一報告-*Report*

北半球中・高緯度における硫化カルボニル (COS) の 濃度の緯度分布

猪 股 弥 生^{i*} • 松 永 捷 司^{i*} • 長 田 和 雄^{i*} • 渡 辺 征 春² • 岩 坂 泰 信^{i*}

Latitudinal distributions of carbonyl sulfide (COS) over mid-high latitude in the Northern Hemisphere

Yayoi Inomata^{1*}, Katsuji Matsunaga^{1*}, Kazuo Osada^{1*}, Masaharu Watanabe² and Yasunobu Iwasaka^{1*}

Abstract: Concentrations of COS in the stratosphere and troposphere were determined from grab samples collected at altitudes ranging from 0.3-12 km during an aircraft flight over mid-high latitude in the Arctic Airborne Measurement Program 1998 (AAMP 98). Concentrations of COS in the troposphere were almost constant within the range of 378-433 pptv. Taking into account the lower abundance of CS₂, the photochemical production of COS from CS₂ oxidation was less for atmospheric COS north of 53°N. In the stratosphere below 12 km altitude, average concentrations of COS were lower than those in the troposphere. However, concentrations of COS decreased with increasing altitude 1-2 km above the tropopause. It is thought that the photochemical oxidation of COS in the lowest part of the stratosphere was less during the observation period.

要旨: 北極航空機観測 (AAMP 98) において,北半球中・高緯度上空の対流 圏・下部成層圏で大気試料を採取し,硫化カルボニル (COS)の濃度を測定し た.53°N以北の対流圏における COS 濃度は 378-433 pptvの範囲でほぼ一定の 濃度分布であり,緯度による濃度差は認められなかった.二硫化炭素 (CS₂)の 濃度が非常に低いことから,53°N以北の大気中では CS₂の光化学反応によって 付加される COS 量は少ない可能性が示唆された.高度 12 kmにおける下部成 層圏の COS の平均濃度は対流圏内の濃度と比較して低いことが認められた.し かし,圏界面に対して 1-2 km 高い領域では COS 濃度は高度が高いほど濃度が 減少する傾向が非常にわずかに認められたにすぎない.このことから,極夜明け 直後の下部成層圏では光化学反応による COS 濃度の減少は非常に少ないもの と推察された.

南極資料, Vol. 46, No. 1A, 155-166, 2002 Nankyoku Shiryô (Antarctic Record), Vol. 46, No. 1A, 155-166, 2002 © 2002 National Institute of Polar Research

[「]名古屋大学太陽地球環境研究所. Solar-Terrestrial Environment Laboratory, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601.

²宇宙開発事業団・地球観測データ解析センター。Earth Observation Research Center, National Space Development Agency of Japan, Harumi, Chuo-ku, Tokyo 104-6023.

^{*}Present address: 名古屋大学大学院環境学研究科. Graduate School of Environmental Studies, Division of Earth and Environmental Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8601.

1. はじめに

硫化カルボニル (COS) は対流圏では非常に安定であるために,濃度がほぼ均一であるといわれている.この COS は成層圏内の強い紫外光線で光化学分解され,二酸化硫黄 (SO₂) を経て SO₃ となり,最終的に硫酸エアロゾルとなる.このため,大規模な火山噴火により大量に成層圏に直接注入される二酸化硫黄を除くと,対流圏の COS は成層圏の主要な硫黄供給源であるとされている (Crutzen *et al.*, 1976; Hoffman, 1990).成層圏エアロゾル粒子は不均一反応場として作用し,オゾンの消滅速度や太陽光を散乱させることにより地球の放射収支を変えるなど,地球環境に深く関係していることが指摘されている (Turco *et al.*, 1982; Hofmann and Solomon., 1989; Rodrigetz *et al.*, 1991).

COS は,海洋や土壌などからの自然発生に加え,工業活動やバイオマス燃焼などの人間活動 により直接大気中に放出される.しかし,対流圏の COS の一部は CS₂ と OH ラジカルとの光 化学反応により,大気中で生成されるものもあると報告されている (Chin and Davis, 1993). これらの COS の発生・生成過程のうち,自然発生源からと人間活動による放出量は,ほぼ等 しいとされている (Chin and Davis, 1993).しかし,工業活動の活発な地域では非常に高濃度 の COS が観測されており,工業活動によって放出された CS₂ と OH ラジカルとの光化学反応 による生成を考慮すべきであるとの指摘もある (Dippell and Jaeschke, 1996).

