からの累年の極値を更新した.12~13日は 越冬開始後初のブリザード(B級)となり,それ以降15~18日,20~21日に相次いでB級ブリザードとなった.
	下旬	初めブリザードの影響が残った他は暴天で経過し、中旬に引き続き晴天はほとんどなかった。旬平均雲量9.4は、4月下旬としては多い方からの累年の第2位の値となった。
	極 循 環 か り,低 気 8.6,月 て は て い た.ブリ	(東経40度付近において概ね谷場ないしは西谷となって停滞したことや、地上では極定高気圧の張り出しが弱かったことによ ほび病東進して昭和基地近傍を通過することが多かった。このため曇天や悪天が多く、晴天は長続きしなかった。月平均雲量 平均相対湿度768は5月としての高い方からの累年の極値を更新、月平均現地気圧977.6hPa、月平均海面気圧980.2hPaは5月とし っ方からの累年の第2位の値となった。特に中、下旬には非常に発達した低気圧が近傍を通過し、強いブリザードに見舞われ ザードは4数1回、B級1回、C級3回。
1999年 5日	上旬	暴天や雪の日が多く,風が強まって度々ふぶきとなった。旬別平均雲量9.4は5月上旬としは多い方から累年の極値を更新した。気温はやや高めに経過した。
3/1	中旬	16~17日にかけて通過した低気圧によりB級ブリザードとなったものの,5月の中では比較的晴天も多く,15日には快晴弱風と なって気温が急速に低下した。
	下旬	束経40度付近の谷場が持続し、旬の前半は悪天に支配された、旬別平均雲量9.0は5月下旬としては多い方からの累年の第2位 の値であった。特に23日に近傍を通過した低気圧の発達は大きく、A級プリザードとなった。月最低海面気圧941.0hPa (23 日)は5月としては累年の極値を更新した、月最大風速40.3m/s (ENE 23日),月最大瞬間風速50.3m/s (E 23日)は共に5月 としては第3位の記録となった。一方,旬の後半は雪の日もあったが比較的穏やかに経過した。
	7日頃か いしは悪 回であっ	ら東経0°付近に進んだ上層谷の動きが遅く,その前面に暖気が入りやすいパターンが持続した.そのため,気温は高く曇天な 沃が続き,断続的にプリザードとなった.その他は,天気は周期的に変化した.プリザードはA級1回,B級1回,C級2回の計4 た.
1999年 6月	上旬	旬の中ごろ,昭和基地付近は大陸上で発達した寒気に被われ,晴天で気温が低かった.
0/1	中旬	17,18日に晴天だった他は、旬を通じて曇天や雪の日が多く断続的にブリザードとなった.
	下旬	天気は周期的に変化した.25~26日にかけて発達した低気圧が昭和基地の近傍を通過したため,強い暖気が入り込みA級プリ ザードとなった.最大瞬間風速は6月としては第2位の54.6m/sを記録した.
1000/-	極循環の 北東部で で月平均 終わりに はB級3回	9谷がゆっくりと移動し,昭和基地周辺は中旬に谷後面の領域に入って大規模領環場で西南西流が卓越した.このため南極大陸 発達した強い寒気域に対応する地上高気圧に覆われ晴天が持続し、この期間の気温は極めて低く経過した。中旬の低温の影響 気温ー21.1℃,最高気温月平均-17.5℃はともに7月としては低い方からの累年の第3位の値となっている.一方,月の初めと は西北西流場となって暖気が入り込んだため低気圧が基地付近に接近して通過し,たびたび雪やふぶきとなった.プリザード I,〔級2回であった.
1999年 7月	上旬	気圧の谷の通過に伴い雪やふぶきの日が多かった.2日に基地近傍を発達しながら通過した低気圧に伴う最大瞬間風速 51.8m/s(NE 2日)は7月としては累年の極値を更新した。旬の終わりには気圧の谷が東に移動し天気は回復した.
	中旬	高気圧に 覆われ穏 やかな晴天と強い低温が持続した。旬別平均雲量2.6は7月中旬としては少ない方からの累年の極値,旬別平 均気温−27.8℃は7月中旬としては低い方からの極値をそれぞれ更新し,旬別平均風速2.8m/sは7月中旬としては小さい方から の累年の第3位の記録となった。
	下旬	再び気圧の谷の通過で概ね曇天ないし悪天で経過した.この期間,3回のブリザードは継続時間が長かった.

(1999年2月~2000年1月) Syowa Station (Feb. 1999–Jan. 2000).

	極循環の 来襲は3 あった。	D流れの位相が遅いながらも順調に動き,天気は概ね周期的に変化した.特筆すべき月の極値の更新はない.また,プリザード 回だが最大風速15m/s以上の強風日数は平年よりも少なく,比較的穏やかであった.プリザードは,A級1回,B級1回,C級1回で
1999年	上旬	旬の終わり頃にブリザードとなった他は晴天が多く、気温も低めに経過した.
8月	中旬	曼や悪天の日が多く、旬平均雲量9.1は8月中旬としては多い方からの累年の極値を更新した。特に14~15日にかけては、東経 0度付近で気圧の谷が大きく深まったために東経40度付近では強い暖気移流領域に入り、極めて急速にA級ブリザードへと天候 が悪化した。
	下旬	前半時れ,後半曇天や雪の日となった.30日のB級ブリザードは中旬と同様のパターンによるものであった.
	低気圧な 986.6hP 日が多な	が南極大陸沿岸から離れて通過する事が多く、その影響を受ける事が少なかったため気圧も高めに推移した。月平均現地気圧 aは9月としては高い方からの累年の第3位の値であった。下旬は、昭和基地を含む大陸沿岸部で上層の低圧場が持続し、悪天の かった。ブリザードはB級1回、C級1回であった。
1999年	上旬	4~5日にかけて低気圧の通過に伴いC級ブリザードとなった他は,概ね晴天で気温は低めであった.
9月	中旬	旬の初めはふぶきとなったが、その他は概ね晴天で経過した.
	下旬	旬を通じて曇天や雪の日が多く、日照時間が少なかった。旬別平均雲最9.2は多い方からの累年の2位、旬別合計日照時間は少 ない方からの累年の4位の値であった。25~27日にかけて発達した低気圧が昭和基地の近傍を通過しB級プリザードとなった。
	9月に引 圧が通道 リザート	き続き,昭和基地を含む大陸沿岸部は上層の低圧場が持続した.地上は中旬を除き低圧帯に入り,その中を2,3日周期で低気 §し,悪天の日が多く気圧は低めに経過した.月平均海面気圧974.9hPaは10月としては低い方からの累年の極値を更新した.プ {はA級が1回,C級が1回であった.
1999年 10月	上旬	周期的に通過した低気圧の影響で曇天や雪の日が多く、日照時間が少なかった。旬別平均雲最9.6は10月上旬としては多い方 からの累年の極値、旬別合計日照時間18.3時間は10月上旬としては少ない方からの効果の極値をそれぞれ更新した。5~7日前 半にかけて発達した低気圧が昭和基地の近傍を通過し、4級プリザードとなった、このA級プリザードにより、10月としては累 年の第2位の月最低海面気圧932.1hPa,累年の第3位の最大瞬間風速46.7m/sを記録した。
	中旬	13日までは、低気圧の影響で雪が降ったが、その後大陸の高気圧の張り出しが強まり、晴天が多く日照時間が多かった。旬別 合計日照時間116.1時間は、10月としては多い方からの累年の第3位の値であった。
	下旬	上旬と同様に、周期的に通過した低気圧の影響で、曇天や雪の日が多かった.
	月初めと 回であっ	:終わりに昭和基地付近に低気圧が接近し悪天となった他は、大陸高気圧が張り出し晴天の日が多かった.ブリザードはC級がI た.
1999年 11月	上旬	3~5日にかけて発達した低気圧が昭和基地の近傍を通過したため、C級ブリザードとなった。この低気圧に吹き込む暖気により、気温は高めに経過した、旬別平均気温-5.6℃は、11月上旬としては高い方からの第2位の値であった。その後大陸の高気 圧の勢力が強まり晴天となった。
	中旬	昭和基地付近は大陸高気圧が張りだし,低気圧が北海上を通過したがそれ以上の南下は見られず,概ね晴天で経過した.
	下旬	大陸の高気圧の勢力が弱まり、暴天または弱い雪の日が多かった.風は弱く気温も低めに経過した.
	前半大陸 温は平年 プリザー	語気圧の縁辺にあたり曇天が多かったが,後半は大陸高気圧に覆われる事が多く,夏らしい穏やかな天気となった.気圧,気 ≒より低かった.月平均海面気圧981.0hPa,月平均気温−3.5℃はいずれも12月としては低い方からの累年の極値を更新した. ドは1回も無かった.
1999年 12月	上旬	要天の日が多く,気圧は低めに経過した。旬別月平均海面気圧973.1hPaは,12月上旬としては低い方からの累年の極値を更新 した。8日には大陸高気圧の勢力が強まり,北海上の低気圧との間の気圧傾度が大きくなり風が強かった。
	中旬	12~14日にかけて発達した低気圧が昭和基地に接近したため、風が強くなり雪となった.14,15日には暖気が入り雪あられも 観測された.その後は、大陸高気圧に 殺 われるようになり、晴天の日が多かった.
	下旬	晴天の日が多く、気温は低めに経過した。旬別平均気温−4.0℃は12月下旬としては低い方からの累年の極値を更新した。
	大陸高気 2.3℃は ブリザー	圧に覆われる事が多く,晴天の日が多かった.気圧,気温は平年より低かった.月平均海面気圧982.5hPa,月平均気温– 月としては低い方からの累年の極値を更新,最低気温月平均−5.6℃は1月としては低い方からの累年の第2位の値であった. ドは1回も無かった.
2000年 1月	上旬	大陸高気圧の縁辺にあたり暴天や雪の日が多かった.9~11日は、低気圧が昭和基地に接近しふぶきとなった。旬を通じて気 圧は低めに経過し、旬別月平均海面気圧982.1hPaは1月上旬としては低い方からの累年の第2位の値であった。
	中旬	12日まで低気圧の影響で雪が降ったが,その後は大陸高気圧が張り出し晴天または薄曇となった.上旬と同じく旬を通じて気 圧は低めに経過し,旬別月平均海面気圧977.5hPaは1月中旬としては低い方からの累年の極値を更新した.
	下旬	28,29日は大陸高気圧の勢力が弱まり,雪が降った他は晴天の日が多かった.気温は低めに経過し旬平均気温-4.2℃は1月下 旬としては低い方からの累年の極値を更新した.また,24,25日は放射冷却に伴う霧が朝方発生した.

い,計算処理,作表,気象電報作成等は高層気象観測装置データ処理部により自動的に行った.

観測結果は、国際気象通報式(気象庁、1990b)の地上高層実況通報式(TEMP)に変換して、地上気象観測と同様に気象衛星通報局装置(DCP)を用いて、静止気象衛星(METEOSAT)経由で世界気象通信網(GTS)に通報した。

観測器材を表7に示す.

		使	更用機器等	測定範囲	観測精度	備考
ĩL		気圧	鉄ニッケル合金空ごう (静電容量変化式)	1050 ~ 5 hPa	±1 hPa	減圧点検, 飛揚前点検で精度確認
インゾンラ		気温	ビード型ガラスコート サーミスタ (アルミ蒸着加工)	+40 ~ -90 °C	±0.5 °C	飛揚前点検で精度確認
91型レーウ、	センサ	湿度	高分子膜 (静電容量変化式)	0 ~ 100 %	±7 % (10~95 %) ±10 % (上記以外)	飛揚前点検で精度確認
RS2-		風向 風速	ゾンデ観測による 高度計算値と 自動追跡型方向探知機の 測角値から算出			経緯儀による測角比較観測 (極夜期を除く毎月,目視可能時)
督	電池		B91RS型注水電池			立ち上げ機により 規定電圧を確認後飛揚
充圳	真ガ	ス	ヘリウムガス			標準浮力錘浮力1900g, 強風・降雪等状況により増量
\$	贰球		600gゴム気球			飛揚前に加温保存, 冬期間低温時は油漬け処理を実施
懸	垂紐	Ł	白色クレモナ糸			全長15m, 強風時は気象観測用巻下器に替える
その他	強	風時	気象観測用巻下器			飛揚後に懸垂紐が15mに伸長
C +710	暗	夜時	PA72型追跡補助電灯			注水電池により起電発光

表7 高層気象観測器材

Table 7. Sensors and instruments for aerological observations at Syowa Station.

表8 高層気象観測状況

	~	<u> </u>													2000	合計
		_		2月	3月	4月	5月	6月	7月	8月	9月	10月	11月	12月	1月	(平均)
	飛	揚	回数	57	62	66	64	68	63	67	62	65	63	62	62	761
,	定時	観測	回数	56	62	60	62	59	62	62	60	62	60	62	62	729
	特別	観測	回数	0	0	0	0	0	0	0	0	0	0	0	0	0
	再観	測	回数	1	0	6	2	9	1	5	2	3	3	0	0	32
	資料	·欠如	回数	0	0	1	0	1	0	0	0	0	0	0	0	2
	欠	測	回数	0	0	0	0	. 1.	0	0	0	0	0	0	0	1
到	平	気圧	(hPa)	11.5	7.9	16.4	15.5	10.1	9.6	9.1	12.6	12.7	10.1	9.0	9.5	(11.2)
達	均	高度	(km)	31.6	32.4	28.7	27.3	28.8	28.1	28.3	27.6	28.1	30.3	32.0	32.3	(29.6)
高	最	気圧	(hPa)	6.5	6.0	5.3	6.8	5.6	6.2	5.7	6.6	7.2	6.5	6.8	7.1	
度	高	高度	(km)	34.2	34.3	33.7	31.1	31.8	30.5	31.3	30.8	31.7	33.3	34.2	34.3	

Table 8. Number of observations and attained height of aerological observations.

(注)・6/25 12UTCは強風のため欠測.平均到達高度の計算からは除外した.
 ・回数,到達高度共に00UTCと12UTCの両方の観測を含む.

3.2. 観測経過

観測状況を表8に示す.

第40次隊として1999年2月1日00 UTCより2000年1月31日12 UTCまでの観測を

行った. この期間中, 強風のため気球の放球が成功せず飛揚作業を取り止めた欠測が1回(1999年6月25日12 UTC), 100 hPa 面の風資料を得られる高度まで到達せずに観測中止となった資料欠如が2回であった.

冬期間の下部成層圏の低温によりゴム気球が硬化して到達高度が低下するのを防ぐため、 4月28日12UTCから11月12日00UTCまで、原則として気球の油漬け処理を行うことと した.油漬けの実施期間は成層圏の気温が概ね-70℃を下回る時期を目安としたが、この期 間の始まり頃と終わり頃は気球の破裂高度が低い傾向にあった.

第37次隊から導入した全自動式気圧点検システムが9月頃不調となった.点検終了気圧 が規定の8hPaに到達せずに終了することがあることから、気密漏れを調査していたが、数 日後システムのバルブ制御装置が動作しなくなり、同装置の故障であることが分かった.故 障箇所は電磁弁で、パソコンによる吸・排気弁の開閉が不能となっていた.この部分は修理 不能箇所のためバルブ制御装置を取外して持ち帰り修理とし、第41次隊が代替品を持込ん で交換するまでは、第36次隊以前のマニュアル式の点検方法で気圧計点検を実施した.その 他、真空ポンプの真空オイルや劣化したゴムホースの交換を実施した.

4月初めから11月初めにかけて、デジタイザの信号分離不良がたびたび発生した.ほとん どの場合、アンテナのヒーターを切ると復旧することから、ヒーターによるノイズの混入が 原因と考えられた.しかし、低温下でアンテナを駆動するためには保温が必要なことからデ ジタイザの信号分離が不能となるまではヒーターを入れ、不能となった時点でヒーターを切 ることで対処した.

モノパルス式方向探知機(MOR-22)の探知精度を検査するために,極夜期を除き月1回以 上,測風経緯儀による比較観測を実施した.結果は概ね良好であったが,方位による高度角 差の偏りが僅かに見られることから,空中線の水平を調整した.ずれはごく僅かであったが, 空中線は気象棟の屋根に設置されており基盤が強固ではないことから,年に数回程度の点検 が必要である.その他,高層気象観測装置の総合的な動作点検を毎月1回実施し,性能に劣 化の無いことを確認した.

第40次隊はゾンデ発信器を800台持ち込み,その内気圧計点検やベースライン点検で不 良と判定されたものが3台,点検時は合格したが飛揚直前に気圧計が不良になったものが1 台,飛揚直後に気圧計が不良となったものが1台であった.これら5台の不良部位は全て気 圧計であった.

3.3. 観測結果

1999年1月~2000年1月までの主な指定気圧面の高度,気温,風速の月平均指定気圧面観 測値(00 UTC の観測値による統計)を表9に示す.また,1999年1月~2000年1月までの 00 UTC の上層気温断面図を図4に示す.この図をみると,下部成層圏において7-8月に非

$\overline{}$	指定面	1999												1999	2000
	(hPa)	1月	2月	3月	4月	5月	6月	7月	8月	9月	10月	11月	12月	全年	1月
	850	1185	1179	1139	1085	1085	1201	1094	1122	1137	1034	1130	1112	1125	1135
	700	2662	2651	2598	2533	2530	2645	2507	2553	2568	2463	2578	2577	2572	2608
	500	5116	5107	5010	4914	4918	5042	4860	4941	4952	4849	4988	5006	4975	5042
te de	300	8572	8570	8412	8261	8258	8392	8166	8283	8290	8195	8367	8407	8348	8462
尚度 (m)	200	11203	11207	11046	10836	10789	10859	10621	10721	10731	10653	10845	10899	10868	11098
	150	13094	13107	12941	12683	12594	12584	12323	12394	12407	12352	12563	12657	12642	12999
	100	15776	15793	15603	15266	15106	14986	14674	14717	14746	14717	14957	15149	15124	15695
	50	20426	20408	20125	19609	19277	18963	18579	18596	18726	18751	19112	19587	19347	20371
_	30	23916	23831	23442	22771	22282	21832	21397	21420	21708	21827	22379	23092	22491	23876
	850	-9.0	-10.2	-12.8	-14.5	-15.5	-15.9	-22.0	-19.5	-19.2	-19.1	-14.1	-10.9	-15.2	-8.9
	700	-17.9	-18.0	-20.6	-23.2	-23.1	-22.4	-27.3	-24.0	-24.1	-24.9	-22.4	-19.7	-22.3	-19.1
	500	-30.8	-30.3	-35.9	-39.3	-38.5	-37.5	-41.7	-37.7	-38.5	-38.0	-35.5	-33.6	-36.4	-33.2
	300	-51.8	-51.7	-53.9	-57.7	-59.3	-60.2	-61.5	-61.1	-60.7	-60.2	-58.5	-57.9	-57.9	-53.8
気温 (℃)	200	-49.6	-48.0	-47.9	-53.8	-58.5	-68.0	-69.6	-72.8	-72.6	-70.1	-68.0	-64.8	-62.0	-48.1
	150	-47.9	-47.2	-48.2	-54.2	-59.6	-68.6	-72.7	-75.8	-75.0	-72.4	-70.3	-64.1	-63.0	-46.8
	100	-46.4	-46.6	-49.3	-57.0	-63.6	-73.4	-77.5	-79.2	-77.1	-75.1	-71.9	-61.5	-64.9	-45.0
	50	-41.8	-45.0	-50.9	-61.0	-70.5	-79.9	-83.3	-84.2	-76.1	-71.9	-62.1	-45.5	-64.4	-40.2
	30	-37.6	-43.2	-51.4	-62.7	-73.5	-82.1	-85.2	-84.3	-70.5	-61.5	-46.9	-32.8	-61.0	-37.3
	850	9.6	7.7	10.0	10.9	10.5	12.6	9.0	8.0	8.2	8.5	5.8	7.2	9.0	5.6
	700	9.0	6.3	8.0	7.9	8.5	9.0	7.3	8.2	9.3	6.6	7.0	6.3	7.8	5.5
	500	9.7	7.5	8.8	9.4	8.8	10.5	9.3	14.8	13.6	8.2	9.0	8.1	9.8	6.7
國法	300	15.5	12.6	14.4	14.1	13.5	19.1	13.9	19.5	16.5	14.7	17.0	13.5	15.4	10.1
)或还 (m/s)	200	10.6	10.2	10.7	14.4	14.6	15.2	13.2	20.2	16.5	15.3	14.7	11.2	13.9	8.4
	150	9.3	9.6	11.3	15.6	17.0	14.7	14.5	21.0	16.7	16.3	13.8	9.7	14.1	8.8
	100	7.6	7.8	10.6	18.0	21.7	17.3	20.1	25.6	20.5	20.6	15.9	11.4	16.4	10.1
	50	4.6	4.9	10.5	22.0	30.2	27.4	31.5	35.2	35.7	32.4	24.9	15.5	22.9	8.0
	30	5.0	37	11 1	25 3	35 4	34 0	40.1	41 6	51 3	41 0	30.0	16 7	28.0	57

表9 月别指定気圧面観測値

Table 9. Monthly summaries of the aerological observations (00 UTC).