大気中の COS の物質循環についての評価を行うためには、広域にわたり測定する必要があ る.しかし、北半球中緯度には自然発生源に加えて人為的な発生源が多く存在するため、この 地域での鉛直および水平濃度分布の測定から COS の物質循環を評価することは極めて困難で ある.そこで、人為的な発生源が少ないと思われる高緯度での鉛直および水平濃度分布の測定 は有用であると思われる、本研究では、北半球中・高緯度における対流圏一下部成層圏の COS 濃度の鉛直分布、水平分布を明らかにすることから、COS の物質循環現象を解明することを目 的として日本から北極圏への航空機観測を行った。

2. 大気試料の採取と分析

大気試料の採取は、名古屋、ペテロパブロフスク (Petropavlovsk)、アンカレッジ (Anchorage)、バロー (Barrow)、ロングイヤービン (Longyearbyen) を結ぶ水平フライトと離着陸時の 上下フライト、ニーオルスン及びバロー上空の対流圏から下部成層圏までの鉛直方向のフライ トで行われた (Shiobara *et al.*, 1999). 大気試料は、機体上部に取り付けられた外気取り組み ロからテフロンチューブで機内に導入し、2台のメタルベローズポンプ (IWAK1, BA330SN) を用いて、ステンレススチール製のサンプリングフラスコ (1 L、日酸商事) に加圧採取され た.表1に大気試料が採取された日時、緯度、経度、高度を示す.合計 35本の大気試料が得 られた.あらかじめ行った大気試料保存実験では、フラスコ内に採取された COS の濃度は 14

年月日	フライト サンプリング		サンプリング時間の平均		
	ルート	時間	高度	緯度	経度
		(世界時)	(m)	(度)	(度)
980305	NGY-PTR	23:49-23:51	5805	35.8	137.2
980306	NGY-PTR	00:53-00:57	11317	43.0	142.1
	PTR-ANC	04:43-04:44	4536	53.8	158.7
	PTR-ANC	06:43-06:45	3438	60.3	-177.5
980307	ANC-BAR	00:30-00:34	3640	66.3	-151.5
	ANC-BAR	01:21-01:25	11941	68.6	-154.1
	ANC-BAR	01:47-01:48	6756	72.0	-158.4
	ANC-BAR	01:56-01:58	6754	71.2	-156.8
	ANC-BAR	02:17-02:18	3283	70.7	-155.7
	ANC-BAR	02:33-02:34	3283	71.6	-157.4
980307	BAR-LGY	06:45-06:49	11928	82.1	-151.0
	BAR-LGY	09:02-09:05	11917	82.3	11.0
980308	NA	10:59-11:02	11906	79.0	8.3
	NA	11:17-11:19	9997	79.0	8.9
	NA	11:28-11:30	8272	79.0	9.3
	NA	11:40-11:42	6365	79.0	8.9
	NA	11:51-11:53	4663	79.0	8.7
	NA	12:03-12:05	2827	78.9	8.6
	NA	12:21-12:22	477	79.0	9.1
	NA	12:24-12:25	2388	78.8	9.5
980309	THRO	10:30-10:36	11935	75.1	14.5
	THRO	10:51-10:53	10247	73.1	13.2
980312	BAR	21:05-21:06	1551	71.7	-156.9
	BAR	21:12-21:13	3661	72.0	-157.2
	BAR	21:23-21:25	5996	72.0	-157.0
	BAR	21:30-21:32	8018	72.1	-157.0
	BAR	21:36-21:39	11940	71.9	-157.2
	BAR	21:44-21:48	10061	72.1	-157.0
980312	LGY-BAR	16:13-16:15	11927	86.0	11.0
	LGY-BAR	16:48-16:51	11921	89.8	-151.1
980314	PET	03:24-03:26	9126	54.5	160.5
	PET	03:34-03:36	/309	54.0	159.1
	PEI	03:38-03:39	5413	53.7	138.3
00001	PET	03:49-03:50	1/92	52,9	138.8
980314	PET-NGY	07:19-07:23	11933	43.7	145.2

表1 COS 測定用の大気試料を採取した日時,時間,緯度,経度 Table 1. The airs sampling time, altitude, latitude and longitude for COS measurement.