図4 上層気温の時間断面図(1999年1月~2000年1月) Fig. 4. Time-height cross section of upper-air temperature (Jan. 1999–Jan. 2000).

常に気温の低い時期があり,その後 10-12 月には突然昇温等により気温が上昇していること がわかる.これらの現象については 6 章,10 章に詳しく述べるが,PSCsの発現高度,オゾン 破壊及び極渦との関連による.

高層気象観測は 1969 年から開始され 00 UTC の観測データは 1998 年までに 30 年間の継 続資料が蓄積された.そこで,1999 年の月別統計値と,30 年間(1969-1998 年)の月別統計 値(以下,平年値として扱う)を比較する.図5には 1999 年の指定気圧面月平均気温,風の 東西成分,及び南北成分風の変化と,その累年平均気温からの偏差を示し,図6には 1999 年 の指定気圧面月平均気温が過去 30 年の極値(タイ記録を含む)を更新した様子をみるため に,極値となった指定気圧面にマークを表示した.図5 から対流圏における気温偏差が大き いのは,4月と7月の低温,8-9月の高温であったことが分かる.

図7、8に、500hPa、30hPa面の月平均高度を示す.500hPa面月平均高度(気象庁、1999) では、2月には大陸上に夏期の昇温による高圧部が存在し、昭和基地は極冠高気圧の正偏差 域内であった.その一方で705、60E周辺には低圧部が発生しており、やや西に移動しながら 次第に谷を深めたため、4月には昭和基地付近が大きな谷場となった.このため、昭和基地は 3-5月に低温(負偏差)域に入り、この低圧部に対応して次々に発生した地上低気圧の影響で 度々ブリザードを観測するようになった(表5).南極大陸上では、特に4月には大陸の冷却 が急速に進んだとみられ、大陸全体が一気に負偏差域となり、昭和基地上空500hPa面付近 においては低温の極値を記録した(図6).また、7月は極夜の冷却によって大陸上に発達し た優勢な地上高気圧に覆われ、放射冷却が加わった効果で対流圏下層から地上にかけて低温 偏差が大きい.

対流圏における風は、6月に東成分と北成分の強まりが著しかった.これは、500hPaの月 平均高度場で昭和基地の西が深い気圧の谷、東が気圧の峰となっていたことから、北東から の暖気が流入し易かったためで、気温も6月の対流圏においては正偏差である.その一方で、 8月に南成分および西成分の強まりが顕著なのは、昭和基地の西に気圧の峰が北から延び、 東に気圧の谷が形成されたことの反映であるが、気圧の峰の勢力が強かったため、昭和基地 は 8-9月の対流圏の気温も正偏差である.

下部成層圏において最も特徴的なのは、10月以降に負の気温偏差が極めて大きくなったこ とと、11月以降に西成分風が著しく強まったことである(図 5).特に、11-12月に下部成層 圏の月平均気温が1969年以降における低温の極値となったことは特筆すべきことである (図 6).1999年の極夜期に形成された極渦は当初、6-7月の30hPa面高度場(図 8)(気象庁、 1999)をみても平年に比較して特に強くはなかった.しかし、極夜が明けた8月には、南極 大陸を取り巻く帯状の高度負偏差域が出現し始め、高い高度では強い極渦が維持されていた とみられる.10月には南極大陸全体が高度負偏差域に覆われ、11-12月には南極大陸上空の 高度負偏差が最も大きくなった.図6に示したように、12月の20-30hPa面の気温が過去最

Fig. 5. Annual variations in upper air temperature (°C) and upper wind components (m/s) (a), normal values (1969–1998) (b), and deviations (c).

図 6 1999 年に更新された月平均気温の極値分布(○は高温, ▽は低温の極値) Fig. 6. Distribution of updated maxima and minima of monthly average temperatures in 1999.

高気温となっていたにも関わらずこの層の高度が負偏差であったのは、これより下層側でオ ゾン減少による気温低下で層厚が縮小したためである. 廣岡ら(2000)は、北半球成層圏オ ゾンの減少に伴う西風ジェット(極渦)の強化について観測結果とモデル実験で示している が、このような温度風の関係は大局的には南半球にも適用できるものである. つまり、極域 成層圏オゾンの減少によって日射吸収の小さくなった成層圏は寒冷化して周囲との温度傾度 が大きくなり極渦が強化される. このとき、極渦内部では気柱の層厚が小さくなるため、高 度は負偏差となると考えられる. よって、この時期に高度負偏差が大きかったことは、成層 圏の昇温が著しく遅延し極渦が平年より強い状態で維持されたことを示している.

昭和基地上空の気温の負偏差が最も大きかった高度は、通常昭和基地上空でオゾン分圧が 極大となる 100 hPa(高度約 15 km)から 50 hPa(高度約 19 km)であった. この高度での気 温負偏差は、成層圏における主な熱源であるオゾン量の減少と密接な関係があり、極夜期に 極寒冷となった成層圏大気が極夜明けにオゾンの発熱で昇温する過程が阻害された結果であ る.また、特に 11-12 月の下部成層圏において平年より西成分風が強かったことは、成層圏 の昇温遅延による極渦の維持とも調和する(廣岡ら、2000).ここで、図 5、6 に示したよう に、12 月の 20-30 hPa の気温が平年より高く過去最高気温となっていたにも関わらず、西成 分風が平年よりも強かったのは、温度風の関係から一見矛盾するようであるが、これも下層 側で発生したオゾン減少によって層厚が縮小したことに起因すると考えられる.ここで述べ た成層圏の昇温遅延と 12 月の 20 hPa 付近での高温については、オゾン観測の結果とあわせ

図7 南半球月平均 500 hPa 高度及び平年偏差(1999 年 2 月~2000 年 1 月) Fig. 7. Monthly mean weather chart on 500 hPa (Feb. 1999–Jan. 2000).

図8 南半球月平均 30 hPa 高度及び平年偏差(1999 年 2 月~2000 年 1 月) *Fig. 8. Monthly mean weather chart on 30 hPa (Feb. 1999–Jan. 2000)*.

て第10章にて詳しく考察する.

4. オゾン観測

4.1. 観測方法と測器

オゾン観測は、ドブソン分光光度計(Beck-119)を用いた全量・反転(高度分布)観測, RS 2-KC96型オゾンゾンデ(明星電気製)を用いたオゾン高度分布観測,及び地上オゾン濃度観 測装置を用いた地上オゾンの連続観測を行った.

全量・反転観測とオゾンゾンデ観測結果は、電子メールで毎月(オゾンホールの生成から 消滅期間においては、WMO事務局の要請により毎週、途中8月以降は毎週2回(月曜日及 び木曜日))気象庁経由WMOへ報告し、その結果は、WMO OZONE BULLITEN として世 界の関係機関に配布された.また、これらの観測データは気象庁からWMO世界オゾン紫外 線データセンター(カナダ)に送られた.

地球観測プラットホーム技術衛星(ADEOS)に搭載された改良型大気周縁赤外分光計 (ILAS)の基礎データ取得のため、国立環境研究所 ILAS プロジェクト、国立極地研究所気水 圏研究グループ、気象庁観測部南極観測事務室による共同研究としてオゾンゾンデ観測を 行った(以下、ILAS データ検証観測 8.5 関連).取得したデータは、直ちに解析し、暫定値と して気象庁観測部南極観測事務室経由で電子メールにより各関係機関に報告した. 観測機材を表 10 に示す.

観測項目	使用測器等	型式及び 測器番号	単位及び 測定範囲	構成	備考
オゾン全量・ 反転観測	オゾン分光 光度計	Beck No.119	m atm-cm		石英プリズムを使って太陽光をスペクト ルに分け、測定しやすい2種の波長の光を 取り出し強度比を測定する
			hPa	気圧	ニッケルスパン製43mm々 空ごう気圧計(静電容量変化式)
			r	気温	ピート製 ガラスコートサーミスター (アルミ蒸着加工)
オゾンゾンデ 観測	オゾンゾンデ	RS2-KC96	mPa	オゾン 計測部	ピストンポンプ (吸気および導気管:ポリエチレン製) 反応管(アクリル樹脂製単管) 反応液(沃度カリ水溶液)
				電池	B96KC型注水電池
				気球	2000g気球 ※標準浮力:3200g
				その他	オゾンゾンデ巻下器
	オゾン濃度計	Dylec MODEL1100	$0 \sim 200$ ppmb	観測 装置	赤外線吸収法,最小感度0.1ppmb, 12秒サンプリング
地上オゾン 観測	空気精製器	Dylec MODEL1400		検定 装置	原料ガス(空気)を乾燥後, 含まれるオゾンを分解, N02を除去し精製空気にする
	オゾン発生器	Dylec MODEL1410	$0 \sim 1000$ ppmb	衣臣	UVランプによる紫外線線照射

表 10 オゾン観測器材 Table 10. Sensors for ozone observations at Syowa Station.

4.1.1. オゾン全量観測

オゾン観測指針(気象庁, 1991)に準じ、ドブソン分光光度計を用いて太陽直射光及び天 頂散乱光の観測を行った.ドブソン分光光度計は器械内部に取り入れた紫外線光について, 指定された 2 つの波長をそれぞれ取り出し、その強度比を測定することでオゾン全量を観測 する器械である.太陽光では AD 波長組(A 波長組:平均波長 305.5 nm と 325.0 nm, D 波長 組:平均波長 317.5 nm と 339.9 nm)を用いた観測を、太陽の北中時及び午前、午後の大気路 程 μ =1.5, 2.5, 3.5 (μ : オゾン層を通過する光線の垂直路程に対する相対的な路程)の時刻に 行った.また、観測期間を延ばすため太陽高度が低くなる時期については CD 波長組(C 波 長組:平均波長 311.5 nm と 332.4 nm, D 波長組:平均波長 317.5 nm と 339.9 nm)を用いた観 測を、大気路程 μ =3.5, 4.5, 5.5, 6.5 の時刻に行った.さらに太陽高度が低い(μ >6.5)場合 には、測器の限界となるため観測は行わなかった。太陽光による観測ができない冬季には、 月光による AD 波長組による観測を行った。

4.1.2. オゾン反転観測

反転観測は、オゾン観測指針(気象庁,1991)に準じ、ドブソン分光光度計を用いて日中の晴天天頂散乱光を連続観測し、オゾンの高度分布を得るための観測で、太陽天頂角が80-90度の範囲のショート反転観測と、60-90度の範囲のロング反転観測を天頂晴天時の午前又は午後に可能な限り行った.

4.1.3. オゾンゾンデ観測

オゾン観測指針(気象庁, 1997)に準じて, RS2-KC96型オゾンゾンデをゴム気球に吊り下 げ,上空約35kmまでのオゾン分圧,気圧,気温及び風向・風速の高度分布を観測した.オ ゾンゾンデはポンプで大気を吸入し,大気中のオゾンと反応液(臭化カリウム)との化学反 応の際に生ずるオゾン量に比例した反応電流を計ることによりオゾン量を求めている.

オゾンゾンデの信号受信等の地上施設は、高層気象観測施設と同じものを使用した.オゾ ンゾンデ飛揚前の校正には、オゾン発生器及びオゾンゾンデ試験器を用いた.ゴム気球は 2000gを使用し、ヘリウムガスを充塡して浮力錘浮力 3200gとした.また、高層気象観測同 様 5-10月の到達高度が低くなる時は、気球の油漬け処理を行った.さらに、上空で温度が極 端に低くなることによるポンプの動作不良等を防ぐために、オゾンゾンデ内に収納されてい る注水電池とポンプ及び反応管との間の仕切りを薄くする処理を行い、注水電池の発熱を利 用した.飛揚は原則として週1回行ったが、ILASのための基礎データ取得時期は3日に1 回の飛揚周期(5月~7月中旬)とし、その後は週2回(7月下旬~10月上旬)とした.

観測は高層気象観測を行っていない風の弱い晴天の日を選んで行い,データの解析は観測 終了後直ちに行った.極夜期でドブソン分光光度計によるオゾン全量観測値が得られない場 合を除き,飛揚時刻に近いオゾン全量観測値を用いて補正を行った.

4.1.4. 地上オゾン観測

第38次隊より開始した地上オゾン観測を第40次隊も引き続き行った. 観測は地上付近の 大気に含まれる微量のオゾン濃度を,紫外線吸収方式のオゾン濃度計(Dylec, MODEL 1100)で12秒毎に行い,データはノート PC 内の HDD 及び MO に収録するとともに自記記 録した. 観測装置は放球棟横の旧水素ガス発生器室内に設置し(図1),大気取り入れ口は同 建物主風向側(北東側)地上から5mの高さに設置した. 地上オゾン観測の系統図を図9に 示す.

オゾン濃度計は3台で運用しており、昭和基地に現用器、予備器の2台、残りの1台は帰 国する隊が1年間観測に使用したものを持ち帰りオーバーホール後、再び次の隊が昭和基地

図9 地上オゾン濃度観測装置系統図

Fig. 9. Schematic diagram of surface ozone concentration measurement system.

检查口時	检守新则	格色相职	検定履歴	観測使用期間					
极是目时	1天足1重加	快起物加	101B 101A A16	6 101B	101A	A166			
1996/10/07	101B使用前検定	国立極地研究所							
1997/01/18	相互比較検定	昭和基地		1007/01/10					
1997/07/25	相互比較検定	昭和基地							
1997/10/14	A166使用前検定	国立極地研究所		1998/01/31					
1998/01/10	相互比較検定	昭和基地			1000/01/01				
1998/05/12	101B使用後検定	国立極地研究所			1998/01/31				
1998/10/12	101B使用前検定	国立極地研究所			1999/01/20				
1999/01/20	相互比較検定	昭和基地				1000 (01 (00			
1999/05/18	101A使用後検定	南極観測事務室				1999/01/20			
1999/07/21	相互比較検定	昭和基地				2000/01/31			
2000/01/08	相互比較検定	昭和基地				2000, 01, 01			
2000/07/04	A166使用後検定	南極観測事務室							
			:検定に関係したオゾン濃度計						
			:再計算に使用した検定						

表 11 オゾン濃度計検定及び観測使用履歴 Table 11. Official approval of ozone monitor and history of use for observation.

に持ち込む運用を行っている.詳細は表11による.第40次隊では,第38次隊が越冬中1年 間観測に使用し国内に持ち帰ったオゾン濃度計101Bをオーバーホールし,気象庁観測部南 極観測事務室及び国立極地研究所の検定装置(気相滴定法(GPT))により使用前検定を行っ た上で,昭和基地に持ち込み第40次隊観測予備器とした.第40次隊の観測には第39次隊が 持ち込み観測予備器としていたオゾン濃度計A166を使用した.

オゾン濃度計交換時及び越冬中半年毎に,現用器と予備器との相互比較検定を行い測器の 精度確認を行った.第40次隊で1年間使用したオゾン濃度計A166は日本に持ち帰り,気象 庁観測部南極観測事務室で使用後検定(同方法)を行い,検定結果を元に観測値の補正を 行った.また,第38次隊からの3年間のデータにより,データセレクションを見直した.詳 細については4.3.5節で述べる.

4.2. 観測経過

4.2.1. オゾン全量観測

越冬期間を通じて大きなトラブルもなく,順調に観測を行った.表12に,月別オゾン全量 観測及びオゾン反転観測日数を示す.また,観測に使用した光源の内訳も示す.4-8月は太陽 高度角が低いため観測可能日数が少ない.5-7月は極夜期のため月光による観測のみを行っ たが,観測に必要な光の強度は満月に近い月齢の時にしか得られないため,晴天が続いても 観測可能な日数は月に1週間程度しかない.

4.2.2. オゾン反転観測

第35次観測隊より測器が自動化になり、より効率的にデータを取得できるようになった. 第40次隊でも平年並の観測データを取得する事ができた.太陽高度角が低い、又は太陽が昇 らない 4-8 月及び太陽が沈まない 12 月は、データ処理に必要なデータセットが得られない ため観測日数が少ない.

4.2.3. オゾンゾンデ観測

the Dobson spectrometer at Syowa Station. 1999 2000 合計 9月 10月 11月 12月 2月 3月 4月 5月 6月 7月 8月 1月 全量観測日数 229 28 30 20 23 24 15 13 2527直射光 AD 15 20 23 29 27 16 17 5 152 " CD 1 6 4 11 内訳 天頂光 AD 7 6 3 6 5 1 37 " CD 1 6 5 12 月光 2 17 4 反転観測日数 60 12 4 1 9 10 14 2 1 内訳
ロング 10 1 1 5 9 1 13 40 ショート 3 9 8 20

表 12 月別オゾン全量観測およびオゾン反転観測日数 Table1 12. Observation days of total ozone observations and ozone Umkehr observations with

第40次観測隊では,定常気象観測用のオゾンゾンデを54台,ILAS検証用を24台,計78 台を持ち込んだ.78台のうち2台は,飛揚前の点検において不良箇所が見つかり国内へ持ち 帰った.結果として第40次観測隊では,76台を飛揚した.ILAS検証用オゾンゾンデは,第 38次観測隊で衛星(ADEOS)が故障したため,基礎データの取得として1999年5-8月まで の期間で,3日に1回飛揚した.

飛揚状況を表 13 に示す. このうち 4 回はオゾン計測部のポンプ停止及び反応管内での気 泡詰まりが原因と思われるオゾン反応管の反応不良によりデータが取得できなかった. ま た,ドブソン分光光度計のオゾン全量値による補正係数(ドブソン比)が得られなかった観 測が 35 回あった. このうち 26 回(ILAS 検証用 24 回)は,極夜期のため月光によるオゾン 全量観測もできなかったものであり,残りはオゾンゾンデ観測最終高度が 30 hPa に達しな かったものである.

4.2.4. 地上オゾン観測

1999年1月20日,第39次隊現用器(101A)と予備器(166A)及び第40次隊持ち込みの オゾン濃度計(101B)の相互比較検定を行い測器の精度確認を行うとともに,第39次隊予備

	年	1999											
	月		2月		3月		4月		5月		6月		7月
日	到達	3	5.5	3	53.3 *1	7	*3	5	8.0 *2	3	110.4 *1	2	6.2 *2
気	気圧 (hPa)	11	4.5	10	13.0	19	13.4	10	13.6 *2	6	*2,3	4	7.4 *2
	(111 a)	18	5.5	18	6.1	23	3.1	13	18.2 *2	9	362.4 *1,2	6	4.5 *2
		26	4.1	26	9.2	30	14.8 *2	16	7.7 *2	13	5.1 *2	9	22.3 *2
				31	*3			19	8.3 *2	16	6.0 *2	12	5.0 *2
								22	6.3 *2	18	17.8 *2	15	12.6 *2
								25	62.7 *1,2	21	10.7 *2	18	8.1 *2
								28	9.5 *2	27	5.5	21	6.9
								31	8.6 *2	29	18.2	24	6.0 *2
												28	27.0
												31	6.3
	年	1999										2000	
	月		8月		9月		10月		11月		12月		1月
B	到達 気圧 (hPa)	4	5.2 *2	2	10.5	4	6.9	6	*3	2	4.7	6	5.3
		7	6.3 *2	4	8.0	9	5.8	10	6.2	9	7.6	14	5.4
		11	6.9 *2	8	13.4	13	10.2	17	4.0	15	4.9	19	4.8
		14	4.9 *2	12	12.2	20	4.7	25	19.3	22	6.3	26	*3
		18	10.8 *2	16	8.3	27	13.9			29	5.4		
		21	15.5	19	14.6								
		25	8.0	25	10.8								
		28	10.2	29	21.2								

表 13 オゾンゾンデ観測回数 Table 13. Number of ozonesonde observations.