日間は変化しないことを確認している。

国内に持ちかえられた大気試料は,名古屋大学太陽地球環境研究所の実験室で分析した. COS の分離及び定量は,約 1000-3000 mL の大気試料を-80 度で低温濃縮後,温水でパージ し,ガスクロマトグラフ法 (GC-FPD, Shimazu GC-8A) で行った (Inomata *et al.*, 1999). ま た, CS₂ も同時に分離・定量した. COS 及び CS₂ の検出限界は,それぞれ 13 pL, 11 pL であっ た.

3. 北極圏における COS 濃度の鉛直分布

北極圏における COS 濃度の鉛直分布を図 la, b に示した.

図 la は, 1998 年 3 月 8 日のニーオルスン (Ny-Ålesund, 79°N) 上空における COS 濃度の鉛 直分布を示したものである. 温位の鉛直分布から境界層は高度 1.5 km 以下, 成層圏は 9 km 以 上であると推定された. 対流圏内の COS 濃度の平均値は 411±21 pptv で, 401-428 pptv の範囲 であった.

図 lb は, 1998 年 3 月 12 日のバロー (Barrow, 72°N) 上空で観測された COS 濃度の鉛直分 布を示したものである。温位の鉛直分布から,境界層は 0.5 km 以下,成層圏は 9.9 km 以上で あると推定された.対流圏における COS 濃度の平均値は 410±15 pptv で,404-420 pptv の範囲 で観測された.

ニーオルスンおよびバロー上空の対流圏における COS 濃度の差は認められなかった.また,いくつかの大気試料からは CS2 も同時に定量され,これらの大気試料については図に*を 付記した.

- 図1 ニーオルスン上空(1998年3月8日)(a)とバロー上空における(1998年3月12日) (b) COS 濃度の鉛直分布.図の下方の点線は境界層と自由対流圏の境界,上方の点線は 対流圏一成層圏の圏界面を示す.*印の大気試料からは CS² が定量された.
- Fig. 1. Vertical profile of the concentrations of COS (a) over Ny-Ålesund, March 8, 1998, and (b) over Barrow on March 12, 1998. The dotted lines are the boundaries of the boundary layer and the free troposphere (lower line), and the troposphere and the stratosphere (upper line). * indicates a CS_2 detected air sample.

成層圏における COS 濃度は、対流圏圏界面付近から下部成層圏にかけて減少する傾向が認 められ、これらは成層圏で COS が光化学反応により消費されているとする説と矛盾しない。こ れらの成層圏における COS の濃度減少傾向は、ニーオルスンに比べてバロー上空で大きいこ とが示唆された。

4. 対流圏における COS 濃度の緯度分布・鉛直分布

図2は、日本から北極圏までの航空機観測中の離発着時の上下フライトとニーオルスン及び バロー地域の鉛直プロファイルフライト時に採取された対流圏における大気試料について得 られた COS 濃度の鉛直分布を緯度ごと (79°N; ニーオルスン,68°-70°N; バロー付近,53°N; ペ テロパブロフスク, 35°N; 日本) に示したものである.

対流圏における COS 濃度は、日本上空(35° N) で観測された高濃度を別にすれば 378-433 pptv の範囲(平均濃度 412 ± 20 pptv)でほぼ一定であり、緯度による濃度差は認められなかった。CS₂ が同時に検出された試料も認められたが、それらの濃度は 20 pptv 以下であった。CS₂ の起源には、人間活動による人為源(化石燃料の燃焼、化繊工場、自動車の排煙等)と自然からの発生源(海洋、土壌、沼沢、湿地、火山など)があるといわれている。しかし、人間活動

図2 北半球中一高緯度で採取した対流圏大気中の COS 濃度の鉛直分布は.*印の大気試料 からは CS₂ が定量された.

Fig. 2. Vertical profile of the concentrations of COS in the troposphere over mid-high latitude in the northern hemisphere. * indicates a CS₂ detected air sample.

159

の活発な都市大気では人為源による CS₂ 放出量が自然源による放出量に比べて非常に多いこ とが指摘されている (Chin and Davis., 1993; Dippell and Jaeschke., 1996). OH ラジカルの平 均濃度をもとに計算した CS2 の平均寿命が数日であることを考慮すると (Tyndall and Ravishankara, 1991), CS₂の放出源が人為源・自然源いずれにせよ, CS₂が検出された大気はこの 大気が対流圏に注入されてからの経過時間が短いことを反映しているものと考えられる. Thronton et al. (1996) は、人間活動の影響をうけた大気の指標として CS2 の濃度を用いてい るが,若狭湾上空で観測されている CS2 濃度 (<185 pptv) と比較して,北極圏大気中の CS2 濃度は非常に低濃度であることが示唆された。自然の発生源による CS2 の放出の影響が同程 度であるとすれば、北極大気では若狭湾上空大気に比べて人為源による影響は少ないものと考 えられ、CS2の光化学反応により付加される COS も少なかったものと推察される. Inomata et al. (1999) は、1995-1998 年の期間,若狭湾上空 (35.5°N, 137°E) で行われた航空機観測 (高度 450-5500 m) によって得られた COS の濃度は 348-475 pptv の範囲 (平均濃度 399±40 pptv) であると報告している.53°N 以北,高度 5500 m 以下で採取された大気中の COS の平均濃度 (411±21 pptv) は, 若狭湾上空の COS 平均濃度と比較すると高濃度側に対応していたが, 変動 範囲内に含まれ、大きな濃度差は認められなかった.このことから、CS2の酸化により付加さ れる COS 量は大気中の COS 濃度の変動要因になっている可能性が示唆された. さらに, 厳密 な評価は不可能であるが,海洋・土壌・植物などによる COS の吸収等による除去機構も今後 考慮すべきものと思われる。

なお、ペテロパブロフスク近郊では、Kilchevskoi (56.06°N、160.64°E, 標高 4.8 km), Bezymianny (55.98°N、160.59°E, 標高 2.9 km), Karymsky (54.05°N、159.43°E, 標高 1.5 km) の噴火活 動が報告されている (Smithsonian Institution, 1998). ペテロパブロフスク上空 (53°N) で観測 された CS₂ については火山活動により放出された可能性も無視できない (Rasmussen *et al.*, 1982). しかし、CS₂ の検出された大気中の COS 濃度は、火山の影響をうけていないと考えら れる大気中で得られた COS 濃度とほぼ同じ濃度であったことから判断して、COS 濃度を変え るほどの CS₂ の付加は火山によってもたらされなかったものと推察される. 一方、AAMP 98 の日本上空で観測された COS 濃度は、Inomata *et al.* (1999) の報告値の高濃度に対応してい た. AAMP 98 の観測時、低気圧が日本南岸を通過していたこと、及び大気試料採取地点に近 い輪島や浜松上空のレーウィンゾンデによる観測では、高度 4-6 km 付近で高湿度が観測され ている (高層月報資料、気象庁月報) こと、人間活動が活発な日本の近くで CS₂ が同時に測定 されたことなどから判断すると、AAMP 98 で観測された高濃度の COS は、地表付近の人間活 動の影響をうけている大気が急激に上方に輸送された可能性を無視できないものと考えられ る. 5. 成層圏における COS 濃度の緯度分布・鉛直分布

図 3 に水平フライト観測の行われた高度 12 km における COS 濃度の緯度分布を示す。高度 12 km の COS 濃度の平均値は 364±23 pptv で対流圏のそれの平均値 (412±20 pptv) に比べ て低かった。しかし、68-70°N で観測された濃度は対流圏濃度に近い濃度であった。

冬季北極成層圏では極渦が形成され,大気は偏西風として西から東に北極をとりまいて流れ ている.この渦のために,中低緯度からの大気が極渦内部に流入することが妨げられる.この ために極渦内部の成層圏大気は,ほぼ孤立した状態となる.一方,中緯度の成層圏大気は,対 流圏内で生じる総観規模の大気擾乱の影響をうけやすい.特に,40-60°N付近では対流圏一成 層圏の圏界面不連続面があるために,成層圏の空気塊と対流圏のそれとの混合が起こりやすく なる (Holton *et al*, 1995).ここでは図示しなかったが,トラジェクトリー解析によると COS 濃度が比較的高い大気は,中緯度から高緯度へ輸送されていた.60-70°N で観測された比較的 高い濃度の COS は,対流圏の大気が等温位面に沿って成層圏へ輸送されたためであると考え られる.