*1:気球破裂・オゾン反応不良などにより最終高度が30hPaに達せず,ドブソン比(補正係数)なし。

*2:極夜期で月光によるオゾン全量観測ができなかったため、ドブソン比なし。

*3:オゾン反応不良などによりデータ取得できず。

5月10日~7月18日まではILAS検証報告をおこなった観測

器を現用器,第40次隊持ち込みのオゾン濃度計を予備器として観測を開始した.越冬中 1999年7月21日に第40次隊現用器(166A)と予備器(101B),越冬交替時2000年1月8日 には第40次隊現用器(166A)と予備器(101B)及び第41次隊持ち込みのオゾン濃度計(101A) の相互比較検定を行い測器の精度確認を行った.その後,2月1日の越冬交代時に第40次隊 予備器を第41次隊現用器,第41次隊持ち込みのオゾン濃度計を第41次隊予備器とした.第 40次隊が1年間観測に使用したオゾン濃度計(166A)は国内に持ち帰り,気象庁観測部南極 観測事務室で使用後検定を行った.

ブリザード時に大気取り入れ口が雪詰まりして,大気サンプル流量が落ちることがあった 他は,1年間を通して概ね順調に観測を行うことができた.

4.3. 観測結果

4.3.1. オゾン全量観測

図 10 に 1999 年 1 月~2000 年 1 月のオゾン全量観測結果を示す. 日代表値オゾン全量 (〇) は、8 月下旬から 11 月中旬までオゾンホールの目安となる 220 m atm-cm を継続して下 回った. 11 月下旬から 12 月中旬にかけて、極渦の変動に伴ってオゾン全量は大きく変動し、 220 m atm-cm 前後の値で推移した. 12 月 25 日には、過去最も遅い 220 m atm-cm を観測し た. また、11、12 月には、観測開始以来その月としての最小値を観測した. これは、昭和基 地上空のオゾンホールが例年より長い間存在していたことによるものと考えられる. これに ついてはさらに第 10 章において、詳しく考察する.

Fig. 10. Annual variations in total ozone at Syowa Station (Jan. 1999–Jan. 2000).

図 11 反転観測による気層別オゾン量(1999 年 1 月~2000 年 1 月) Fig. 11. Layer amount of ozone by Umkehr observations (Jan. 1999–Jan. 2000).

4.3.2. オゾン反転観測

図 11 にオゾン反転観測による層別オゾン量の高度分布を示す. 1999 年 4-8 月はロング反 転観測データが得られなかったため表示していない. 1999 年 1-3 月及び 2000 年 1 月中旬以 降に,通常オゾン層のピークが見られる第 4 層(63.3-31.7 hPa)に同様なピークが見られる (2/3, 2/4, 2/8 は第 3 層(12.6-63.3 hPa)にピークが見られる). 9-11 月上旬は第 3, 4 層を 中心に大きく減少しており,第 39 次観測隊の観測結果より減少期間が長くなっている. その ため, 9-11 月上旬におけるオゾン層のピークは第 5 層(31.7-15.8 hPa),第 6 層(15.8-7.9 hPa)となっている. 第 3,4 層が通常の状態へ回復したのは,2000 年 1 月中旬以降であった. これらの結果は、オゾンゾンデによる観測結果とほぼ一致している.

4.3.3. オゾンゾンデ観測

図 12 に,1999 年 1 月~2000 年 1 月のオゾン分圧(mPa)の時間高度断面を示す.8 月以降, オゾンホールの影響を受けて 100 hPa (高度 15 km)付近のオゾン分圧は大幅に減少した.ま た,9-12 月にかけてオゾン分圧が 3 mPa 以下の極小域が現れている.10 月には 100-45 hPa

図 12 オゾンゾンデ観測によるオゾン分圧時別高度断面図(1999 年 1 月~2000 年 1 月) Fig. 12. Time-height cross section of ozone partial pressure (mPa) by ozonesonde observations (Jan. 1999–Jan. 2000).

(高度 15-20 km)の高度域でオゾンがほとんど完全になくなった状態が観測された. オゾン 分圧は 11 月以降,上層より回復し始め,オゾンホールは解消に向かったが,12 月においても 100 hPa(高度 15 km)付近を中心としてオゾン分圧が 3 mPa以下の領域が継続して現れてい る. オゾンホールについては第 10 章において,詳しく考察する.

4.3.4. 衛星搭載の TOMS データによる考察

図 13 にアースプローブ衛星搭載 TOMS (Total Ozone Mapping Spectrometer) による 1999 年 9-12 月の月平均オゾン全量の南半球分布を示す. なお,この図は気象庁オゾン層情報セン ターが TOMS のデータを基に作成したものである.

9-10月には 220 m atm-cm 以下の領域は,東経 45 度付近から東経 180 度付近の南極大陸 縁辺部を除く大陸の大部分を覆い,10月の南極点付近には 130 m atm-cm 以下の領域も見ら れる. その後オゾンホールは縮小へ向かい,11月には 220 m atm-cm 以下の領域は 9月及び 10月に比べて大幅に減少している.12月の月平均分布図では 220 m atm-cm 以下の領域は見 えなくなったが,250 m atm-cm 以下の極小域は東経 40 度南緯 70 度付近(昭和基地付近)に 移動している.(気象庁,1999)

4.3.5. 地上オゾン観測

第40次隊では、データセレクションを見直すとともに、第38次隊から観測された地上オ ゾン濃度データの再計算を行った.

図 13 TOMS による月平均オゾン全量の南半球分布図(1999 年 9-12 月) Fig. 13. Distribution of monthly means of total ozone over the Southern Hemisphere by TOMS (Sep. 1999-Dec. 1999).

(1) 観測データの再計算の必要性とその方法

オゾン濃度計は、感部出力値と濃度値との関係が測定範囲においてはリニアであるため、 出力値と濃度値との関係を示す直線の傾き(スパン値)と切片(ゼロ値)で値付けされてい る.スパン値とゼロ値は使用前検定時に値付けされるが、オゾン濃度計に使用している紫外 線ランプの経年変化等によりそれらの値は一定ではない.そのため使用後検定時に再び値付 けを行い、最終的に観測期間中の地上オゾン濃度値は、使用前後の検定期間内で時間按分し たスパン値とゼロ値を元に、出力値から再計算されることになる.

本来ならば再計算は使用前及び使用後検定の値を元に行われるべきである.しかし,第38 次隊から第40次隊まで各隊がオゾン濃度計を値付けするために使用した前後検定の検定装 置が異なり(表11),この結果を元に観測値の再計算を行うと,オゾン濃度計交換時前後で地 上オゾン濃度観測値の差が大きく整合がとり難い.そのために,第40次隊持ち帰り検定及び 昭和基地でオゾン濃度計交換時に行った相互比較検定を元に,第38次隊からの観測データ の再計算を行った.

再計算に使用した検定は表 11 で示すように,1998 年 1 月,1999 年 1 月,2000 年 1 月の相 互比較検定及び 2000 年 7 月に行われた使用後検定である.再計算の順序としては,まずオゾ ン濃度計 A166 の使用後検定によりスパン値,ゼロ値を決め,オゾン濃度計 A166 のデータ

202

を再計算する. その後, オゾン濃度計 A166 を基準として各相互比較検定でオゾン濃度計 101 A 及び 101B の値付けを行った. オゾン濃度計 101A は, 観測期間を挟み込む 1998 年 1 月, 1999 年 1 月に行ったオゾン濃度計 A166 との相互比較検定で,使用前後のスパン値,ゼロ値 の値付けを行い,観測期間中の観測データは前後のスパン値,ゼロ値を時間按分して再計算 を行った. また,オゾン濃度計 101B については,観測使用前にオゾン濃度計 A166 と相互比 較検定を行っていないため,観測使用後の 1998 年 1 月に行った相互比較検定でスパン値,ゼ ロ値を決め,その値のみ使用して再計算を行った.

(2) データセレクションの見直し

地上オゾンデータの時間平均値(以下,時別値)や月平均値(以下,月別値)を生データ (12 秒値)から計算する場合,そのまま計算すると汚染されたデータ等が含まれ,バックグラ ウンドデータとはいえない.そこで,汚染されたデータを除去するため,時別値や月別値を 求める時は何らかの方法でデータにフィルターを掛ける必要がある.その方法は,時別値を 求める場合には,一般的に1時間分の生データ(12 秒値)の標準偏差閾値を用いて判別を 行っている.ここで標準偏差閾値というのは,その標準偏差以下の全てを含むことである (例えば,時別値標準偏差閾値が0.3 ppbvの場合,時別値標準偏差が0.3 ppbv以下の時別値を バックグラウンドデータして採用し,その採用された時別値から月別値などを計算する).こ の標準偏差の閾値は,地域特性などから,観測所毎に決められている.昭和基地では観測 データが蓄積されデータセレクションが決定できるようになるまでは,大気環境基準観測所 である南鳥島の,生データ(12 秒値)が1時間観測回数の半分(150 個)以上あり,かつ標 準偏差閾値が1.5 ppbvを使用していた.

今回は、汚染されていない大気中の地上オゾン濃度分布は正規分布に従う事を元にして、 時別値を求める場合の標準偏差閾値を見直した.方法として、最初に全ての時別値について 1時間内の生データについて正規分布への適合度検定を有意水準5%で行い、合格した時別 値から月別値を計算する.次に、時別値標準偏差閾値を0.1 ppbv づつ換えて月別値を計算し、 先ほど求めた月別値に近い値となる時別値標準偏差閾値を求めた.使用したデータは第38 次隊が観測を開始した1997年2月から、40次隊観測終了の2000年1月までの3年分のデー タである.正規分布検定の条件として、ある程度データ数がないと適正な検定が出来ないた め、時別値の生データ(12秒値)数が全データ(12×60=300個)の半分(150個)以上ある 場合とした.

まず標準偏差毎に、その標準偏差に適合する時別値の中で正規分布検定に合格した時別値 の割合及び、その標準偏差に適合する時別値の時別値総数に対する割合を調べてみた.図14 に0.1 ppbv から1.5 ppbv までの各標準偏差毎に正規分布検定に合格した時別値の割合と、各 標準偏差毎の時別値数の時別値総数に対する割合を示す.この図を見ると、標準偏差が大き くなるに従い、各標準偏差において正規分布検定に合格した時別値の割合が低くなるととも に、時別値総数に対する割合も減っているのが分かる.

次に、時別値標準偏差毎の観測生データ1時間毎の分布を詳細に調べるために、データ分 布の対称性を調べた.方法として、時別値標準偏差が0.1 ppbv から1.5 ppbv までのデータに おいて、1時間毎に1時間平均と生データの偏差の2 乗を計算し、1時間平均値からの正負を

Standard deviation (ppbv)

- 図14 正規分布検定に適合した地上オゾン濃度時別値の割合及び時別値総数に対する割合 −△-: 各標準偏差において正規分布検定に合格した割合 −○-: 各標準偏差に適合する時別値の時別値総数に対する割合
- Fig. 14. Ratio of hourly mean surface ozone concentration which fits a normal distribution, and ratio to all hourly mean surface ozone concentration.

 $-\triangle$ -: Ratio of hourly mean surface ozone concentration which fit a normal distribution.

 $-\bigcirc$ -: Ratio to all hourly mean surface ozone concentration.

図15 時別値データの対称性 Fig. 15. Symmetry of data for hourly means.

204

区別して積算を求めた.その後,3年間の平均を取るため,時別値を3年分各標準偏差毎に積 算後,それぞれの3年分の総数で割った.その結果を図15に示す.この計算を行うことによ り,生データの分布が時間平均値から正・負のいずれかに偏っている事が分かる.濃度の分 布が正規分布に従うような場合は,この値はゼロに近くなる.図を見ると,標準偏差が0.3 ppbvより大きい場合は,標準偏差が大きくなるに従い時間平均値より負の偏差となり対称 でなくなっている.このようなことから,地上オゾン濃度は標準偏差が大きくなる,すなわ ち汚染が大きくなるような場合にはオゾン濃度分布の対称性がマイナスの方に崩れ,正規分 布に従わないものが多くなる.このことは,地上オゾン濃度は汚染されると分解され、その 時の時別値は汚染されていないものより濃度値が低くなるためと考えられる.

そこで、汚染された場合に、どの程度正規分布に合格した時別値から計算した月別値より 低い値になるのかを見積もってみた.地上オゾン濃度は季節変化しているため、3年間各月 (1-12月まで)毎に偏差の計算を行い、3年間の平均を求めた.図16に0.1ppbvから1.5ppbv までの標準偏差閾値毎及び各標準偏差毎に計算した月別値と、正規分布検定に合格した時別 値から計算した月別値との偏差を示す.この図をみると、標準偏差が大きくなるに従い、標 準偏差毎に計算した月別値と、正規分布に合格したものから求めた月別値との偏差が、負の 方向に大きくなっている.このことは、従来使用していた標準偏差閾値1.5ppbvでは、正規

A: 正規分布検定に合格した時別値から計算した月別値 B: 各標準偏差閾値から計算した月別値 C: 各標準偏差毎の時別値から計算した月別値

Fig. 16. Deviations of monthly means.

A: The monthly mean calculated by the hourly mean which fit a normal distribution.

- B: The monthly mean calculated by the hourly mean which fit a each standard deviation therehole value.
- C: The monthly mean calculated by the hourly mean for each standard deviation.

分布に従うものより低い,かなり汚染された時別値を含んで(標準偏差 1.5 で-1.3 ppbv 程 度)いたことになる.しかし,標準偏差が大きくなるに従い,図 14 にも示したようにデータ 数の割合が小さくなるので,実際に標準偏差閾値を 1.5 ppbv とした場合にはそれらは平均さ れ,影響としては正規分布に従うものから求めたものより 0.3 ppbv 程度低くなる.

以上のことから、1時間当たりのオゾン濃度の対称性を示す図 15,及び標準偏差閾値を 0.1 ppbv から 1.5 ppbv まで変化させ月別値を比較した図 16 より、適正な標準偏差閾値は 0.3 ppbv である.

(3) データセレクションの見直しによる再計算の結果

図17に新しく見直した時別値標準偏差閾値で計算した月別値,及び従来のデータセレク ションで求めた月別値及びその偏差を,図18には新しいデータセレクションで求めた時別 値を示している.これを見ると昭和基地における地上オゾン濃度は,夏期にオゾン濃度が小 さく,冬期に大きくなるという季節変化を繰返し,極夜明けから春期にかけての変動が大き いことが分かる.データセレクションを見直したことで,月により変動はあるが,月別値が 平均して 0.2 ppbv 程度高くなった.特に,冬季から春季にかけての差が大きくなっている.

□ : データセレクションによる偏差

Fig. 17. Time series of monthly means with new and old data selection, and those deviation (Feb. 1997–Jan. 2000).

- $\times -:$ Old data selection.
- $-\bigcirc$ -: New data selection.
 - : The deviation by the data selection.

図 18 地上オゾン時別値(1997 年 2 月~2000 年 1 月) Fig. 18. Hourly means of surface ozone concentration (Feb. 1997–Jan. 2000).

今回第38次隊からの3年分の観測データを元に,正規分布検定を用いてデータセレク ションの見直しを行ったが,今後のデータ蓄積に伴い,数年後に再びこの値を再検証する必 要がある.また,オゾン濃度計が更新された場合にも,同様に再検証する必要がある. (4) 春期の地上オゾンの低濃度現象

南極・北極の高緯度地域では、極夜が明けた春期に地上付近のオゾンが大気中の海塩粒子 や、積雪・海氷中の海塩成分から放出された海塩起源の物質と反応することにより、オゾン が分解され濃度が減少し、ほとんどゼロになる現象があることが知られている(青木, 1997; 江崎ら, 1998). この現象は、第40次隊でも第38, 39次隊同様にこのような現象を観測した. 地上オゾン破壊時の状況をみるために、図19に第38-40次隊で観測された極夜が明けた春 期(8,9月)の地上オゾン濃度データと、その時の地上気温及び上空(700hPa, 850hPa)と 地上の風の南北成分(南向きが正)を示す. この図を見て分かるように、第40次隊ではオゾ ン破壊現象は観測されたものの、第38次隊の時のように地上オゾン濃度が完全にゼロに近 い値とはならず、第39次隊と同じように何回かに分けて地上オゾン濃度が低い状態があっ たことが分かる. また、地上オゾン濃度が低くなる時は、上空(700hPa, 850hPa)と地上風 の南北成分が負(北風)となり、地上気温も上昇している. このことはオゾン濃度の低い気 団が南極大陸の内陸部ではなく、暖かい北の方から運ばれたものであることを示唆してい る.

5. 地上日射·放射観測

5.1. 観測方法と測器

地上日射放射観測は全球ベースライン地上日射放射観測網 BSRN (Baseline Surface Radia-

図 19 地上オゾン急減現象時の気象データ(地上気温,地上,850 hPa,700 hPa 風の南北成分) Fig. 19. Meteorological data during a sudden decrease in surface ozone concentration (surface air temperature, and north-south component wind on surface, 850 hPa and 700 hPa).

tion Network)の観測点としての条件を満たすために,第 39 次隊で新たに上向き反射放射観 測を開始(岸ら,2002)したのに続き,第 40 次隊では従来から観測していた下向きの直達日 射,全天日射,散乱日射,紫外域日射,赤外放射の各要素について,データのサンプリング を従来の5 秒から毎秒に変更して観測を行った.これらのデータは,基地内 LAN を利用し て一括処理できるようになった.また,波長別紫外域日射観測,大気混濁度観測については, 従来の観測システムで引き続き観測を行った.

観測の種類と使用した測器を表 14 に示す.

5.1.1. 下向き日射放射観測

データのサンプリングを従来の5秒から毎秒に変更し、気象棟前室屋上に設置した測器からの感部出力をデータロガーで収集後処理した.

新システムは従来のシステムと比較して,

①サンプリング間隔が5秒から1秒に短縮された.

②収録したデータは基地内 LAN を介して翌日にはデータ処理用のパソコンに移し、グラ

		-	-			-		
	観測項目	使用測器	感部型式	測定 範囲		測器番号	観測 最小単位	サンプリング 間隔
下向き 放射	全天日射量	精密全天日射計 (器温センサー付)	KIPP&ZONEN CM21T	305-2800	nm	980520	0.01 MJ/m ²	1秒
	直達日射量 (大気混濁度)	直達日射計 (器温センサー付) 太陽追尾装置	EKO MS-53F	300-2800	nm	P92009	0.01 kW/m ²	1秒
	散乱日射量	精密全天日射計 太陽追尾装置 遮蔽ディスク	EKO MS-801	300-2800	nm	F95046	0.01 MJ/m2	1秒
	B領域紫外線量	紫外域日射計	EKO MS-210W	280-315	nm	S90091.02	0.01 MJ/m2	1秒
	長波長放射量	精密赤外放射計 (ドーム温度付, 器温センサー付)	EPPLEY PIR	4-50	μ m	30431F3	0.01 MJ/m2	1秒
上向き 放射	反射量	精密全天日射計 遮蔽バンド	KIPP&ZONEN CM21	305-2800	nm	970397	0.01 MJ/m2	1秒
	長波長放射量	精密赤外放射計 (ドーム温度, 器温センサー付)	EPPLEY PIR	4-50	μm	32032F3	0.01 MJ/m2	1秒
その他	大気混濁度	大気混濁度 サンフォトメータ	EKO MS-110	368 500 675 778 862 938	nm	ES94121.02		1分
		太陽 坦甩 安直		368 500 675 778 862	nm	S97133.01		
	波長別 紫外域日射量	ブリューワ 分光光度計	SC1-TEC BREWER	290-325		#034	0.01 kJ/m ²	1時間

表14 地上日射・放射観測の種類と使用測器 Table 14. Instruments for surface radiation observations at Syowa Station.

フ表示により各要素の1秒値の品質管理ができる.

- ③データ処理用のパソコンでは、品質管理済みの1秒値から各要素の統計処理及び合成を 行うことができる.
- ④ データロガーは高性能,多チャンネル化され拡張性に優れる.
- などの特徴がある.

観測項目は以下の通り.

(1) 全天日射量

器温センサー付精密全天日射計を用いた.

(2) 直達日射量

器温センサー付直達日射計を用いた.感部は太陽追尾装置(INTRA)に搭載した.

また,オゾン全量観測時刻で,太陽面に雲がかかっていない時を選び,ホイスナー・デュ ボアの混濁係数を求めた.

(3) 散乱日射量

太陽追尾装置(INTRA)に搭載した精密全天日射計により観測した. 遮蔽ディスクは, 直 達日射計の開口角と同等の視直径を持ち,太陽追尾装置に連動して,太陽からの直射光を遮 るように設定されている.