成層圏における COS 濃度の変動を明らかにするために,対流圏起源の空気塊の流入が最も 少ないと考えられる極渦底下部の大気について,観測された COS 濃度と温位との関係を調べ た (図 4). 温位は高度とともに増加するため,温位が高いほど高い高度の大気が採取されたも のと考えられる.しかし,温位 320-368 K の範囲では,温位の違いによる COS の濃度差は濃 度の変動幅にふくまれ,あったとしてもわずかに認められているにすぎない.

図 5 に COS 濃度と渦位の散布図を示す。渦位は、大気が断熱的に輸送される時に保存され

図3 北半球下部成層圏 (高度 12 km) における COS 濃度の緯度分布

Fig. 3. Latitudinal distribution of the concentrations of COS at altitude 12 km in the lower stratosphere in the northern hemisphere.

- 図4 成層圏で採取した大気試料中の COS 濃度と温位の散布図. NA 及び BAR は,それぞ れニーオルスン,バロー上空で採取した大気試料.また,*印は 45°N で採取した大気 試料を示す.
- Fig. 4. A scatter plot of concentrations of COS against potential temperature in the stratospheric air samples. NA and B mean the air samples collected over Ny-Ålesund and Barrow, respectively. * means air collected at 45°N.

- 図5 成層圏で採取した大気試料中の COS 濃度と渦位の散布図. NA 及び BAR は,それぞ れニーオルスン,バロー上空で採取した大気試料.また,*印は 45°N で採取した大気 試料.
- Fig. 5. A scatter plot of concentrations of COS against potential vorticity in the stratospheric air samples. NA and B mean the air samples collected over Ny-Ålesund and Barrow, respectively. * means air collected at 45°N.

る物理量であり、大気の安定度がたかいほど高い値を示す.そのため、成層圏における渦位は 対流圏での値よりもはるかに大きい値を示す.従って、渦位の高い空気ほど、より高い高度の 大気であるものと考えられる.渦位の値は 3.3-9.5 PVU の範囲で変動していたが、それに対す る COS 濃度の変動傾向は温位に対する場合と同様に強くは認められなかったが、わずかに減 少しているようにも見える.

ニーオルスンやバロー上空で得られた個々の COS 濃度の鉛直分布からは、成層圏大気中の COS の濃度は高度の増加と共に減少する傾向がみられた.しかし、極渦底下部において観測さ れたすべての大気試料中の COS 濃度に対する温位・渦位の関係からは、COS 濃度の減少傾向 は認められないか、或いはわずかに認められるにすぎない.この理由として、ニーオルスンや バロー上空で観測された COS 濃度の減少傾向は、高度 10-12 km における COS 濃度変動範囲 内に近いものであったことがあげられる.さらに、観測は極夜明け直後の 3 月はじめに行われ

- 図6 1998 年 3 月 14 日 7 時 (世界標準時)の 360 K 等温位面における渦位断面図. 数字は渦 位を表す (単位 10⁻⁶ km² kg⁻¹ s⁻¹). 10 PVU と 8 PVU の渦位線を太線で示す. 斜線は渦 位が高い領域 (>10 PVU)を示す. ●は,図4と図5の*印の大気試料を採取した地 点.
- Fig. 6. Potential vorticity (PV) distribution on the isentropic surface of 360 K at 07UTC on 14 March 1998. The numbers denote the PV values in units of 10⁻⁶ km² kg⁻¹s⁻¹. The 10 and 8 PVU of the potential vorticity are indicated by the bold lines. Shaded areas indicate high potential vorticity. indicates the sampling sites of the * air samples as shown in Figs. 4 and 5.