(4) B 領域紫外線量

全天型紫外域日射計を用いて B 領域紫外線全量を観測した.測器定数は,ブリューワ分光 光度計による UV-B 量観測値との比較により月毎に求めた.

- (5) 長波長放射量
 - ドーム温度,器温センサー付の精密赤外放射計により観測した.
- 5.1.2. 上向き反射放射観測

海氷上に設置した観測鉄塔のアームに測器を取り付けた(図1). データは下向き放射同様,1秒毎にデータロガーで収集した後に処理した.

周辺からの散乱光を除去するために,感部の周囲に遮蔽バンドを取り付けて観測を行った.

(1) 反射日射量

精密全天日射計により観測した.

(2) 長波長放射観測

ドーム温度,器温センサー付の精密赤外放射計により観測した.

5.1.3. 波長別紫外域日射観測

ブリューワ分光光度計(SCI-TEC #034)を使用して,波長別(290-325 nm で 0.5 nm 刻み) 紫外線量を紫外域日射観測指針(気象庁,1993b)に基づき毎正時(24 LT を除く)に観測を 実施した.測器は,第 39 次隊まで設置されていた気象棟前室屋上に設置した.

210

5.1.4. 大気混濁観測

波長別直達光強度(368, 500, 675, 778, 862, 938 nm の 6 波長)を毎分データに収録し、 オゾン全量観測時刻で太陽面に雲が無い時を選び,波長別のエアロゾルの光学的厚さ(Aerosol Optical Depth,以下 AOD)を求めた. また, 368-862 nm の 5 波長の AOD より,オング ストロームの波長指数(Angstrom A)及び混濁係数(Angstrom B)を求めた.

5.2. 観測経過

5.2.1. 下向き日射放射観測

毎秒サンプリングへ切り替え、1999年2月5日からデータ収録を開始した.

旧システムでは、太陽追尾装置(INTRA)に搭載した全天日射計(散乱日射量観測用)の 出力信号にノイズが多かったため、第 39 次隊で信号経路の変更等の対策を施していた.しか し、毎秒サンプリングの開始に伴い、再び同様のノイズが発生することが多くなり、同時に、 太陽追尾装置搭載の直達日射計及び追尾装置に搭載していない全天日射計の出力にもノイズ が乗るようになった.

データロガー入力端子への高周波フィルターの実装,信号線の敷設経路の変更等により/ イズの除去を試みたが,第40次隊の越冬中には原因の特定には至らず,ノイズを完全に除去 するまでには至らなかった.また,精密赤外放射計の出力にも大きなノイズが時々乗ってい たが,3月13日に信号線の接続を変更することによって解消した.これらノイズの乗った データは,処理の段階で削除した.

1999年5月2日のブリザード来襲時に飛来物が太陽追尾装置(INTRA)に衝突した事で 追尾動作が異常となった.それ以降は太陽位置を自動的に追尾するサンセンサーが動作して いる場合は問題ないが,太陽面に上層の薄い雲がかかった場合など,サンセンサーが動作し ないような時にスポットが外れることがしばしばあった.地上気象観測装置の直達日射計の データとの比較により,追尾動作に異常があったと思われる時間帯は,直達日射量及び散乱 日射量のデータを削除した.

太陽追尾装置(INTRA)ファームウェアの 2000 年対応(Y2K)のため, 1999 年 12 月に太 陽追尾装置(INTRA)の ROM の書き換え作業を実施したが,装置と制御用パソコンとの通 信に障害が発生し, 12 月 30 日~1 月 12 日の間,追尾装置に搭載した直達日射計,散乱日射 計及びサンフォトメーターのデータに欠測を生じた.

5.2.2. 上向き反射放射観測

第39次隊から引継ぎ、概ね順調に観測を継続した.

5.2.3. 波長別紫外域日射観測

第39次隊まで使用していたブリューワ分光光度計(SCI-TEC #91)が故障により,国内 持ち帰り修理となったため,第40次隊でブリューワ分光光度計(SCI-TEC #034)を持ち込 んだ. 第 39 次隊まで設置されていた気象棟前室屋上に設置,調整を行い,1999 年 2 月 15 日 より観測を開始した. 観測は,おおむね順調に経過した.

ブリザード等の強風時には,測器保護ため受光部に保護具を取り付け,観測を中断した. 測器の光学系全体の波長感度を監視するための外部ランプ点検を,原則として週1回実施した. 波長別感度は,年間を通じて大きな変化はなく安定していた.

5.2.4. 大気混濁度観測

サンフォトメーターによる波長別大気混濁度観測では,第39次が使用していた測器に不 具合が発生したため,1999年1月13日に現用の測器と交換した.

1999年5月2日のブリザード来襲時, 飛来物衝突による衝撃で測器内の2つあるヒーターの1つが故障したため, 測器の内部温度が外気温に影響されるようになり, 設定温度(25℃)よりかなり低くなったが, AODを求める際には温度補正を施しているので実質的な影響はない.

また,サンフォトメーターは太陽追尾装置(INTRA)に設置されていたため太陽追尾異常 (5.2.1.)の問題もあり,データの取り扱いについてはサンセンサーが動作している時のみと した.太陽が出ない,または太陽高度角が低い5月31日~7月13日は,サンフォトメーター を屋内に収容し観測を休止した.

12月上旬から、サンフォトメーター収録用パソコンのハードディスクから異音が発生した ため、12月12日に収録用パソコンを交換した.この作業の間、欠測が生じた.

さらに,太陽追尾装置(INTRA)の2000年対応(Y2K, 5.2.1.)のため,12月30日~1月 12日の間は欠測となった.

5.3. 観測結果

5.3.1. 下向き日射放射観測

図 20 に下向き日射・放射量日積算値の年変化を示す.

図 21 は、全天型紫外域日射計及びブリューワ分光光度計による UV-B 日積算値の年変化である.

全天型紫外域日射計については、測器感度の波長依存性や、波長に依存した測器感度の経 時変化が指摘されている(宮本ら、1996;柴田ら、2000).このため第40次隊では、全天型紫 外域日射計の測器定数算出には、柴田ら(2000)の用いた、全天型紫外域日射計出力電圧の 日積算値とブリューワ分光光度計による日積算 UV-B 量との直線回帰により、月毎の換算係 数を求める手法を採用した.両測器による UV-B 日積算値の差は-4.68-+2.93 kJ/m²で、日 積算値が 7kJ/m²以上の時には、概ね 10%以内であった.従来、全天型紫外域日射計の測器 定数算出には、1 年間(または越冬前・後期各期間)のブリューワ分光光度計による観測値と の比較により求めていた.定数の算出は、太陽高度角 25°以上の毎正時のブリューワ分光光

図 20 下向き日射・放射量日積算値の年変化(1999 年 1 月~2000 年 1 月) Fig. 20. Annual variations in daily integrated values of downward radiation components (Jan. 1999–Jan. 2000).

度計による UV-B 観測値と,当該時刻の全天型紫外域日射計出力の平均値(正時を挟む9分間の平均)との関係を,2次式で近似する方法である.従来方式の測器定数により計算した全 天型紫外域日射計による UV-B 観測値と,新方式による観測値との比較を図22に示す.横軸 は日付,縦軸はブリューワ分光光度計による UV-B 日積算値に対する全天型紫外域日射計に よる観測値の比である.前述のとおり,柴田らの方式による観測値は,ブリューワ分光光度 計による観測値に対して概ね±10%の範囲に分布し,1年間を通してほぼ一定に経過してい る.これに対し,従来方式によって算出した観測値は明らかに季節変化を示しており,ブ リューワ分光光度計による観測値に対し,±15%程度の間で変動している.このことから, 月別の換算係数を用いることは、全天型紫外域日射計の観測値を校正する上で有効であるこ とが分かる.従来方式の換算によって求めた観測値を使用する際には,注意が必要である.

図 21 B 領域紫外域日射日積算値の年変化(1999年1月~2000年1月) Fig. 21. Annual variations in daily integrated values for UV-B (Jan. 1999–Jan. 2000).

Fig. 22. Annual variations in the ratio of daily integrated UV-B (Feb. 1999-Jan. 2000).

5.3.2. 上向き反射放射観測

図 23 に上向き反射・放射量日積算値の年変化を示す.

上向き反射・放射の測器感部設置場所は通年積雪に覆われているため、長波放射の日積算 値は、季節変化が小さく、日々のばらつきは、接地逆転の強さの変化が大きい冬期間に大き くなっている.

図 23 上向き反射・放射量日積算値の年変化(1999年1月~2000年1月) Fig. 23. Annual variations in daily integrated values of surface upward radiation components (Jan. 1999–Jan. 2000).

Month (Jan. 1999 - Jan. 2000)

図 24 短波,長波及び全波長の正味放射量日積算値の年変化(1999年1月~2000年1月)
 Fig. 24. Annual variations in daily integrated net radiation of short wavelengths, long wavelengths, and all wavelengths (Jan. 1999–Jan. 2000).

図 24 は短波,長波及び全波長の正味放射量日積算値の年変化である.

長波の放射量は、年間を通じて上向きが卓越し、正味放射量(×)はほとんど負値となっている.全波長の正味放射量(□)は、短波の日射・反射量が小さい冬期間は長波の放射収支に依存し、短波が大きくなる夏場には、短波による収支(△)を強く反映している.

第40次隊では、下向き日射・放射の観測データにノイズが乗ることが多く、日積算値が欠

測となる日が多かった.ノイズ対策が進み,年間を通して良好なデータが取得できるように なれば,放射収支に関する精密なデータを蓄積していくことができると考える.

5.3.3. 波長別紫外域日射観測

図 25 に波長 5 nm 毎に積算したブリューワ分光光度計による紫外域日射量を示す. オゾン による吸収をほとんど受けない UV-A 領域に近い 310-315 nm の日積算値は,太陽高度角の 増減に従いながら推移し夏至付近で最大値を観測している.一方,波長が短くなるにつれて オゾンによる吸収の影響で変動は大きくなっている.中でも 290-300 nm の波長帯では 11 月 中旬に極大値となっている.これは太陽高度が十分高い条件の中で昭和基地がオゾンホール の中に入る位置関係となったことが原因である.その後オゾンホールの解消に伴い,12 月中 旬から下旬にはこの波長帯の紫外線量は 1/10 程度となった.

図 26 にオゾン全量と紫外域日射計による UV-B 強度及び大気路程 μ の関係を示す. データは、大気路程 μ が1.5、2.5、3.5、4.5、5.5 のそれぞれ±0.03 の範囲にあり、全雲量が5割以下のものを使用した. オゾン全量の観測には通常3分弱かかるため、UV-B 強度にはオゾン全量観測時刻±1分の3分間のデータを平均して用いた. いずれの大気路程 μ についてもオゾン全量が減少するにつれ UV-B 強度は指数関数的に増加している. オゾン全量を 300 から 297 m atm-cm \sim 1%減少した場合、大気路程 μ が2.5 と 4.5 における B 領域紫外域日射強度はそれぞれ 1.7 と 2.3% 増加し、オゾン全量を 300 から 150 m atm-cm \sim 半減した場合には、 μ が2.5 と 4.5 における B 領域紫外域日射強度はそれぞれ、2.3 倍と 3.2 倍に増加するという結果になった. これは、これまでの第35次(稲川ら、1997)と第36次(佐藤ら、1999)及び第38次(江崎ら、2000)と比べると若干高い値となっているが、概ね一致する結果が得られた. オゾン全量及び成層圏気温と UV-B 強度の関係については第10章にて詳しく考察する.

図 25 紫外域日射波長積分日積算値(1999年1月~2000年1月) Fig. 25. Daily integrated ultraviolet radiation wavelength (Jan. 1999–Jan. 2000).

Fig. 26. Relations between total ozone and UV-B intensity (Feb. 1999-Jan. 2000).

5.3.4. 大気混濁度観測

大気混濁度は、直達日射計及びサンフォトメーターの観測により求められる. 直達日射計 で求められる直達日射量は全波長(通常は 300-4000 nm の範囲の積算値)成分を含むのに対 し、サンフォトメーターでは波長別(368, 500, 675, 778, 862, 938 nm の 6 波長)の直達光 強度を測定することにより、波長別のエアロゾルの光学的厚さ(AOD)を求めることができ る. 6 波長の中で 938 nm は大気中の水蒸気による吸収を受けるため、水蒸気の光学的厚さを 推定するための波長として利用されている. また、残り 5 波長(368-862 nm)の AOD から は、オングストロームの波長指数(Angstrom A)及び混濁係数(Angstrom B)が求められる. (1) サンフォトメーター観測におけるレーリー散乱係数の変更

太陽放射が地上に到達するまでに受ける減衰(光学的厚さ τ)は, Beer-Bouguer-Lambertの 法則に従い次の式により求められる.

$$\tau = (1/m) \cdot \ln \{ E_0/(E \cdot S) \}, \tag{1}$$

ここで, E_0 は測器常数,Eは出力値,Sは地球—太陽間の距離補正係数,mは大気路程である.

このτは主に次の3つの成分に分けられる.

東島圭志郎ら

したがって AOD は式(1)と(2)から

$$\tau_{\mathrm{M}} = (1/m) \cdot \ln \{ E_0/(E \cdot S) \} - (\tau_{\mathrm{R}} + \tau_0)$$
(3)

である.

オゾンの影響を受ける波長が 500 nm と 675 nm であるため、オゾンの吸収の光学的厚さ は、それぞれ、オゾン全量値を T_0 (atm-cm) として以下の式で計算される.

$$\tau_{\rm 0}(500\,{\rm nm}) = 0.0328 \cdot T_0$$

$$\tau_0(675\,\mathrm{nm}) = 0.0415 \cdot T_0 \tag{4}$$

レーリー散乱の光学的厚さは波長を λ (μ m),気圧をP (hPa) として次の式で計算される (Young, 1981).

 $\tau_{\rm R} = 0.00864 \cdot (P/1013.26) \cdot \lambda^{-(3.916 + 0.074 \cdot \lambda + 0.05/\lambda)}.$ (5)

従来の昭和基地の観測では、この式の中の定数 0.00864 を 0.00838 としてレーリー散乱の 光学的厚さを計算していたが、第 40 次隊より気象庁の大気バックグランド汚染観測と基準 を合わせるために式(5)を用いて計算することとした.

この定数の変更による影響をみるために,気圧 985.0 hPa (1999 年の昭和基地の平均海面 気圧)の場合のレーリー散乱の光学的厚を表 15 に示す.この表には,オゾン全量値 0.245 atm-cm (1999 年の昭和基地の平均オゾン全量)の場合の,オゾンの吸収の光学的厚さも合わ せて示してある.式(5)の定数を 0.00838 から 0.00864 に変更したことにより,レーリー散 乱の光学的厚さが大きくなっている.このため各波長で AOD が減少し,この影響は波長の 短いものほど大きい.昭和基地における各波長の AOD は通常 0.1 以下であるが,368 nm で 0.015 程度の影響を受けることになる.このため,過去のデータと比較する場合には十分注意 が必要である.

また、エアロゾルの光学的厚さの波長特性を示すオングストロームの波長指数(Angstrom A) と混濁係数(Angstrom B) にも影響が見られる.これらは、 τ_M (λ)を各波長 λ (μ m)における AOD の関数として次の式で近似する.

$$\tau_{\rm M}(\lambda) = \boldsymbol{B} \cdot \lambda^{-{\rm A}},\tag{6}$$

ここで、Aがオングストロームの波長指数(Angstrom A), Bが混濁係数(Angstrom B)で

Tuble	i.j. Opiicui	uepins of 1	<i>Cayleigh</i> sea	itering unu	02011e 00301	puon.	
波長 (nm)	係数	368	500	675	778	862	938
レーリー散乱による	0.00838	0.46910	0.13213	0.03917	0.02216	0.01471	0.01051
大気混濁度	0.00864	0.48366	0.13623	0.04038	0.02284	0.01517	0.01083
オゾンの吸収による 大気混濁度		0.00000	0.00804	0.01017	0.00000	0.00000	0.00000
平均気圧:	985	hPa					

表 15 レーリー散乱及びオゾン吸収の光学的厚さ Table 15. Optical depths of Rayleigh scattering and ozone absorption

平均ス圧: 965 lira 平均オゾン量: 245 m atm-cm

218

ある. この式より

$$\ln(\tau_{\rm M}(\lambda)) = -A \cdot \ln\lambda + \ln B, \tag{7}$$

が導かれる. このため、短波長側の AOD が長波長側より小さくなると、直線の傾きにあた るオングストロームの波長指数 (Angstrom A) は負となる. また、直線の切片にあたる混濁 係数 (Angstrom B) は波長 λ が 1 μ m のときの AOD であるが、観測範囲の波長では ln λ が負 の値であるため、短波長側の AOD が小さくなると大きくなる. 一例として 1998 年 2 月の計 算結果を図 27 に示す. レーリー散乱の計算式定数の変更によりオングストロームの波長指 数 (Angstrom A) は小さく、混濁係数 (Angstrom B) は大きくなっている.

これまで、オングストローム波長指数 (Angstrom A) が負のデータは削除していたが、第 40 次隊からレーリー散乱の計算式定数を 0.00864 で計算することとしたことに伴い、負の データも採用することにした. 今後は、さらにデータを蓄積して、オングストローム波長指 数 (Angstrom A) の適切な範囲を検討する必要がある.

(2) 1999年の観測結果

図 28 に直達日射量から求めたホイスナー・デュボアの混濁係数を,図 29 にはサンフォト メーターによる 6 波長(368, 500, 675, 778, 862, 938 nm)の各 AOD,及び 368-862 nmの 5 波長の AOD から求めたオングストロームの波長指数(Angstrom A)と混濁係数(Angstrom B)を示す.これらの図をみると,4月までは 368-862 nmの AOD は同じように推移し

- **図 27** レーリー散乱に使用する定数の違いによる、オングストローム波長指数(Angstrom A) と混濁係数(Angstrom B)の計算例(1998 年 2 月)
 - □: レーリー散乱に使用する定数が 0.00838 の時
 - ●: レーリー散乱に使用する定数が 0.00864 の時
- Fig. 27. Sample calculation of the angstrom wavelength index (Angstrom A) and turbidity coefficient (Angstrom B) via differences in constants used in Rayleigh scattering (Feb. 1998).

図28 直達日射計によるホイスナー・ディボアの混濁整数の年変化(1999 年 1 月~2000 年 1 月) Fig. 28. Annual variations in Feussner-Dubois's turbidity integers by pyrheliometer (Jan. 1999–Jan. 2000).

ているが、8 月以降は 368 nm の AOD の変動が大きくなっている.また、938 nm は大気中の 水蒸気の影響を受けるため、他の波長の推移とは異なり春と夏季に AOD が大きく、秋と冬 季は小さくなっている.直達日射量から求めたホイスナー・デュボアの混濁係数は、938 nm と同じように大気中の水蒸気の影響を受ける波長も含むため、春と夏季に大きく秋と冬季は 小さくなっている.

(3) 大気混濁度の経年変化

図 30 にはサンフォトメーターで大気混濁度の観測を開始した 1980 年からの各波長(368, 500, 675, 778, 862 nm)の AOD,及び 368-862 nmの5 波長の AOD から求めたオングストロームの波長指数(Angstrom A)と混濁係数(Angstrom B)の経年変化を示す.昭和基地では,従来レーリー散乱の計算式定数の値は 0.00838 を使用していたため,1999 年もこの定数を使用した.この図をみると 1980 年以降全球的に噴出物が拡散したとされる火山噴火(1982 年4月: エル・チチョン(17.20N, 93.12W),1991 年6月: ピナツボ(15.08N, 120.21E))の時に AOD は大きく増加し,その後数年かけて平年値に戻っている.なお,北半球で起きた火山噴火の影響が全球的に拡散するには,ある程度時間を要し,ピナツボ火山噴火の場合,その影響は 1991 年末時点では衛星観測(Herber *et al.*, 1996)から南緯 20 度程度までとされており,1991 年に昭和基地で観測された短波長での AOD のピークは,1991 年8月に起きたチリにあるハドソン火山噴火(45.54S, 72.58W)の影響とみられる.その後の 1992-1993 年にかけての AOD の増加は,ピナツボの全球的な拡散によるものと考えられる(金戸,1997).1999 年の値は,波長 368 nm で AOD が 8 月からここ数年の値より増加している他

第40次南極地域観測隊気象部門報告1999

図29 波長別エアロゾルの光学的厚さの年変化(1999年1月~2000年1月) Fig. 29. Annual variations in aerosol optical depth by wavelength (Jan. 1999–Jan. 2000).