163

猪股弥生ら

たために太陽光が弱く,下部成層圏での光化学反応による COS の酸化が非常に少ないために, 明確な減少傾向が認められなかったものと考えられる.これまでに行われた観測によると,高 度 20 km 以下では高度が高くなるにつれて COS の濃度が低くなることが報告されている (Kourtidis et al., 1995; Leifer, 1989).本観測でもより高い高度の大気を採取することができた ら, COS 濃度の減少傾向を明確に観測できた可能性もある.また,先に記述したように高度 12 km における COS の平均濃度は、対流圏における平均濃度と比較すると低いことが認められ ているため、これらのわずかな濃度差は成層圏上部の COS の濃度の低い空気塊と対流圏の空 気塊の混合による減少を反映しているのかもしれない.

中緯度と極の大気の境界域や中緯度で採取された大気中の COS 濃度と温位,渦位との関係 は,極渦底下部の大気と同様の傾向を示した (図 4, 5). 特に,45°N で採取された大気は極渦底 から離れているにもかかわらず, COS 濃度は低く,渦位・温位は高かった (図 4, 5*). この大 気試料が採取された 1998 年 3 月 14 日 7 時 (GMT) の 360 K 等温位面における渦位断面図を 図 6 に示す. 60°N 以北のユーラシア大陸やアメリカ大陸北部の一部に渦位が高い領域 (>10 PVU) が示されている.また,70-40°N 付近の領域には,北極域で観測された高渦位とほぼ等 しい値を示す領域が局在していたことが示されている.大気試料採取地点 (図 6 \bullet) は,比較 的渦位の高い領域であったこと,及び近年の N₂O の観測から得られている,極渦壁付近の底部 で空気塊の剝離が活発に生じていることを示唆する結果 (Bauer *et al.*, 1994) を考慮すると, 45°N 付近で採取された空気塊は極渦から離れ中緯度へ運ばれた可能性があることを示唆して いる.

6. まとめ

北半球中・高緯度における対流圏・下部成層圏の硫化カルボニルの濃度分布を明らかにす るため、北極航空機観測 (AAMP98) が実施された。大気試料はサンプリングフラスコ内に採 取されているため、得られた濃度分布はスポット的で限られたものでしかない。しかしながら、 北半球中・高緯度の硫化カルボニルの濃度の鉛直分布 (12 km 以下) 及び緯度分布 (35-90°N) を得ることができた。

対流圏における COS の濃度は、日本上空(35° N)で観測された高濃度を除けば、378-433 pptv の範囲(平均濃度 412 ± 20 pptv)であった。 53° N 以北の COS 濃度には、緯度による濃度 差は認められなく、若狭湾上空で観測された濃度と比較しても濃度差は認められなかった。 53° N 以北の観測領域では、比較的寿命が短い(数日程度)CS₂の濃度が殆どの大気試料で検出 されなかったこと、あるいは検出されてもその濃度は中緯度で観測された濃度と比較して非常 に低いことを考慮すると、 53° N 以北の観測領域では CS₂の光化学反応により生成された COS は非常に少ないものと推察される。厳密な評価のためには、海洋・土壌・植物などによる COS の吸収等による除去機構についても考慮すべきであり、今後の課題と考えられる。一方、 AAMP 98 において日本上空で観測された高濃度は、低気圧が通過していたことを考慮すると、人間活動の影響を強くうけた地上付近の空気塊が急速に上方へ輸送されたためであるものと推察された。

高度 12 km における COS 濃度の平均値は,対流圏で観測された平均値と比較して低いこと が認められた.しかし,下部成層圏 (高度 10-12 km)の大気における COS 濃度の鉛直分布か らは,高度が高いほど濃度が減少する傾向が,非常にわずかに認められたにすぎない.これら のことから,圏界面に近い下部成層圏 (圏界面上 1-2 km)での COS の光化学酸化率は非常に 少ないものと推察された.

今後,高緯度での観測例を増やせば, COS の物質循環現象を明らかにする上で重要なデータ になるであろう.

謝 辞

本研究では,航空機観測の際に大気試料の採取を宮城教育大学菅原敏先生,国立極地研究所 森本真司先生にお願いしました.また,本観測を行うにあたり,ダイヤモンドエアサービス株 式会社の方々に大変お世話になりました.等温位渦位断面図の作成には,科学技術振興事業団 の酒井哲氏によって作成されたプログラムを使用しました.ここに感謝いたします.本研究は, 科学研究費補助金 (課題番号 10144104 (代表者 岩坂泰信), 10144211 (代表者 松永捷司), 11131210 (代表者 松永捷司)) による補助をうけた.