は,ほぼ平年並みとなっている.なお,参考のために 1997 年以降,レーリー散乱の計算式定数に 0.00864 を使用した値も示してある.

図 31 には直達日射量から求めたホイスナー・デュボアの混濁係数の経年変化を示す. サ

Fig. 30. Time series of atmospheric turbidity above Syowa Station (1980–1999).

ンフォトメーターで観測した場合と同様, 1982, 1991年に全球的な火山噴火の影響を受けて おり,その後数年間かけて平年値に戻っていることが分かる.また,春から夏季にかけて増 加し,秋から冬季にかけて減少する季節変化をしていることが分かる.1999年の値は,ほぼ

図31 直達日射量から求めたホイスナー・デュボアの混濁係数の経年変化 (1980年2月~2000年1月) Fig. 31. Time series of Feussner-Dubois's turbidity coefficient by pyrheliometer (Feb. 1980-Jan. 2000).

平年並みであった.

6. 特殊ゾンデ観測

第40次隊より定常気象観測の特殊ゾンデ観測としてエアロゾルゾンデ観測を加え,気水 圏部門と共同で実施した.この観測は第38次隊から始まった気水圏系プロジェクト研究観 測の「南極大気・物質循環観測」で計画されて以降,飛揚までの作業手順やデータ処理の技 術的検討を行っていたものである.

6.1. 観測目的

成層圏オゾンは紫外域日射を吸収することにより成層圏の大気を暖め、大気循環や気温の 鉛直構造を作る熱源となっている. 冬期,極夜を迎える南極下部成層圏ではオゾンによる発 熱が無いために長波放射によって冷却し、著しい低温となる. この低温下において、硝酸 (HNO₃)や氷晶(H₂O)などを主成分とした極域成層圏雲(Polar Stratospheric Clouds;以下 PSCs と記す)が発現し、その関与によってオゾンが急速に破壊されると考えられている.

エアロゾルゾンデ観測の目的は,オゾンホールの重要な要因と考えられている PSCs の観 測を行うと共に,エアロゾル鉛直分布の季節変化を明らかにすることである.

6.2. 観測方法及び測器

エアロゾルゾンデ観測の器材を表16に示す.

(1) エアロゾルゾンデの構成

エアロゾルゾンデの構成図を図 32 に, OPC (Optical Particle Counter; 光散乱方式パーティ クルカウンタ)の概要を図 33 に示す.

観測に用いたエアロゾルゾンデは、粒子検出・計数・制御を行う OPC と、気象要素の感部・電波発信器であるレーウィンゾンデを連結したものであり、連結した状態のものをエア ロゾルゾンデと呼ぶ.両者の連結には長さ約 1.5 m の細い竹の棒を用いた.エアロゾルゾン デ内部からの空気漏洩による観測への汚染を防止するため、ゾンデの組立て後、発泡スチ ロール筐体の隙間をフィラメントテープで塞ぎ、連結に使用した紐や竹の要所もテープで コーティングした.

エアロゾルゾンデを飛揚するために 3000g ゴム気球に浮力錘浮力 6600g のヘリウムガス を充塡し, 概ね毎分 300m の上昇速度を得た.気球口管部には口管接続部品を取り付け,口 管部にかかる負担を軽減した.また,従来はゾンデの駆動電源として NiCd 充電池を使用し てきたが,充放電作業に時間を要することから,第40次隊からは取扱いが容易で軽量な Li 乾電池パックの使用に切り替え,約800g 軽量化できた.レーウィンゾンデの電源も OPC 内

	気象要素の感部	RS2-91型	高層気象観測用と同等,
	・電波発信器	レーウィンゾンデ	但し,要素切り替え周期は0.5秒
			ポンプ : アルミギアポンプ
		エマサンプリング	気圧変化に応じ吸込み容量をプログラム制御
		L) 92 / 929	サンプルエア流量:毎分約3000cm ³
			シースエア流量 : 毎分約500cm ³
			光源 : レーザーダイオード (波長810nm)
98型5ch	粒子計測部		散乱角 :前方散乱方式
(ADS-98-5N)	(Optical	粒子检出方式	検出素子:シリコンフォトダイオード
(100 00 01)	Particle	松山秋山万式	粒子は電圧のパルスとして検出され,
	Counter)		パルス数から粒子数を,
			パルス電圧から粒径を計測する
			5チャンネル並行計測
		粒子検出チャンネル	粒子半径>0.15μm(エイトケン核)
		(半径>0.15μm)	>0.25μm,>0.4μm,>0.6μm(大核)
			>1.8µm(巨大核)
			ヘリウムガス充填, 浮力錘浮力6600g
左 1	÷	天然ゴム製	ロ管部補強のため
X	办	3000g	合成樹脂製の口管接続部品を取付ける
			成層圏低温時は気球への油漬け処理を実施
星幼		ポリエステル製編紐	強風時は巻下器に替えることができるが,
דאנוו		50m	第40次隊では使用しなかった
パラシュート		不織布,大型	気球破裂後の降下時も可能な限り電波を受信する
取動	雪洲	NiCd充電池,	第1回目の飛揚のみNiCd充電池使用
网公主力:	£10	Li乾電池	第2回目以後Li乾電池パックを使用

表16 エアロゾルゾンデ観測器材 Table 16. Specifications of balloon-borne aerosol sondes.

図 33 OPC の概要図 Fig. 33. OPC (Optical Particle Counter) overview.

に搭載した電池から電圧調整して得ている. OPC とレーウィンゾンデは相互に信号ケーブ ルで接続し, OPC は粒子計数データ,ポンプ流量などのコンディションデータと共に,レー ウィンゾンデのセンサーから得た信号を合成し,規定の周期と配列でレーウィンゾンデの送 信部に送出する. レーウィンゾンデ発振器部では 1680 MHz の搬送波を OPC から送出され た信号によって変調し,ダイポールアンテナから発信する.

OPC の粒径計測部に取り込むサンプルエアは、モーター駆動のギアポンプによって毎分約 3000 cm³ 吸引される.気圧変化によってポンプ流量が著しく低下することのないようモーターに与えられる電圧は大気圧に応じて調整するようにプログラムされている.

サンプルエアに含まれる粒子(エアロゾル)の検出には半導体レーザを用い、光学セルに 導かれたサンプルエアにレーザ光を照射して散乱光をフォトダイオードで検出する。粒子に よる前方散乱光は電圧のパルスとして取り出され、パルス数から粒子の個数を、パルス電圧 から粒径を検出している。半径 0.15 μ m より大きな粒子を検出可能で、半径 > 0.15 μ m、 >0.25 μ m、>0.4 μ m、>0.6 μ m、>1.8 μ mの5 チャンネルで並行計測している。なお、サン プルエアによる光学セル自体の汚染を防ぐため、フィルターによって半径 0.1 μ m 以上の粒 子を除去したシースエアを毎分約 500 cm³吸引し、光学セル内でサンプルエアを包み込むよ うに流している。計測済みのサンプルエアはシースエアと共にアウトレットから排出する。 粒子の計測は 20 秒間区切りで繰り返される。

図 34 エアロゾルゾンデ観測システム構成図 Fig. 34. Configuration of aerosol sonde observing system.

(2) 観測システム構成

観測システムの構成図を図 34 に示す. 地上受信施設は高層気象観測用の MOR-22 型モノ パルス式方向探知機を用い, ゾンデ航跡を追跡しながら信号を受信する. 受信したゾンデ信 号はデジタル化装置(デジタイザ)で要素の切り替え周期に同期した信号の分離と周波数の デジタル化を行った後, データ処理用のノートパソコンに送出し, データの蓄積と観測処理 を行う.

しかし,第40次隊ではエアロゾルゾンデとデジタイザ同期の不具合で信号の分離ができな いことがわかり,デジタイザの同期を必要としない保守用データ出力から未加工の復調周波 数データを収録する方法で観測を実施した.これは,観測終了まで収録した復調周波数デー タを,本来デジタイザから出力されるべきだったフォーマットのファイルに中間プログラム によって変換し,観測プログラムのデータ再処理モードにかけて物理値を得る手順である.

6.3. 観測経過

第40次隊では,主に南極下部成層圏に存在するエアロゾルの季節変化と共に,特に極夜期の PSCs 粒子を捉えることに重点をおき,国内と連絡をとりながら表 17 に示す観測を行った.気水圏部門3台,定常気象部門6台の計9台を持込み,飛揚前の点検で正常が確認された8台を観測に使用した.

6.4. 観測結果

大気中のエアロゾル濃度を空気1cm³あたりの粒子個数(以下,個数密度(個/cm³)と記す)

			到達高度	
回数	飛揚時刻(LT)	飛揚目的	気圧	高度
			(hPa)	(km)
1	1999年02月02日 19時07分	夏期の観測 第39次隊からの引継ぎ	6	36
2	1999年04月26日 18時10分	秋期の観測 信号同期不良対策確立,リチウム電池化試行	17	26
3	1999年06月18日 18時27分	PSCs捕捉(第1回目)	45	20
4	1999年06月29日 10時26分	PSCs捕捉(第2回目)	6	34
5	1999年07月11日 18時05分	PSCs捕捉(第3回目)	7	29
6	1999年09月08日 22時04分	PSCs捕捉(第4回目)	7	30
7	1999年10月27日 17時40分	成層圏オゾン減少期・PSCs消滅後の観測	8	31
8	2000年01月22日 17時59分	夏期の観測 第41次隊への引継ぎ	18	28

表 17 昭和基地におけるエアロゾルゾンデ飛揚状況 Table 17. Summary of aerosol sonde observations at Syowa Station.

で表し考察する.

6.4.1. 第40次隊が観測した冬期の PSCs

第 38 次隊から 3 年間にわたる観測の結果, 冬期の成層圏には毎年 PSCs とみられるエアロ ゾルの急増が観測されている. 第 40 次隊では, PSCs の捕捉を目的とする観測を 4 回実施し, そのいずれにおいても PSCs とみられる粒子を捕捉した.

第40次隊で実施したエアロゾルゾンデ観測結果を図35に示し、5月から9月にかけての 成層圏気温の推移を図36に示す.図36上部の日付は、エアロゾルゾンデ観測実施日である.

表18に、冬期に実施した個々の観測事例と特徴を示す.これら4回の観測における下部成 層圏での粒子個数密度極大層には、半径>0.15µmの小径粒子が卓越している層、半径>0.6 µmの大径粒子が卓越している層、小径粒子から大径粒子まで増加している層がある.これ らの層が同時に複数共存している観測例があり、例えば、1999年7月11日の観測では⑥の 極大層の下層には、④や⑤の大径粒子が卓越した極大層が存在している.低温によって凝結 した PSCs 粒子は次第に成長し粒子の大きさも増していくと推測できるが、小径粒子が特に 増加していないのに大径粒子が増加している層が存在するのは、大きく成長した粒子が落下 している層を捉えたのではないかと考えられる.この日の観測では大径粒子の増加が卓越し ている層が④、⑤と2層存在しており、PSCs 粒子の成長過程や輸送などを考える上で興味 深い.このように特徴の異なる複数の層を捉えた例として、カナダ北極圏のユーレカにおい て気球搭載型 OPC と地上からのレーザーレーダー観測を行ったものがある.この観測では 両者を照合した結果、PSCs の出現が観測された高度範囲の上層と下層では粒径の分布や粒 子の非球形度などの特徴が異なっていたことが報告されている(藤原ら、1999).

このように,規模の変動はあるが 6-9 月にかけての長期間にわたって PSCs が存在してい たことが確認された.このことは,PSCs 粒子表面における不均一反応によって塩素分子が下 部成層圏に高濃度で蓄積され,極夜明けに光解離してオゾンを破壊した可能性を示唆してい る.第10章では冬期の PSCs 発現と春期の成層圏オゾン減少を関連させて考察する.

6.4.2. 第 38 次隊~第 40 次隊の観測結果から見たエアロゾルの季節的特徴

エアロゾルゾンデ観測は 1997 年 4 月から 2000 年 1 月までに延べ 18 回実施された. 図 37 に粒径別高度別エアロゾル個数密度の経年変化を示す. これらの観測は, 6.1 節で述べた観測目的のために次のような時期を選んで実施された.

- ・秋期(4月から5月頃) PSCs が形成される前の時期 4回
- ・冬期(6月から9月頃) PSCs が形成される時期
 8回
- ・春期(9月から10月頃) PSCs が解消しオゾンホールが形成される時期 3回
- ・夏期(1月から2月頃) オゾンホールが発現していない時期 3回

対流圏では半径>0.15µmの小径粒子から半径>1.8µmの巨大粒子が地表付近ほど多数存 在する. 雲の存在や逆転層による対流の変化などの影響を受けて個数密度の変化も大きい

図 36 成層圏気温の推移(上部の日付はエアロゾルゾンデ観測実施日) Fig. 36. Temporal variations of stratospheric air temperatures (the date at the top is the date aerosol sonde observation was performed).

番号	観測日	極大の高度 (km)	気温範囲 (℃)	粒子の大きさ (µm)	備考
1	6月8日	$\frac{13.8 \sim 16.8}{16.9 \sim 18.4}$	$\frac{-83 \sim -76}{-86 \sim -83}$	r > 0.6 r > 0.15	
3	6月29日	$17.9 \sim 19.0$	-83 ~ -81	r > 0.4	高度23~27kmは欠測
4 5 6	7月11日	$ \begin{array}{r} 10.4 \sim 13.2 \\ 14.8 \sim 18.3 \\ 20.8 \sim 23.7 \end{array} $	$ \begin{array}{r} -76 \sim -69 \\ -86 \sim -78 \\ -90 \sim -86 \end{array} $	$\begin{array}{c} r > 0.4 \\ r > 0.4 \\ r > 0.15 \end{array}$	成層圏でほとんど観測されない 半径>0.6μmの粒子が 非常に多く検出された
(7) (8) (9)	9月8日	$ \begin{array}{r} 12.3 \sim 15.1 \\ 17.8 \sim 19.0 \\ 21.7 \sim 23.2 \end{array} $	$-81 \sim -78$ $-84 \sim -81$ $-79 \sim -74$	$\begin{array}{c} r > 0.6 \\ r > 0.25 \\ 0.25 \ge r > 0.15 \end{array}$	

表18 冬期に実施したエアロゾルゾンデ観測の事例と特徴(1999年) Table 18. Character of aerosol sonde observations in winter (1999).

が、それ以外は高度が増すほど個数密度が低下する傾向がある.但し、季節による明瞭な変 化は認められない.

一方,成層圏ではゾンデの上昇過程で高度 10km 付近の対流圏界面を境にエアロゾルの分 布に明瞭な不連続がみられ,成層圏におけるエアロゾル個数密度の鉛直分布は対流圏とは明 らかに異なっている.観測結果にみられる成層圏エアロゾルの特徴は次のとおりである.

- ・春期,夏期,秋期には半径>0.6µmの大きな粒子がほとんど存在しない.
- ・冬期の PSCs 形成時には個数密度の極大層が複数存在し、冬期以外の季節にはほとんど 存在していなかった半径>0.6μm の大きな粒子も観測されている.

図 37 粒径別高度別エアロゾル個数密度の経年変化(高度間隔1km,単位:個/cm³) Fig. 37. Temporal variations of the aerosol number density and particle diameter by altitude (vertical interval of 1km, unit: particles/cm³)

・全粒子(半径>0.15µm)の個数密度が極大となる層は、対流圏界面にほぼ接する高度10 km付近,及び対流圏界面よりも5km程度高い高度15km付近に見られる.これらの極 大層は概して通年で存在するものの、高度10km付近の極大は特に春期と夏期に明瞭で あり、高度15km付近の極大は秋期、冬期、春期に明瞭である.

・全粒子(半径>0.15µm)の個数密度は高度 20km 付近から上層側では高度と共に急速に

東島圭志郎ら

減少するが,夏期には高度に対する減少の程度が緩やかであり,高い高度でも個数密度 が比較的大きい.また,夏期以外の季節で高度 15 km 付近に現れていた個数密度極大層 は,夏期にはきわめて緩やかではあるが 20 km 付近に存在しているように見える.

・個数密度が増大している層の中では、粒径の大きなものほどやや低高度側にピークが現れる.

以上の下部成層圏における特徴を考察すると、エアロゾル個数密度の鉛直分布には気温の 鉛直変化による大気の力学的構造が関係していると考えられる.全粒子(半径>0.15 μ m)に ついて成層圏最下層(高度10km付近)に現れる個数密度の極大は沈降流の卓越によって粒 子が下層に貯留されていることを伺わせ、気温の逆転が大きくなる高い高度ではエアロゾル 濃度が急速に減少している.成層圏の気温が高くなる夏期は他の季節に比べても高い高度ま でエアロゾルが存在し、あたかも高い高度までエアロゾルが拡散したかのように個数密度の 減少が緩やかである.また、半径>0.15 μ mの個数密度ピークに対し、粒径の大きなものほど ピークがやや低高度側に現れているのは、粒径が大きく質量の大きな粒子には落下の効果も 加わっているためと考えられる. 南極成層圏で沈降する大気はオゾンと同様に子午面循環に よって低緯度側から輸送されるが、大粒子は輸送途中で降下し易いため、ほとんど極域に到 達することができない. その一方で、成層圏が極めて低い気温となる冬期の観測では PSCs の発現によって半径>1.8 μ mの巨大粒子を含む個数密度の極大層を複数観測している.それ ら各層に含まれる粒径のバランスを考察すると、小さな粒子が卓越した層や大きく成長した 粒子が卓越した層など、やや性質の異なった層が含まれていると考えられる.

7. 天気解析

無線 FAX 受画装置及びインマルサット FAX より受画した各種天気実況図,予想図,気象 衛星から送られてくる雲写真,毎日の地上観測,高層気象観測から得られたデータ及び南極 各基地のデータを参考に,低気圧,前線の移動を把握して天気解析を行い,気象観測に資す るとともに隊のオペレーション活動を行う際の気象情報を提供した.

7.1. 利用した資料

昭和基地で観測した地上及び高層気象観測資料の他に、次の資料を利用した.

(1) **FAX** 放送天気図

キャンベラ放送の 00, 12 UTC の南半球 500 hPa 面解析図と地上及び 500 hPa 面 48 時間予 想図,同放送の 00,12 UTC のインド洋地上実況図,プレトリア(南アフリカ)地上天気図 (06,12,18 UTC).

(2) 気象庁配信天気図

インマルサット FAX により気象庁(JMA)解析資料の提供を受けた. 内容は南半球の地

232

- 上,高層実況天気図及び予想天気図.
- (3) 極軌道気象衛星雲写真

NOAA-12, 14, 15 号の赤外及び可視画像 1 日 5-10 枚.

- (4) 静止気象衛星 METEOSAT からの気象資料放送 極軌道気象衛星 NOAA の軌道情報及び静止気象衛星の雲画像等. 南極各基地の SYNOP, TEMP 及び気候電報.
- (5) ロボット気象計

S16(昭和基地の東方向,標高約 500 m,海岸から約 10 km)地点のロボット気象計による 気温,気圧及び風向・風速.

7.2. 解析結果とその利用

昭和基地周辺の低気圧,前線の位置・移動状況を把握して気象観測に備えた.また,毎夕 食後のミーティング時に担当気象隊員により天気解析結果及び予想が伝えられ,昭和基地の 屋外作業や野外オペレーション活動の参考とされた.また,越冬中の12月に東南極国際航空 網の空路開拓を目的に飛来したオーストラリア機にも,これらの資料を提供した.

8. その他の観測

8.1. 大気中の微量成分観測

第40次観測隊では,第39次隊に引き続きモニタリング研究観測のうち二酸化炭素濃度, メタン濃度,地上オゾン濃度観測及び維持作業を気水圏系隊員と定常気象隊員との共同で実施した.取得したデータ及びサンプルは各研究機関及び大学に送られ解析される.気象庁は その結果をWDCGG に報告している.

8.2. 船上での大気混濁度観測

8.2.1. 観測方法と測器

表14に記載されている携帯型サンフォトメーター (MS-120S)を使用し,「しらせ」が1998 年11月14日に東京晴海を出港してから,1998年12月22日に昭和基地へ移動するまでの 間,「しらせ」船上において大気混濁度の観測を行った.この期間中に数回の連続観測を行 い,測器常数を決めた.

8.2.2. 観測結果

図 38 に各波長(368, 500, 675, 778, 862 nm) におけるエアロゾルの光学的厚さ(AOD) の緯度分布を示す. AOD の計算には,レーリー散乱係数 0.00864 を使用した.赤道~南緯 15 度,南緯 40-50 度付近は天候が悪く観測を行えなかった.赤道,南緯 20, 50, 70 度付近で AOD が他と比べ高い値を示している.

図38 「しらせ」船上におけるエアロゾルの光学的厚さの緯度分布(1998年11月16日~12月17日) Fig. 38. Latitude distribution of Aerosol Optical Depths on the R/V Shirase (16 Nov.-17 Dec. 1998).

図 39 には 1991 年(第 33 次隊)から 1998 年(第 40 次隊)までの,各年の緯度 10 度毎の 平均 AOD を示す. AOD の計算には,経年変化をみるために期間を通じて以前から使用して いたレーリー散乱係数 0.00838 を使用した. この図をみると,1991 年はすべての波長におい て AOD が増加している.これは,5.3.4 節でも述べたように 1991 年 6 月のピナツボ,同 8 月 のハドソン火山噴火の影響である.この年行われた内陸旅行の観測結果によると,この影響 は南緯 73 度付近まで及んでいる(松原ら,1995).この後 1993 年まで,ピナツボの全球的な 拡散の影響で全波長において AOD が増加している(金戸,1997).また,1997 年の赤道付近 で観測された高い AOD は,この年発生したインドネシアの森林火災の影響と思われる(岸 ら,2002).1998 年の観測結果は,南緯 60-70 度において,各波長の AOD がここ数年の減少

Fig. 39. Latitudinal distribution of Aerosol Optical Depths on the R/V Shirase (1991–1998) (average every 10 degrees of latitude).

傾向から増加に転じている他は、概ね平年並みである.

8.3. 南極大陸旅行中の気象観測

第40次観測隊気象部門は、みずほ基地補給旅行(1999年8月23日~9月13日)及び春期 ドームふじ燃料補給旅行(1999年11月1日~2000年2月11日)に参加した.

旅行ルートを図 40 に示す. みずほ基地補給旅行は,昭和基地とみずほ基地間の往復である.春期ドームふじ燃料補給旅行では,昭和基地,みずほ基地,ドームふじ観測拠点,みず ほ基地,YM154,YM50,CFルート(新規設定ルート),みずほ基地,S16を順次通過した. 8.3.1. 観測方法

南極大陸旅行中の観測項目及び気象観測測器を表 19 に示す. みずほ基地補給旅行, 春期 ドーム旅行共に使用した測器は同じである.

旅行中の気象観測は,基本的に移動気象観測装置(以下,観測装置という)を用いて行い, 旅行日程の都合で観測装置を展開できない場合及び障害時には,旅行隊装備品である携帯用 測器を用いて観測を実施した.観測装置による観測は,気圧,気温,風速のセンサーデータ を10分間隔でデータロガーに収集し,パソコンへ取込んで物理値化を行った.

図 40 昭和基地からみずほ基地およびドームふじ観測拠点への経路 Fig. 40. Traverse routes from Syowa Station to Mizuho Station and Dome Fuji Station.

236

観測項目	単位	主	副	測器名 測定精度	
気圧	h Pa	•		電気式アネロイド型気圧計	± 0.1 hPa
気圧	hPa		•	携帯用アネロイド型気圧計	±1 hPa
気温	C	•		電気式白金抵抗温度計	± 0.1 °C
気温	C		•	スリング式ガラス製温度計	\pm 0.5 °C
風向	16方位			ハンドベアリングコンパス	±5°
風速	m/s			風程式3杯型風速計	± 0.1 m/s
風速	m/s			携带用発電式3杯型風速計	± 0.5 m/s
視程	km			目視	
雲	10分量・雲形			目視	
天気				目視	

表 19 気象観測測器及び観測精度 Table 19. Instruments and accuracy of meteorological observations.

8.3.2. 観測経過

みずほ旅行(1999 年 8 月 23 日~9 月 13 日)においては,目視観測を含む観測は基本的に 往路において 09, 15, 21 LT,復路では 08, 15, 21 LT に行った.また,作業の進行状況によっ ては,適宜時間を考慮しながら観測を行った.

春期ドーム旅行(1999年11月1日~2000年2月11日)においては,目視観測を含む観測は,基本的に08,15,21LTに行った.

キャンプ地で就寝中は雪上車のインバータを停止させるため、気圧は欠測、気温は強制通 風を停止させた状態ではあるが、データロガーの電源は電池であるため10分間隔でデータ 収集を継続し03LTの気温と風速の観測値を得た.また、キャンプ地での最低気温もデータ ロガーの値から得て、雪上車運行の判断材料とした.

8.3.3. 観測結果

(1) みずほ旅行

旅行中における気象観測結果を図 41 に示し,旅行隊行動中に実施した 15 LT の観測結果 から旅行中の気象概況を述べる.旅行期間の中で視程が 1 km 以下となったのは 8 日間あり, 全行程から見ると悪天の日が多かった.これは,旅行隊の行動スケジュールが遅れる原因の 一つとなっている.視程が 1 km 以下の日を見ると,いずれも風速が 10 m/s を越えており, ほとんどが地ふぶきによる視程障害であった.また,みずほ基地に滞在した 9 月 2-5 日の 4 日間は,滞在全期間が悪天であった.気温-40℃以下,風速 10 m/s 以上という気象条件は, 野外での活動を過酷なものにした.特に,滞在最終日の 9 月 5 日の視程は 50 m,風速 12 m/s であった.

旅行期間における快晴または晴の日は5日間であり、うす曇または曇りの日は7日間で あった.その他の8日間は、雪または地ふぶきの天気であった.また、風速が5m/s以下の日 は4日間であり、その時の天気はほとんどがうす曇であった.

(2) 春期ドーム旅行

図 41 冬期みずほ旅行中の気象観測データ(1999 年 8 月 24 日~9 月 13 日) Fig. 41. Surface meteorological observation data during the traverse to Mizuho Station in winter (Aug. 24-Sep. 13, 1999).

旅行中における気象観測結果を図 42 に示し,旅行隊行動中に実施した 15 LT の観測結果 から旅行中の気象概況を述べる.旅行期間 103 日間のうち,概ね 2/3 の期間は行動に支障の ない気象状態だった.視程がルート旗の間隔である 2 km を下回った日は 30 日間,目標物が 見えず行動に支障を感ずるようになる 500 m 未満の日は 13 日間だった.風速が 10 m/s を超 えると視程は 1 km 以下となることが多かった.15 LT において気温が約 -30° C 以下,かつ, 風速 5 m/s 以上だった日は 10 日間程度であったが,これらが観測されたのはいずれも標高 3000 m 以上の高地である.この高度の気圧はほぼ 650 hPa 以下に対応し,車外での作業には 厳しい条件であった.

この旅行中に、3度のまとまったブリザードに遭遇した。出発直後からみずほ基地までの 約一週間,やまと山脈を目前にした YM154 付近での約一週間,旅行終盤の Z ルートから S16 へ到着するまでの約一週間である。この3回のブリザードの他はホワイトアウトがあっ たものの,標高が高くなるにつれ晴またはうす曇の日が多くなり,概ね穏やかな気象状態で

図 42 春期ドーム旅行中の気象観測データ(1999 年 11 月 1 日~2000 年 2 月 9 日) Fig. 42. Surface meteorological observation data during the traverse to Dome Fuji Station in spring (Nov. 1, 1999–Feb. 9, 2000).

経過した.

8.4. ロボット気象計

ロボット気象計は、昭和基地周辺の気象状況を把握することにより、観測隊の野外活動等 を支援することを目的として、各隊次の判断により運用している.

隊次によっては、大陸沿岸の数箇所に設置して運用したこともあったが、現在は、S16の 1箇所のみの運用となっている.

8.4.1. 観測方法

ロボット気象計(以下「ロボット」という)による観測は,高層気象観測用のゾンデを遠 隔地に設置し,高層気象観測用パラボラアンテナで信号を受信することにより,行っている.

観測項目は,9月までは気温及び風向・風速で,10月に発信器及び気温センサーの交換,

並びに気圧センサーの追加を行い,以後は現地気圧も観測項目に追加した.

観測は,毎日2回(00,12 UTC),高層気象観測の前に実施した.また,野外行動出発時や空輸実施時など適宜観測し,さらにブリザードが予測される場合にも観測した.

8.4.2. 観測経過

S16のロボットを第39次観測隊から引き継ぎ,9月中旬から10月上旬にかけて発信器交換調整のために運用を休止した他は通年観測した.

越冬期間中,3回のバッテリー交換(5,9,12月)を実施した.この内12月の交換時には, 第41次観測隊との引き継ぎを兼ねて発信器の調整を行った.

8.4.3. 発信器の変更

ロボットの発信器部には,従来 RS2-80 型レーウィンゾンデ(以下「80 型」という)を改造 して使用してきた.

しかし,高層気象観測用のゾンデが,1995 年から RS2-91 型レーウィンゾンデ(以下「91 型」という)に変更となり,80 型の入手が次第に難しくなったことから,ロボットの発信器 を80 型から 91 型に変更して10 月から運用した.

91 型を用いたロボットの構成とデータ処理方法を,表 20 に示す.

91 型では、約1秒ごとに各観測要素の変調信号を切り替えて送出している. 受信側の復調 装置でも、これに同期して要素信号を分離するために、91 型から送られるレファレンス信号 (4kHz)を参照している. このため、風速の風程接点信号が、弱風時に長時間出たままになっ てしまうこと、風速 25 m/s の時には、4 秒周期で接点信号が送られるため、特定の要素信号

細測			T		
要素	感部	発信器での処理	受信処理		
	矢羽根型風向計	湿度測定用のRC回路で、静電容量式湿度 計の代わりにコンデンサーを取り付け、 定抵抗と並列に風向計を接続してある。			
風向	(ポテンショメータ式)	これにより,風向計の抵抗値を,1.5kHz ~2.7kHzの変調周波数に変換する.	分離された変調周波数を抵抗値に 戻し,さらに風向値に変換する.		
	風向に対応して 10kΩ~20kΩの 抵抗値を出力する.	信号は,本来の湿度信号を送出するタイ ミングで送られる.			
國連	風程式三杯型風速計	接点が出力されるたび、 4秒周期の要素 信号切り替えとは無関係に, 4.8kHzの変 調信号を送出する.	4.8kHzの信号を受信した時間間隔		
	風程100m毎に 1接点を出力する	強風時,接点信号が十分な長さになるよ う,リレー回路を介して,ディレイを設 けてある.	(1秒単位)から,風速を求める.		
気温	サーミスタ	RS2-91型レーウィンゾンデ及びJMA-91型高層気象観測装置での処理と同じ.			

表 20 ロボット気象計で使用する感部と処理方法

Table 20. Instruments and data processing for meteorological telemetry system.

と接点信号が同期してしまい,要素信号が分離できなくなることなどにより,データが取得 不能になるという欠点がある.

8.4.4. 観測結果及びデータの利用

ロボット気象計は,第40次隊越冬期間中に延べ127時間運用し,この内の,56時間が野外 行動支援のための臨時観測であった.受信時間に対するデータ取得率は,80型発信器使用時 で気温96%,風向・風速86%,91型発信器使用時で,気温,風向,気圧で90%程度,風速 は85%程度である.

8.5. ILAS データ検証のための昭和基地におけるオゾンゾンデ観測

第 39 次隊に引き続き, ILAS データ検証のためオゾンゾンデ RS2-KC96 を 24 台昭和基地 へ持ち込み観測を行った. 1996 年 8 月に打ち上げられた地球観測プラットフォーム技術衛星 (ADEOS)に搭載された改良型大気周縁赤外分光計(ILAS)で得られたオゾンデータ検証の ため, ILAS と独立的なオゾンデータの取得を目的としていた. しかし, 1997 年 6 月 30 日に ADEOS が運用断念となったため, ILAS・ILAS II で得られるオゾンデータを解釈するため の基礎データの取得,及び南極上空のオゾン層の実態を把握する事を目的として,国立環境 研究所 ILAS プロジェクト,国立極地研究所気水圏研究グループ,気象庁観測部による共同 観測として実施した.

9. 発達した低気圧に関する事例解析

発達した低気圧が昭和基地の北の海上を東進した 1999 年 10 月 5-6 日,昭和基地では A 級ブリザードとなり,10 月 5 日 1658 LT に昭和基地で観測開始以来,歴代第 2 位の最低海面 気圧 932.1 hPa を記録した.

この記録的な最低海面気圧をもたらした低気圧について解析し,歴代第1位を記録した事 例と比較しながら報告する.

9.1. 総観場の状況

気象庁の客観解析資料により、総観場の状況を概観する.

地上低気圧の動き

9月下旬から10月上旬にかけては、低気圧が周期的に昭和基地に接近し、9月26-27日に B級、10月2-3日にC級のブリザードを観測している(表5).

10月5-6日のブリザードをもたらした低気圧は、図43に示したとおり、10月3日15LT には60S,0Eにあり、10月4日15LTには北上して55S,10Eに達し中心付近の気圧は960 hPaであった.その後500hPa面の気圧の谷の南下に対応して中心を南に移し、10月5日15 LTには936hPaと急激に発達して、10月6日15LTにかけて昭和基地の北側63S,30Eから 65S,40E 付近に停滞した.なお10月5日15LT に、低気圧の中心から約800km 離れた昭和 基地では、海面気圧937.4hPa を観測していることから、実際の中心気圧は客観解析の値よ りもさらに低かったと考えられる.その後、低気圧自体は勢力を弱めたが、大陸内の高気圧 が強まり10月6日12LTの時点でも昭和基地付近は気圧傾度が大きく強風が持続した.

10月 3-6日の NOAA の赤外画像を図 44 に示す. 10月 4日 17LT で低気圧に伴う雲域は, はっきりした渦状の構造を持ち,半径 1000 km を超えている.

(2) 上層の谷の動き

100 hPa 面では 9 月 27 日頃から極渦の蛇行が見られ, 40-60W 付近で超長波の谷が発達し 始めた. この谷は 10 月 10 日頃にかけて 40E までゆっくりと東進し, この間昭和基地付近は 超長波の西谷の場にあった.

500 hPa 面では、9月25-27日、10月2-3日、10月5-6日と短い周期で気圧の谷が昭和基 地付近に接近し、前述のとおりそれぞれが地上低気圧を伴って昭和基地にブリザードをもた らしたが、9月28日~10月2日頃にかけては昭和基地の西側10E付近に大陸内部にまで伸 びる気圧の尾根が形成されて谷の東進を抑え、一時的に好天となった。10月2日の気圧の谷 は、9月27日頃に昭和基地付近を通過して一旦60E以東にまで進んだ低圧部が、大陸沿岸を 西進する形で昭和基地に再接近したものである。

本事例の低気圧に対応する 500 hPa 面の谷は、10 月 4 日 15 LT の時点では 55S, 10E 付近

図 43 1999 年 10 月 3-6 日の地上天気図 Fig. 43. Surface weather charts (Oct. 3-6, 1999).

図 44 1999 年 10 月 3-6 日の NOAA の赤外画像 Fig. 44. NOAA/AVHRR infrared images (Oct. 3-6, 1999).

に中心を持つと思われたが、10月5日の15LTにかけて中心を急激に南に移し、65S、30E付近に低圧部としてまとまった.

9.2. 高層大気の状態

(1) 各層の気温と高度の経過

図 45 に 850 hPa, 700 hPa, 500 hPa, 300 hPa, 100 hPa 及び 50 hPa 面の高度と気温の経過を示す.

300 hPa 以下の気圧面では、10月5日の03-15LTの間に高度場が著しく低下し、その後 10月7日にかけてゆっくりと上昇している.これに対し100 hPa 面では10月6日15LTま で高度場の低下が続き、その後の高度の上昇もほとんどない.さらにその上の50 hPa 面では 10月5日15LT が最も高く、その後下降に転じている.

気温の上昇は 300 hPa のピークが 10 月 5 日 03 LT で最も早く,続いて 500 hPa 面で同日 03-15 LT にかけてなだらかなピークを持っている. 100 hPa 面と 850 hPa 面で同日 15 LT, 700 hPa では 10 月 6 日 03 LT にピークとなっている. 高度場と同様, 50 hPa では位相が遅れ ており 10 月 6 日 03 LT にピークとなっている. 特に, 300 hPa のピークは顕著で, この層 で急激な暖気の移流があったことを示している. また, 700 hPa 面では他の気圧面の気温が 下降に転じた後にピークを迎えており, この高度で暖気が持続的に流入していたと考えられ る. 50 hPa 面の気温ピークの遅れは, 超長波の谷の位相が遅れていることに対応している.

(2) 温位と風向風速の経過

図46に温位と風向風速の時間断面図を示す.

10月2日の擾乱では、03LTに 600-300 hPa の層でやや北分を持った強風が吹いており、 これに伴って、この層での暖気移流が顕著となっている. 擾乱通過後は上層ほど暖気が抜け るのが早く、600 hPa より下層では高温状態が持続している. これに対して 10月5日は前日 に 300 hPa よりも上層で一旦寒気が入ったことから、この層での昇温が顕著である. また、

図 46 1999 年 10 月 1-8 日の温位と風向風速の鉛直時間断面図 Fig. 46. Vertical time cross-section of potential temperature and wind speed/direction (Oct. 1-8, 1999).

700 hPaより下層でも暖気の移流が顕著であるが、10月2日と同様に下層ほど高温状態が長時間持続している.また、10月5日は300 hPa面の気温の上昇に伴って、圏界面高度が下がり、さらに10月7日にかけて第2圏界面も出現している.成層圏では10月5日03LTまで西風が卓越していたが、同日15LTには北~北西の風に変化しており、上層の谷の接近に対応している.この西谷傾向は、10月8日まで持続している.地上から300 hPa付近までは、10月5日15LTの時点で風向がそろい、対流圏内で気圧の谷の軸が完全に立っていたことを示している.

(3) 相当温位のプロファイル

図 47 に, 10 月 5 日 03 LT~6 日 15 LT における昭和基地上空の相当温位鉛直分布を示す. 10 月 5 日 03–15 LT にかけては 800 hPa より下層で,混合と暖気移流によって安定層が壊さ れ,中立な状態に変化した様子がわかる.その後 10 月 6 日 03 LT にかけては,下層の状態は あまり変化がないが,700 hPa 面直下の昇温と,その上の層の降温により 800 hPa より上の層

図 47 1999 年 10 月 4-6 日の相当温位の鉛直分布 Fig. 47. Vertical distribution of equivalent potential temperature (Oct. 4-6, 1999).

5, 1999 12 UT.

でも成層が中立化している.しかし,800 hPa 面を境に上下の層は10K 程度の温位差があり, 800 hPa 付近には顕著な安定層が形成されているため、上下の層は分断されている.この状 態は、低気圧が閉塞して、中心付近の上空に暖気が取り残された様子を示していると考えられる.

図 48 に, 10 月 5 日 15 LT の 700 hPa 面の温度場を示す. 低気圧の前面から流入した暖気が, 南側から後面に回りこみ, 完全に低気圧の循環内に取り込まれている様子がわかる.

9.3. 地上の気象状態

図 49 に示した 10 月 4 日 12 LT~7 日 18 LT の地上要素の時別 (天気と視程は 3 時間毎)の 経過と,図 50 に示した各要素の1分値の経過から,地上状態の特徴を述べる.

気圧は10月5日00LT頃から下降が始まり、時間の経過とともに下降速度も大きくなっ

図 49 1999 年 10 月 5-6 日の昭和基地の地上要素経過 Fig. 49. Variations of surface meteorological data at Syowa Station (Oct. 5-6, 1999).

た. 10月5日の13LTには前3時間の気圧の下降量が最も大きく-13.0hPa/3hrであった. また, 10月4日17LT~5日17LTの24時間では, 44.9hPaの下降量であった. 10月5日 1658LTに最低海面気圧932.1hPaを記録した後は緩やかに上昇したが, 1分値で見ると 1918LT(図中⑦)に再度下降して極小値を観測している.

気温と風速は、10月5日12LT頃にほぼ同時に急上昇した。一般に昭和基地の場合、夏季 を除き放射冷却による接地逆転層が形成されており、低気圧の接近で風が強まると、この逆 転層が破壊され気温が急上昇する(国立極地研究所編、1988).

1分値で見ると、気温は風速に対応して①から急上昇し、②以降も緩やかに上昇を続けて ④で最高気温を記録した。その後は緩下降に転じている。

風速は 10 月 6 日 12 LT 頃に一旦 10 m/s 未満に弱まり、ブリザードも終了したが、同 14 LT 頃には再び強まって、7 日未明まで 15 m/s 前後の風速が続いた. 視程も風速の増大とと もに悪化し、5 日 18 LT には 10 m にまで落ちた.