文 献

- Bauer, R., Engel, A., Franken, H., Klein, E., Kulessa, C., Schiller, C., Schmidt, U., Borchers, R. and Lee, J. (1994): Monitoring the vertical structure of the Arctic polar vortex over northern Scandinavia during EASOE: Regular N₂O profile observations. Geophys. Res. Lett., 21, 1211-1214.
- Chin, M. and Davis, D.D. (1993): Global sources and sinks of OCS and CS₂ and their distributions, Global Biogeochem. Cycles, 7, 321-337.
- Crutzen, P.J. (1976): The possible importance of CSO for the sulfate layer of the stratosphere. Geophys. Res. Lett., **3**, 73-76.
- Dippell, J. and Jaeschke, W. (1996): A comparison between natural and anthropogenic emissions of the reduced sulfur compounds H₂S, COS, and CS₂ in a tropical industrialized region. J. Atmos. Chem., 25, 251-270.
- Hofmann, D.J. (1990): Increase in the stratospheric background sulfuric aerosol mass in the past 10 years. Science, **248**, 996-1000.
- Hofmann, D.J. and Solomon, S. (1989): Ozone destruction through heterogeneous chemistry following the eruption of El Chichon. J. Geophys. Res., 94, 11253-11270.
- Holton, J.R., Haynes, P.H., McIntyre, M.E., Douglass, A.R., Rood, R.B. and Pfister, L. (1995): Stratosphere-Troposphere exchange. Rev. Geophys., 33, 403-439.
- Inomata, Y., Matsunaga, K., Murai, Y., Osada, K. and Iwasaka, Y. (1999): Simultaneous measurement of volatile sulfur compounds using ascorbic acid. J. Chromatography A, 864, 111-119.
- Inomata, Y., Matsunaga, K., Osada, K., Hayashi, M., Kido, M., Hara, K., Iwasaka, Y. and Iida, T. (1999): Vertical distribution of volatile sulfur compounds over Wakasa bay, Japan. First Asia Aerosol Conference, Abstracts, 165-166.

- Kourdis, K.A., Borchera, R., Fabian, P. and Harnish, J. (1995): Carbonyl sulfide (COS) measurements in the arctic polar vortex. Geophys. Res. Lett., 22, 393-396.
- Leifer, R. (1989): Project Airstream: COS measurements in the tratosphere and troposphrere. J. Geophys. Res., 94, 5173-5181.
- Rasmussen, R.A., Khalil, M.A.K., Dalluge, R.W., Penkett, S.A. and Jones, B. (1982): Carbonyl sulfide and carbon disulfide from eruptions of Mt. St. Helens. Science, **215**, 665-667.
- Rodriguez, J.M., Ko, M.K.W. and Sze, N.D. (1991): Role of heterogeneous conversion of N₂O₅ on sulfate aerosols in global ozone loss. Nature, **352**, 134-137.
- Shiobara, M., Fujii, Y., Morimoto, S., Asuma, Y., Yamagata, S., Sugawara, S., Inomata, Y., Watanabe, M. and Machida, T. (1999): An overview and preliminary results from the arctic airborne measurement program 1998 campaign. Polar Meteorol. Glaciol., 13, 99-110.
- Smithsonian Institution (1998): Bulletin of the Global Volcanism Network, 23, 13.
- Thornton, D.C., Bandy, A.R., Blomquist, B.W. and Anderson, B.E. (1996): Impact of anthropogenic and biogenic sources and sinks on carbonyl sulfide in the North Pacific troposphere. J. Geophys. Res., 101, 1873-1881.
- Turco, R.P., Whitten, R.C. and Toon, O.B. (1982): Stratospheric aerosols: Observation and theory. Rev. Geophys. Space Phys., 20, 233-279.
- Tyndall, G.S. and Ravishankara, A.R. (1991): Atmospheric oxidation of reduced sulfur species. Int. J. Chem. Kinet., 23, 483-527.

(2000年10月20日受付; 2002年1月21日受理)