Local Time (11LT Oct.5 - 03LT Oct.6 1999)

図 50 昭和基地の地上要素 1 分値時別値の経過(1999年 10月 5日 11 LT—6日 03 LT) Fig. 50. Surface meteorological data at 1-minute intervals at Syowa Station (Oct. 5, 11 LT–Oct. 6, 03 LT, 1999).

1分値で見ると、①(1250LT)まで急速に増大した風速は、その後⑤(1611LT)までの間 はほぼ一定で経過した。⑤~⑥の間でさらに強まり、最低気圧を記録したのとほぼ同じ1657 LT に最大瞬間風速を観測した。その後は漸減に転じたが、⑦で一時的に強まっている。

風向は、風速の増大とともに、徐々に時計回りで変化し、④(1511LT) 頃には 70-80°で あった.その後、⑤にかけては反時計回りに変化して 60°となり、⑥にかけてほぼ一定で経 過した.⑥以降は、再度緩やかに時計回りの変化をしている.

①~④の風向の変化は、低気圧が南東進して昭和基地に接近したことに伴うものと考えられる.その後の④~⑤の風向変化と気温の極大の発現は、昭和基地付近を閉塞前線が通過し

たためではないかと推測される. 図には示さなかったが, S16の気象ロボットによる観測で も, 10月5日1400LT頃に100-108°であった風向が2030LT頃には84-94°に変化している ことも,前線の通過を示唆している. なお, ④~⑤の風向の変化が約1時間を要しているこ とから,昭和基地付近では閉塞前線が南西~北東方向の走向をもって通過して行ったのでは ないかと考えられる.

⑥の最低海面気圧及び最大瞬間風速は、閉塞前線内側の低気圧のごく近傍で観測された。⑦の気圧の下降と強風は、小規模な擾乱の通過に伴うものと考えられる。

9.4. ブリザードの概要

10月5日は、1100LTから降雪を観測したが、この時点で平均風速はWNW2.9m/sと弱かった.その後、風向は時計回りに変化して風速が急速に大きくなり(図 50 中①)、1121LT 以降は平均風速で10m/s以上となった.風速の増大により、地ふぶきを伴って視程は急速に 悪化し、1120LTには1km未満、1130LTには500m未満、降り始めから40分後の1140LT には100m未満となって、この状態は翌6日0710LTまで続いた(図 49).

ブリザード期間は, 10月5日1121LT~6日1120LTで, この間の10月5日1453LT~6日 0218LTにA級ブリザードの基準を満たしている(図49).また,期間中の最大風速36.2m/s (ENE)及び最大瞬間風速46.7m/s (ENE)は, 10月としては,いずれも歴代第4位の記録と なった.

9.5. 歴代第1位の最低海面気圧を記録した事例との比較

昭和基地における最低海面気圧の累年の極値は, 1969 年 9 月 8 日の 03 LT 頃に観測された 931.3 hPa である.

図 51 に,1969 年 9 月 6 日 18 LT~9 日 24 LT の地上要素の経過を示す(図 49 関連).デー タは 3 時間ごと(天気と夜間の視程は 6 時間毎)だが,8 日 0143 LT のラジオゾンデ飛揚時の 地上データも加えてある.

1969年の事例では、9月7日12LTから気圧の下降が始まり、8日03LTまでの15時間で 41.0hPaの下降量であった。1999年の擾乱では、10月5日17LTまでの15時間で42.0hPa の気圧の下降を観測しており、両者は気圧の下降速度及び下降量において、ほぼ同程度の規 模であった。

ただ相違点としては、1969年の場合は最低海面気圧発現後に気圧が急上昇しており、また 気温に関しても急激に下降して、ともに 3-6 時間程度で擾乱の影響を受ける前の状態に回復 している.また、地上風は最大風速が 23.9 m/s (NNE)、最大瞬間風速が 29.8 m/s (NNE)で、 1999年の事例に比べてかなり弱かった.

また, 1969年の事例では, 気温の上昇が風速の増大よりも1時間 30 分以上先行して, 風向

東島圭志郎ら

図 51 昭和基地の地上要素経過(1969 年 9 月 6 日 18 LT~9 日 24 LT) Fig. 51. Variations of surface meteorological data at Syowa Station (Sep. 6, 18 LT-9, 24 LT, 1969).

の変化に対応していた. 図示した期間には含まれていないが,1969年は8月の下旬以降,1-2日の非常に短い周期で10m/s以上の強風を伴った降雪が観測されており,小低気圧が次々に昭和基地付近を通過して行ったものと思われる. このことは,大陸沿岸に南極前線が形成されていたことを示唆しており,上述の風向変化に対応した昇温は,前線の南下によるものではないかと推測される.

1969年は1月の高温が顕著で、その後も6月まで気温が高めに経過したために、初冬にオ ングル海峡の海氷が成長せず、全面結氷したのは5月に入ってからであった(石田ら、1971) との報告があることから、9月の時点でも昭和基地付近の海氷縁は、大陸沿岸からそれほど 沖合いまで張り出してはいなかった可能性も考えられる。開水面が昭和基地の近傍にあった とすれば、前線帯の形成や擾乱の発達過程に影響を与えた可能性がある。

図 52 に,1969 年と1999 年における最低海面気圧発現時刻の直近の気温と風,及び 850,700,500,300,100,30 hPa の各気圧面間の温度風鉛直分布を示す.1999 年 10 月 5 日 15 LT の観測では,925-700 hPa 間で風の資料が欠測となっているため,この層については参考の

図 52 最低海面気圧発現時の気温,風及び温度風の鉛直分布 Fig. 52. Vertical profiles of temperature, wind, thermal wind during minimum sea level pressure.

ために 10月6日 03 LT のデータをプロットした.

1969年の事例は,800hPaより下層で風速が非常に小さくなっているが,これは9月8日 03LTの観測開始時刻が,0143LTと早かったため擾乱の影響を受ける直前の値であること による.

300 hPa より下の層では両者の気温差はほとんどないが、300 hPa より上層では高度とともに気温差が大きくなり、100 hPa では 15°C、20 hPa では 40°C も 1969 年の方が低温となっている. このことは 2 つの事例に関る擾乱の構造が、大きく異なっていたことを示唆している.

1969年の場合は、上層で低温であった分だけ昭和基地上空の気柱に含まれる大気の質量は 1999年の場合に比べて大きかったはずである。それにも関らず地上において 1999年におけ る事例並みの気圧の下降が観測されたのは、大気中のいずれかの層で強い発散があったため と考えられる。

また,風速についても2つの事例では上層ほど差が大きい.1999年は200hPa面から上で 高度とともに風速が増大し,30hPa面より上層では100m/sもの強風となっているのに対 し,1969年の事例では高々30-50m/s程度であり高度とともに強まる傾向もない.気温の鉛 直分布と併せて考えると,1999年は昭和基地付近が極渦の縁辺に当たっており,南北の温度 勾配が大きかったのに対し,1969年の事例では昭和基地は極渦の内側にあったと推測され る. このことは,同図に示した温度風の大きさが,300 hPa 面より上層で 1999 年の方がかな り大きくなっていることにも表れている.

このような成層圏の状況の差異は、両事例の発現時期が1カ月程度異なっており、季節の 進行による成層圏気温の変化を反映していたと考えられる。

図 53 に各気圧面の高度と気温の経過を(図 45 関連),図 54 には温位と風向風速の時間断面図(図 46 関連),図 55 には相当温位の鉛直分布を示す(図 47 関連).

図 53 1969 年 9 月 3-10 日の等圧面高度と気温の経過 Fig. 53. Variations of the height of the isobaric surface and air temperature (Sep. 3-10, 1969).

Fig. 54. Vertical time cross-section of potential temperature and wind speed/direction (Sep. 3–10, 1969).

Fig. 55. Vertical distribution of equivalent potential temperature (Sep. 7–9, 1969).

東島圭志郎ら

図 53 では前述したとおり、100 hPa 及び 50 hPa 面の気温が 1999 年よりもかなり低く経過 していたことがわかる.一方、300 hPa 面より下の層では、擾乱に対応した暖気移流が認めら れるが、等圧面高度の下降は 500 hPa 面以下の層にのみ見られ、700 hPa より下層で顕著であ る.さらに、300 hPa 面から上では、高度場は上昇傾向にあり、前述した発散場がこの付近に あったものと考えられる.また、地上要素の経過と同様、気温、高度場ともに擾乱通過後の 回復が極めて早かった.

図 54 でもこれらの特徴は顕著に現れており,9月8日の温位の上昇は 300 hPa 面よりも下 層に限られ,それも9月9日までには完全に寒気と入れ替わっている.また,成層圏の風は やや北分をもっており極渦が真円からずれていたことを示唆しているが,期間中大きな変化 はない.9月8日に圏界面高度が下降した部分については,北風が入っているが9日までに は北西に変化して上層まで一定した風向となっている.

短い時間にシビアな擾乱が通過していった様子は,図 55 に示した下層の相当温位の鉛直 分布にも現れており、9月8日03LTの相当温位は 500 hPa より下の全層にわたって前後の 観測よりも 20K 程度高くなっている.また,地上要素の経過でも述べたとおり9月8日以前 にも短い周期で擾乱が通過しており、強風による大気の混合が盛んで、9月8日の擾乱の影 響を受ける前から昭和基地付近に前線帯が存在し、相当温位の鉛直分布は中立の状態となっ ていたと考えられる.ただ、1999年の事例と同様、800-650 hPa 付近に安定層があり、その上 下で 10K 程度の温位差がある.

9.6. まとめ

1999年10月の擾乱は,

- ① 一旦は北上した低気圧が,上層の北西流によって急速に発達しながら南東進して昭和基 地に接近した.
- ②昭和基地近傍に達した時点で,低気圧は既に閉塞状態であり,対流圏内で気圧の谷の軸 が立っていたために中心気圧が極小となっていた.
- さらに,

③成層圏の超長波の谷が後面から接近し,衰弱期に入った対流圏の擾乱を強化する働きを した.

などの結果から、最低海面気圧が歴代第2位となるまでに発達したと考えられる.

1969年の事例と1999年の事例の特徴を対比させると表21のようになる.

10. 1999年の成層圏オゾン減少と低温

南極の極夜が明け,春を迎える頃に南極上空の広範囲でオゾンが急速に減少する現象,い わゆるオゾンホールは、人類の生産活動が、自然な気候システムに深刻な影響を及ぼしつつ

要素		1969年の事例	1999年の事例		
発生年月日		1969年9月8日 ~	1999年10月5日 ~		
最低海面気圧		931.3 hPa (9月8日03LT頃, 1位)	932.1 hPa (10月5日1658LT, 2位)		
気圧降下量		-39.9 hPa (9月7日03LT - 8日03LT)	-44.9 hPa (10月4日17LT - 5日17LT)		
気圧上昇量		+54.4 hPa (9月8日03LT - 9日03LT)	+25.4 hPa (10月5日17LT - 6日17LT)		
最大風速 (風向)		23.9 m/s (NNE)	36.2 m/s (ENE)		
最大瞬間風速 (風向)		29.8 m/s (NNE)	46.7 m/s (ENE)		
気温上昇		風向変化 → 気温上昇 → 風速増大	風速増大 → 気温上昇		
ブリザードの 特徴	期間	9月8日02LT - 17LT	10月5日1121LT - 6日1120LT		
	継続時間	15時間	23時間59分		
	階級	C	А		
低気圧の 特徴	進路	昭和基地付近にかかる南極前線上を東進 した可能性がある	北上した低気圧が,上層の北西流によっ て南東進して昭和基地に接近		
	発達要素	超長波の影響も受けておらず、回復は早 かった	700hPaを中心とした強力な暖気移流によ り発達,閉塞後も超長波のトラフの接近 により強化された		
	水平スケール	不明(比較的小さかった)	1000 km以上(衛星画像より)		
	鉛直スケール	8.5 km程度	同左		
極渦との関係		昭和基地は成層圏極渦の内側	昭和基地は成層圏極渦の縁辺		

表 21 1969 年と 1999 年との低気圧の事例比較 Table 21. Comparison of the analysis case of depression in 1969 and 1999.

ある例として大きな注目を集めてきた.

1999年はオゾンホールの解消が遅れ,昭和基地での観測によると,昭和基地がオゾンホール下にあった最後の日が12月25日と過去最も遅かった.また,これに関連して11-12月に下部成層圏で低温の極値を更新した(3.3節).この章ではこれまでに行われてきた昭和基地での観測結果等から,経年的な成層圏オゾンの減少傾向と春期の昇温遅延及びこれらの現象に関連すると考えられている極域成層圏雲(Polar Stratospheric Clouds;以下 PSCs と記す)の影響を紹介し,1999年の成層圏オゾン減少と低温について考察する.

10.1. オゾン層破壊過程の概要

オゾン破壊とは、オゾン(O_3)が活性な触媒物質の作用により、次々と酸素分子(O_2)に 変化させられることである.この触媒物質の役割を果たす物質には窒素酸化物(NO_x :主に $NO \ge NO_2$)や塩素酸化物(ClO_x :主に $Cl \ge ClO$)などがある.このうち塩素原子(Cl)は 人為起源のガスであるフロン等に含まれて大気中に放出され成層圏にまで達するが、下部成 層圏においては塩化水素(HCl)や硝酸塩素($ClONO_2$)などの一成分として存在することが 多い. 本来,硝酸塩素は活性な一酸化塩素(ClO)と二酸化窒素(NO₂)が反応してできたもので 不活性である.しかし,反応場に PSCs 粒子が存在するような特殊な場合は,その粒子表面に おいて不均一反応と呼ばれる,異なる相の物質間の化学反応が発生する.不均一反応の結果, 窒素酸化物(NO₂)の部分は PSCs 粒子内に硝酸(HNO₃)の一成分として取り込まれる.そ の一方で,塩素ガス(Cl₂)が下部成層圏に放出され蓄積される.塩素ガスは極夜明けに照射 する太陽光によって光解離(Cl₂→Cl+Cl)し,触媒となってオゾンと反応する(Cl+O₃→O₂ +ClO, ClO+O→O₂+Cl).結果的に塩素原子は1個のオゾン分子と1個の酸素原子を2個 の酸素分子に変換するが、塩素原子自体は安定な分子にとどまることなく反応を繰り返す. これがオゾンの破壊サイクルである.

一方, PSCs に取り込まれた窒素酸化物 (NO_x) は PSCs が融解するまでは硝酸の一成分と して取り込まれたままであるから,一酸化塩素 (CIO) と反応することがない. その上, PSCs に取り込まれたまま成層圏から落下する場合 (脱窒作用) もあるため,活性な塩素原子はほ とんど減少しない. このような反応が繰り返されてオゾンが急速に減少すると考えられてお り, 南極下部成層圏の特殊な条件下で発生する大規模なオゾン破壊サイクルとして注目され ている (気象庁, 1999).

10.2. オゾンホール面積の経過

衛星搭載の TOMS (Total Ozone Mapping Spectrometer) データによる南半球のオゾン全量 分布において、オゾンホールと呼ばれる 220 m atm-cm 以下の領域は観測開始直後の 1979 年 には現れていなかった (図 56). しかし、1980 年代に急激に規模を拡大しており、1992 年以 降は継続して大規模となっている (気象庁、1999). また、オゾンホールの解消も遅れる傾向

図 56 オゾンホール面積最大値の年変化 (1978–1999 年) Fig. 56. Time series of maximum values of ozone hole area (1978–1999).

256

図 57 1999 年および過去最大の日々のオゾンホール面積(1978-1999年)

 過去最大の日々のオゾンホール面積
 : 1999 年の日々のオゾンホール面積

Fig. 57. Ozone hole area in 1999, and maximum of ozone hole area (1978-1999).

で、図 57 に示すように 12 月の日別最大面積の大部分を 1999 年に更新している.

1999 年のオゾンホール面積の経過を見ると、オゾンホールの目安である 220 m atm-cm 以下の領域は 8 月下旬から急速に発達し 9 月 15 日に 2504 万 km² を記録した(これは過去 3 番目に広い). その後、その領域は徐々に縮小し、12 月の上旬にはさらに急激に縮小した. 14 日には一旦見られなくなったオゾンホールは 17 日に再度出現し、 26 日まで継続して存在していた(気象庁、1999). 4.3.1 節でも述べたように、昭和基地のオゾン全量日代表値が 220 m atm-cm となった最後の日は、12 月 25 日と過去最も遅かった(図 10).

10.3. 昭和基地での観測

10.3.1. オゾン全量減少の経過

昭和基地におけるオゾン全量は経年的に減少傾向であり,図 58 に示した 1969 年から 1999 年までの期間における月平均オゾン全量の推移を見ると「10 年で 27 m atm-cm の減少傾向」 (フィット直線)である.

表 22 は季節的なオゾン全量減少の特徴をみるために,昭和基地においてオゾン全量観測 値が極夜期も含めて連続的に得られている 1982 年から 1999 年までの 18 年間のデータを用 いて,各月別の増減の傾向を求めたものである.結果は各月とも減少傾向であったが、3 月か ら7月にかけての減少傾向は有意ではなかった(有意水準 95%,以下同じ).図 59 には,特 に減少傾向が大きい 8 月から 12 月までの月別の平均オゾン全量の経過を示す.この時期は オゾンホールの形成期から消滅期にあたるが、この図からも明らかなように期間を通じて昭 和基地上空はオゾン全量の減少が進行していることが分かる.中でもオゾン全量の回復期に

図 58 昭和基地における月平均オゾン全量値の経過(1969-1999年) Fig. 58. Time series of monthly means of total ozone at Syowa Station (1969-1999).

表 22 昭和基地におけるオゾン全量トレンド(1982–1999年) *Table 22. Trend of total ozone at Syowa Station (1982–1999).*

月	1月	2月	3月	4月	5月	6月
トレンド (m atm-cm/year)	-1.22	-1.36	-0.71	-0. 32	-1.90	-0. 41
相関係数	-0.63	-0.51	-0.30	-0.13	-0.37	-0.13
		0.11	0.11	10 1	11.13	10.5
月	(月	8月	9月	10月	日月	12月
トレンド (m atm-cm/year)	-1.63	-3.92	-4.63	-5.34	-4.54	-3.93
相関係数	-0.41	-0.71	-0.67	-0.61	-0.57	-0.74

あたる 11 月は, 1998 年から 1999 年にかけてオゾンホールの目安とされている 220 m atm-cm を月平均値でも下回ってきていることから,昭和基地がオゾンホールから脱する時 期が遅れる傾向にあると言える.

昭和基地上空のオゾンホール出現, 消滅時期の傾向を見るため, 図 60 に 1982 年からの月 別オゾン全量平均値を示し, その上に各年において初めてオゾンホールの目安となる 220 m atm-cm 以下の全量値を観測した日を,最後に観測した日を▽として示した. 図中の直線は, それぞれのフィット直線であるが,この直線の間隔が開く傾向にあることから,1980 年代初 頭に出現したオゾン全量の急減期間は 1999 年にいたるまで消長を繰り返しながらも拡大の 傾向にあることが分かる.また,出現の変動に比べ消滅の変動が大きいことも分かる.原因 としては,極渦の発達や突然昇温などが考えられる.

10.3.2. 成層圏のオゾン減少と気温の経過

(1) オゾン減少と成層圏気温の関連

成層圏においては、オゾンの紫外線吸収による発熱が熱源となっていることが知られてい

図 59 昭和基地上空における月別オゾン全量平均値の変化(1982–1999 年) Fig. 59. Seasonal variations of monthly mean of total ozone above Syowa Station (1982–1999).

る. そのため,成層圏におけるオゾンの増減は,上層の気温に影響を与えることが考えられる(気象庁,1999).

オゾンゾンデの連続したデータが得られている 1987 年から 1999 年までの 13 年間につい て,それらの相関を調べた.図 61 に下部成層圏(30,50,70,100 hPa)におけるオゾン分圧 と気温の変動を期間累年平均値からの偏差の 13 カ月移動平均で示した.下部成層圏におい て両者の変動は経年的にほぼ一致している.

期間中のオゾン分圧,気温の増減傾向を月別・高度別に示した図 62 では、オゾン分圧、気

東島圭志郎ら

図 60 昭和基地における月別オゾン全量平均値のコンターグラフ(1982-1999年)
△: 初めてオゾンホールの目安となる 220 m atm-cm 以下の全量値を観測した日
▽: 最後に 220 m atm-cm 以下の全量値を観測した日

Fig. 60. Contour graph for monthly means of total ozone at Syowa Station (1982–1999).

温とも 9-12 月の下部成層圏においてマイナスのトレンドが共通している. さらに, オゾン分 圧と気温の増減傾向の相関を月別,指定気圧面別に比較するために,それぞれの累年平均値 からの偏差の変化傾向を求め,その相関係数 0.7 以上を図 63 に示す.季節的には 9-12 月の 下部成層圏において,オゾンと気温の変動には強い正の相関があり,オゾン分圧低下と気温 低下の時期・高度はほぼ一致している.このことは,オゾンの減少が気温の低下をもたらし ていることを示唆している.9-12 月は極夜明けの昇温期にあたるため,この時期の成層圏気 温のマイナストレンドは昇温の遅延傾向を意味する.

(2) オゾン減少と12月20hPa付近の高温

詳細についてさらに検討が必要ではあるが、オゾン全量の経年変化と関連すると考えられる 20 hPa 付近の気温の経年変化について報告する.

10.3.1. では、オゾン全量の減少に伴って 11-12 月の 50-100 hPa を中心として気温低下傾向であることを述べたが、12 月の 20 hPa 付近の気温は低下しておらず、図6 に示すように 1999 年には 20-30 hPa の気温が過去最高となった.

図 64 は、12 月の月平均値が連続的に得られている 1968-1999 年の月平均オゾン全量と 20 hPa の月平均気温の経年変化である. この期間,12 月のオゾン全量は経年的に減少傾向である. 20 hPa の気温は 1983 年頃までオゾン全量と同様に低下傾向であったが、1984 年以降に低下傾向は無い.そこで、12 月のオゾン全量と 20 hPa の気温の相関を、1983 年以前,1984 年以後について調べたのが図 65 である. 相関係数は、1983 年以前が正の相関で 0.69、1984 年以後が負の相関で 0.74 と両者とも比較的高い相関があり有意であった. 特に 1984 年以後に

図 61 オゾン分圧及び気温偏差の経年変化(13カ月移動平均) Fig. 61. Time series of ozone partial pressure and air temperature at 30, 50, 70, and 100 hPa, and deviations (13-month moving average).

見られる両者の年々変化は良く対応しており、何らかの因果関係があるように見える.

20 hPa 付近の気温を決定する主な要因としては、南北方向の水平温度移流、オゾンによる 発熱の有無、鉛直流による断熱変化などが考えられる. 1987 年以降の 20 hPa におけるオゾ ン分圧と気温には 0.36 と弱い正の相関はあるが有意ではなく、1999 年 12 月の 20 hPa にお けるオゾン分圧も気温の高さに見合うほど高い値ではなかった. また、南北成分風には経年 的な変化傾向は見られない(図 5).

12月の20hPaの高度はオゾン全量の減少に伴う低温によって気柱の層厚が減じたため低 下傾向である.1984年以降の12月の20hPa高度と気温の回帰分析によれば,高度に対する 気温の経年的な変化率は-9.2K/kmである.この変化率は乾燥断熱減率に近く,20hPaより 高い層からの下降流が存在すれば断熱昇温として説明できる.廣岡ら(2000)は,北半球成

Height (km) -0.4 -0.2 Standard pressure levels (hPa) Standard pressure levels (hPa) -Ò. 8 ľ Ò Ó 9 10 11 12 10 11 12 Month Month Ozone partial pressure trend Temperature trend (mPa/year) (°C/year)

図 62 オゾン分圧及び気温のトレンド Fig. 62. Trends of ozone partial pressure and air temperature.

Fig. 65. Correration between the monthly mean total ozone and monthly mean temperature at 20 hPa for December.

層圏オゾンの減少に伴い低温化する層がある一方で、その上層では強制下降流によって昇温 する層があることを数値実験で示しているが、このように、オゾンの減少によって発生する 力学的な変化は南半球においても概ね同様と考えられる.気象庁(1999)の1999年12月の 南半球高度・緯度断面図によれば、南緯60度以南の下部成層圏50hPa以下では著しい気温 負偏差となっている一方で、30hPa以上の高い層では著しい気温正偏差となっており、成層 圏における温度の逆転が非常に大きくなっていた.下部成層圏において低温傾向が大きいの は100-70hPa付近の高度であり、1987年以降の20hPaのオゾン分圧には明瞭な増減の傾向 は見られない.よって、1984年以降の20hPaの気温とオゾン全量との負相関は、オゾンホー ル発現以降の下部成層圏低温化とそれより上層側で生じた下降流による断熱昇温との関係を 示すものではないかと考えられる.ここで述べたようなオゾン全量と気温の負相関や、経年 的な高度に対する気温の変化率が負となる関係は1984年以降の15-30hPaに見られる.一 方、オゾン全量が比較的多かった1983年以前にはこのような関係は見られなかった.また、 オゾンの減少傾向が顕著な50-100hPaにおいては高度に対する気温の変化率が正となって おり、気温の変化は主にオゾン分圧の変化に支配されている.

10.3.3. 成層圏突然昇温と極渦の経過

近年昭和基地上空 100 hPa では極夜明けの昇温遅延が明瞭であり、極渦が遅い時期まで安定して存続していることの現れであることが指摘されている(気象庁, 1999). 図 66 は成層

——: 100 hPa 気温の近似直線

—: 100 hPa 西成分風の近似直線

Fig. 66. Time series of air temperature and westward component of wind at 100 hPa above Syowa Station.

圏の昇温時期にあたる 11 月の昭和基地上空 100 hPa における気温と西成分風の経年変化を示している.気温は低温化が明瞭であり,西成分風は強まる傾向が見られる.これは,成層 圏における昇温の遅延と,それに伴って極渦(西風ジェット)が維持されていることの現れである.

昇温現象の中でも、特に極渦の崩壊に関連する現象として成層圏突然昇温があり、極域成 層圏の大気循環に劇的な変化をもたらすことが知られている.昭和基地上空における 1982 年以降の突然昇温発生状況を、WMOの定める成層圏突然昇温警報(ストラトアラート)の 通報基準「1週間に 25 度以上の昇温」を目安に、50 hPa 面について調べたのが図 67 である. 図には昇温量が通報基準を満たした各年について、最後に発現した突然昇温のデータをプ ロットしている.年々変動は大きいものの、発現が遅い時期にずれ込み、昇温量も小さくな る傾向が見られる.

10.3.4. エアロゾルゾンデ観測

南極成層圏におけるオゾン破壊メカニズムに大きく関与すると言われている, PSCs について,第40次隊の観測結果から考察する.

オゾンホール発現に関与する PSCs の観測を目的としたエアロゾルゾンデ観測を 6-9 月に かけて 4 回実施した(表 17). このうち 6-7 月の極夜期には,ほぼ 10 日おきに 3 回の観測を 行った.いずれの観測においても PSCs と考えられる粒子(半径>1.8µm)の増加を検出して いる.この頃,地平線近くの空が異常に赤く染まる現象が連続しており,白く輝くほどのも のは見られなかったがベール状,或いは筋状のような PSCs を毎日のように目視した.

東島圭志郎ら

図 36 にも示したように下部成層圏においては6月6日頃の高度 24 km 付近から気温 -80℃以下の層が出現し始めていた.この低温層は下層まで日を追って拡大し,6月18日に は高度 15 km 以上の層で気温-80℃以下, 高度 19 km 以上の層で気温-85℃以下となるな ど冷却が進んでいた. その後, 気温-85℃以下の層は8月下旬まで, -80℃以下の層は9月 中旬まで下部成層圏に存在した.この期間中に実施した4回のエアロゾルゾンデ観測では、 図 35 に示すとおりいずれの観測においても半径>1.8 µm の巨大粒子を観測した. 成層圏に おいてこれらのような巨大粒子が観測されることは,他の季節にはなかったことであり, PSCsの粒子を捉えたものと考えられる。巨大粒子が存在した高度範囲は 1-24 km, 気温は概 ね-75℃以下であった. 但し, 最も多くの巨大粒子を観測した7月11日だけは対流圏界面 付近の高度約 10km,約-68℃と気温の高い層でも巨大粒子が観測されており,6.4.1 節で述 べたように成長して落下した粒子が対流圏界面付近に滞留していたのではないかと考えられ る.また,冬期のエアロゾルゾンデ観測では,大径粒子が卓越した層や小径粒子が卓越した 層が同時に複数観測されており、粒子の存在高度や発達程度は変化していた.この時期上空 のオゾンは、まだ減少していない(図12).また、冬期のエアロゾルゾンデ観測によって 6-9月の長期にわたって、PSCsと考えられる巨大粒子が成層圏に存在していたこともわかっ た (図 35).

10.1 節で述べたとおり,極夜が終わり下部成層圏に蓄積された塩素分子に太陽光が照射す るようになると,光解離して塩素原子を発生し,その関与によりオゾン破壊が進むようにな る. 1999 年の極夜明けにおいて,オゾン全量の日代表値がオゾンホールの目安である 220 m atm-cm 以下となった初日の 8 月 22 日を挟むオゾンゾンデ観測,8月 21 日と 25 日のオゾン 分圧を図 68 に示す.8月 25 日のオゾン分圧は 21 日に比べ,明らかに下部成層圏で大きく低 下していることが分かる.図12 のオゾン分圧を見ると,8月 25 日以後下部成層圏のオゾン

図 68 昭和基地における 1999 年 8 月 21 日と 8 月 25 日のオゾン分圧 Fig. 68. Ozone partial pressure on Aug. 21 and 25, 1999 at Syowa Station.

266

図 69 昭和基地における 1999 年 7 月 12 日と 10 月 27 日のオゾン分圧 : 1999 年 7 月 11 日のエアロゾルゾンデ観測により PSCs の粒子が観測された高度 Fig. 69. Ozone partial pressure on July 12 and Oct. 25, 1999 at Syowa Station.

分圧は低下を続け、10月初めから11月初めまではオゾン分圧がおおむね3mPa以下のきわめて低い値が、100hPa付近から40hPa付近の広範な高度で継続して観測された.この高度範囲ではオゾンがほとんど破壊されていたと考えられる.

図 69 は、PSCs がオゾン破壊に関与する前後の上空のオゾン状態を調べるために、エアロ ゾルゾンデ観測によって大規模な PSCs (半径>1.8µm)が観測された翌日の7月12日と、オ ゾンの破壊が進んだ 10月27日のオゾン分圧を示している.図12によると、この時点ではオ ゾン分圧が低下するような変化はまだみられず、その後8月21日までオゾン分圧の低下は 観測されなかった.これに対し10月27日の観測結果では、下部成層圏のオゾン分圧が激減 している.これは、極夜期に PSCs 粒子表面の不均一反応で放出された塩素分子などが、極夜 明けに光解離して活性化しオゾンを破壊するというシナリオに調和する結果である.ハッチ ングの部分は7月11日のエアロゾルゾンデ観測で PSCs とみられる粒子(半径>1.8µm)の 増加が観測された高度範囲であるが、この範囲においてオゾン分圧の減少がみられ、PSCsの 影響を間接的にうかがわせる.特に高度15kmから20kmでの減少が著しく、ほぼ完全にオ ゾンが破壊されていたと考えられる.

10.3.5. オゾンホールと UV-B

5.3.3 節でオゾン全量と UV-B 強度との間には,高い相関があることを述べた.ここでは, オゾンホールの動向と UV-B 強度の関係を,上層大気の状態を含めて考察する.

図 70 に 1999 年 9 月~2000 年 1 月までの全天日射量, UV-B 強度, オゾン全量値及び 30, 50 hPa の気温を示す. 昭和基地は位置的にオゾンホールの周辺部にあたるため, オゾンホー ルの形状の影響を受けやすい. 1999 年は 11 月上旬までオゾンホール内に昭和基地が位置し ていたため, 図 70 の 30 hPa, 50 hPa の気温及びオゾン全量は, 低い値で推移している. その

Fig. 70. Time series of the amount of global solar radiation, UV-B strength, total ozone, 30 and 50 hPa air temperature (Sep. 1999–Jan. 2000).

後オゾンホールが解消に向かい,11月下旬から気温の上昇,オゾン全量値の上昇,紫外線量 の急減と大きな変動が見られた.この大きな日々変動の始まりとなったのは11月21日頃を ピークとして発現した成層圏突然昇温である.図4,12でもこの頃から20-50hPaで気温と オゾン分圧に上昇が見られる.特に12月に入ってからは,オゾン量の回復に伴ってUV-Bは 夏至を待たずに減少傾向に転じている.しかし,その後,30hPa,50hPaの気温はほぼ変らぬ 値で推移し,オゾン全量値と紫外線量は一旦減少・増加の傾向を見せ,そのままの状態で12 月下旬まで推移している.これは,昭和基地上空が再びオゾンホールの周辺部に入ったため である.

10.4. 1999年の成層圏オゾン減少と低温について

(1) 1999年の特徴

1999年に第40次隊が観測した以下の事実は、ここまで述べた成層圏オゾン減少と昇温遅延の関係を強く反映した結果であると考える.

- ・3.3 節で述べたように、11-12 月の 50-100 hPa を中心とした下部成層圏における月平均気 温が過去最も低かった.
- ・11-12月の下部成層圏における月平均西成分風が平年より明らかに強まっており(図5), 極渦の維持を示唆している.夏期の極域成層圏ではオゾンの発熱によって高温域となり東 西成分風は負(東風)であることが知られている.昭和基地における1969年以降の累年月 統計(03LT)によれば12月の昭和基地上空20hPaでも月平均東西成分風は東成分が卓越 してきた.しかし,1977年頃から経年的に東成分風が弱まる傾向があり,1998年からは遂 に西成分風が卓越して1999年も継続していることが分かった.
- (2) まとめ

昭和基地上空におけるオゾン減少と下部成層圏低温化の関連について述べ,いずれも回復 時期が遅れる傾向にあることを示した.問題はこれらの循環関係である.

南極上空のオゾン減少は、人類起源の塩素含有ガスが地球規模の大気の循環で極域に集め られ、極夜期に南極下部成層圏において、極渦などの影響により低温となった時に形成され る PSCs の関与により塩素ガスが放出、蓄積され、それが極夜明けに太陽光の照射により光 解離し、触媒となってオゾンを連続的に破壊する現象である.ひとたびオゾンが大量に破壊 されると、主たる熱源を失った下部成層圏では極夜明けの昇温が遅れ、低温の大気が強い極 渦を維持することによって、結果的に低緯度側からのオゾン輸送が妨げられる負のフィード バック効果が考えられる.

経年的にオゾン全量と下部成層圏の気温に高い相関があることを述べたが、少なくとも第 40次隊では春の下部成層圏で記録的に低い月平均気温を観測していた.この低温層では本来 豊富に存在していたはずのオゾン分圧が激減しており、その高度範囲は極夜期に PSCs と考 えられる巨大粒子が観測されていた高度であったことが分かった.これらの観測結果は、こ れまでに蓄積されたデータによって明らかになったオゾンホールの長期化や、下部成層圏の 経年的な昇温遅延傾向を裏付けるものである.昇温の遅延によってオゾンホールを取り囲む 極渦が維持され、極渦の崩壊と関係する成層圏突然昇温はピークの発現が11月21日頃と遅 く小規模であった.また、12月のオゾンホール日別最大面積はほとんどが1999年に更新さ れ、昭和基地がオゾンホールから脱した日は過去最も遅かった.これらは、全てオゾンの減 少に始まる一連の循環関係に繋がる,或いは派生した現象である.

これまで述べた循環関係が今後どのように変化し、大気にどのような力学的変化を与えるのか、観測の継続と分析が必要である.

謝 辞

第40次観測隊の気象定常観測を遂行するにあたり,観測上の技術的援助・助言をいただ いた国立極地研究所の白石和行観測隊長ほか第40次観測隊員の皆様,南極観測事務室,高層 気象台ほか気象庁の皆様,並びに船上観測でご支援をいただいた南極観測船「しらせ」の 方々に感謝いたします.また,地上気象観測に関して金戸進東京航空地方気象台観測課長, 日射・放射観測資料をまとめるにあたり,助言・ご指導をいただいた高層気象台の廣瀬保雄 主任研究官,柴田誠司研究官,内陸旅行での技術的指導及びルート図を気象部門報告用とし て作成いただいた国立極地研究所の古川晶雄氏にお礼申し上げます.

この報告をまとめるにあたり,気象庁の野村保夫南極観測事務室長,第 39 次観測隊気象部 門の方にご指導をいただき,厚くお礼を申し上げます.

文 献

- 青木周司(1997):昭和基地及び「しらせ」船上における地上オゾン濃度の連続観測. 南極資料, 41, 231-247.
- 江崎雄治・林 政彦・山内 恭(1998):昭和基地における地上オゾン急減現象(SOD)とそのバックト ラジェクトリー解析—1997 年 8 月 28-29 日の SOD の事例解析—. 第 21 回極域気水圏シンポジウム プログラム・講演要旨. 東京,国立極地研究所, 129-130.
- 江崎雄治・栗田邦明・松島 功・木津暢彦・中嶋哲二・金戸 進(2000):第38次南極地域観測隊気象 部門報告1997. 南極資料, 44, 125-204.
- 藤原玄夫・林 政彦・安井元昭(1999): バルーンを用いた成層圏エーロゾルの観測研究. 科学技術振興 調整費「成層圏の変動とその気候に及ぼす影響に関する国際共同研究」 第 I 期平成 7 年度~平成 9 年度成果報告書,科学技術庁研究開発局.
- Herber, A., Thomason, L.W., Dethloff, K., Viterbo, P., Radionov, V.F. and Leiterer, U. (1996): Volcanic perturbation of the atmosphere in both polar region: 1991–1994. J. Geophys. Res., **101**, 3921–3928.
- 廣岡俊彦・伊藤久徳・三好勉信・川平浩二(2000):成層圏オゾンと大気大循環の変動に関する研究. 科 学研究費補助金「特定領域研究 B」成層圏力学過程とオゾンの変動およびその気候への影響.
- 稲川 譲・山本義勝・田口雄二・阿保敏広・居島 修(1997):第35次南極地域観測隊気象部門報告 1994. 南極資料, 41, 549-588.
- 石田恭市・鈴木剛彦・酒井重典(1971): 第10次南極地域観測隊気象部門報告. 南極資料, 39, 19-31.
- Japan Meteorological Agency (2000): Antarctic Meteorological Data, 40 (CD-ROM).
- 金戸 進(1997): ピナツボ噴火と昭和の気候. 南極資料, 41, 285-290.
- 気象庁(1990a):地上気象観測統計指針. 東京, 124 p.
- 気象庁(1990b):国際気象通報式(第8版).東京,1-65,497.
- 気象庁(1991):オゾン観測指針.オゾン全量反転観測編.東京,91 p.
- 気象庁(1993a):地上気象観測指針. 東京, 167 p.
- 気象庁(1993b):紫外域日射観測指針. 東京, 83p.
- 気象庁(1995):高層気象観測指針. 東京, 5-3, 5-6, 128.
- 気象庁(1997): オゾン観測指針. オゾンゾンデ観測編. 東京, 60 p.
- 気象庁(1999):近年における世界の異常気象と気候変動~その実態と見通し~(IV)(各論).東京,92-106,219-230.

岸 隆幸·安田毅彦·吹田俊明·堀川和久·大河原望(2002):第39次南極地域観測隊気象部門報告 1998. 南極資料, 46, 318-376.

国立極地研究所編(1988): 南極の科学 3. 気象. 東京, 古今書院, 109-119.

- 松原和正・小城良友・岸 隆幸・五十嵐寛・東島圭志郎 (1995): 第33次南極地域観測隊気象部門報告 1992. 南極資料, **39**, 264–302.
- 宮本仁美・中村雅道・成田 修・横田 歩・森永裕幸(1999):第37次南極地域観測隊気象部門報告 1996. 南極資料, 43, 477-533.
- 佐藤 隆・吉見英史・竹川元章・宮内誠司・中村辰男(1998):第36次南極地域観測隊気象部門報告 1995. 南極資料, 43, 96-161.
- 柴田誠司・伊藤真人・能登美之・上野丈夫・岡本利次(2000): 全天型紫外域日射計の感度変化と測定精 度. 高層気象台彙報, 60, 17-24.

Young, A.T. (1981): On the Raylight-scattering optical depth of atmosphere. J. Appl. Meteorol., 20, 328-330.