一報告一 *Report*

構造探査用地震波形収録装置の南極における動作特性

田中俊行¹・金尾政紀²

Performance Test of Seismic Data Loggers in Antarctica

Toshiyuki TANAKA¹ and Masaki KANAO²

Abstract: During the winter season of the 36th Japanese Antarctic Research Expedition (JARE-36; from February 1995 to January 1996), We carried out seismic observations using data loggers (Hakusan Corp. LS-8000VF and LS-8000 SH) around Syowa Station (69.0° S, 39.6° E). We did experiments to evaluate the capability of the loggers under meteorological conditions of Antarctica, such as low temperature. It was confirmed, even in the winter season, the loggers operated normally when a heater and blanket were used as protection against the cold. However, high voltage offsets and increasing input noise are seen at temperature below -40° C. In the spring and summer seasons, observations were carried out without any problems so that we could record some seismic waves. This report describes observation methods, observation results, discussions of noise levels, troubles encountered, and plans for future outdoor observations.

要旨:第36次日本南極地域観測隊地球物理定常部門は,地震波形収録用データロ ガー(白山工業 LS-8000VF, LS-8000SH)を用いた自然地震観測を昭和基地周辺で 行った.本観測は南極の自然条件下でのこれらのロガーの基本的動作性能を調べる ことを目的としている.数回の野外観測の結果,厳冬季でも低温対策を施すことに よって,正常に動作することが確認された.しかし,収録された波形は低温による 性能低下により,電圧オフセットが見られ,入力換算雑音もカタログ値を越えるも のとなった.春季~夏季は観測はおおむね順調で,いくつかの地震波形も記録した. 本報告では,観測方法,観測波形,ノイズレベルの評価,発生した故障と動作不良 について述べ,今後の野外観測の指針となることを目的とする.

1. まえがき

第36次日本南極地域観測隊 (JARE-36)の越冬中,著者の一人(田中)は,将来 エンダ ビーランドで計画されている人工地震探査(金尾,1996)で使用することを想定して,昭和 基地周辺において地震波形収録用データロガー(白山工業LS-8000VF,LS-8000SH)を用いた 自然地震観測を行った.その主な目的は,南極の厳しい自然環境下での同ロガーの基本的動 作性能を調べることである.本報告では観測方法,観測波形,ならびに発生した故障や動作 不良についてまとめた.また,ノイズレベルの考察を行うとともに,収録装置の性能の把握

南極資料, Vol. 40, No. 3, 333-346, 1996

Nankyoku Shiryô (Antarctic Record), Vol. 40, No. 3, 333-346, 1996

¹ 金沢大学理学部. Faculty of Science, Kanazawa University, Kakuma-machi, Kanazawa 920-11.

² 国立極地研究所. National Institute of Polar Research, 9-10, Kaga 1-chome, Itabashi-ku, Tokyo 173.

と問題点を明らかにし、今後の野外における機動観測の方針についての基礎資料となること を目指した.

2. 観測器材構成と観測の概要

本観測に用いた器材を以下に示す.

センサー	マークプロダクツ L22-D,H
データロガー	白山工業 DATAMARK LS-8000VF, LS-8000SH
編集用パソコン	IBM ThinkPad 220
ロガー用電源	単2アルカリ乾電池×4 (6 V), 外部電源端子 {ブリヂストン
	クロン電池 (6 V 5 AH)×4, ヤンマー 発動発電機, 雪上車/
	·) —}

サイ

ドッテ

センサーは固有周期 0.5 秒で、爆破地震動観測で通常使われているものであり、これまで南 極観測においても実績がある(伊神ら、1980; 伊藤ら、1983; 渋谷・酒井、1989). データロ ガーは本来火山地域の構造探査用に開発されたもので、JARE-36 持ち込みの VF タイプと JARE-37 持ち込みの SH タイプがあり、ともに 4 ch の入力、16 bit の A/D 分解能、1-1000 ms までの 12 種類のサンプリング間隔、時刻更正用の GPS 受信機を搭載している. 観測のパ ラメター情報(ヘッダファイルと呼ぶ)をパソコンから直接送るだけで設定が済むため、室 内であらかじめ設定して野外での操作時間を軽減することが出来る. 動作温度はマニュアル では最低 -10°C であるが、現地での予備観測は耐寒性能の限界試験と性能劣化試験も兼ね た.

SH タイプは VF タイプの後継機で、多くの改良がなされている(森田ら、1995)が、特に 操作面では以下の点が改善された. VF タイプはパソコンとロガーの通信にシリアルイン ターフェースとプリンタポートとを必要とするが、SH タイプではパラレルインターフェー スだけでよい. また、 VF タイプでは自然地震モードと人工地震モードでロガーコントロー ルソフト起動時にオプションを変える必要があったが、SH タイプでは起動後にモードを切 り替えることができる. 波形表示もユーザーインターフェースに改善がみられる. パソコン はデータロガーの設定、データの吸い上げ、データのグラフ表示などに使用する. ロガー単 独でも観測パラメターの設定は可能であるが、パソコンからはグラフィカルユーザーイン ターフェースを用いてそれが行える. パソコンは基本的に IBM PC 互換機が使用できる. 電 源は内蔵電池ボックス (アルカリ単2×4)単独または同時に外部電源端子 (6-9 V) が使用で きる. 今回の一連の報告では外部電源として、サイクロン電池からは直接に、発動発電機(発 発)および雪上車バッテリーからは AC/DC コンバータを経由して用いた.

観測を行った地点を図1に示す.昭和基地における観測はすべて地学棟周辺で行った.向 岩は昭和基地から最も近い大陸露岩で,日帰りで往復できる距離である.大陸氷床上のS16

図1 観測地点図(黒丸). 淡い領域は大陸氷床, 濃い領域は島及び露岩域を示す. Fig. 1. Location map of observation points (filled circles). Light gray areas indicate continental ice sheets. Dark gray areas indicate islands and snow free areas of the continent.

は常時風が強く,センサー及びロガーの設置方法について工夫を要した.ラングホブデには 生物部門の観測小屋があり,AC電源を得ることが出来た.スカルブスネスには地学カブー スがあり,観測の準備に便利であった.

表1に野外観測の要約を示す.発生した故障や動作不良の詳細は、4章にまとめて記述した.6月まではJARE-36の出航直前にバージョンアップされたファームウェアと時刻更正部の動作確認を地学棟内外で行っていた.ファームウェアとはデータロガー上のフラッシュメモリ(専用ソフトで書換可能なメモリー)に書き込まれるソフトウェアのことである.7月の向岩での故障は、4章に述べる理由により基板に取り付けられた代替フューズが、雪上車の振動のために取れてしまったためである.8月になると低温対策なしでは観測は失敗か、さらにはロガー自身が故障に至ることが確実なため、電気あんかによる保温が必要となった.10月以降は気象条件の緩和とそれまでに得た観測のノウハウにより、地震の検知率が向上し、地震波形を蓄積することができた.

田中俊行•金尾政紀

本文での番号 テーマ	大陸露岩での 観測	氷床上の観測	(1) 極寒期の観測	(2) 氷床上の観測	大陸露岩での 観測	大陸 露 岩での 観測	(3) 新旧ロガー並 行観測
日付	95/7/1	95/8/1~2	95/8/22~24	95/10/26~27	95/11/10~12	95/12/4~6	96/1/7~10
場所	向岩	S16	スカルブスネス	S16	ラングホブデ	ラングホブデ	ラングホブデ
最低気温	-15°C	-20°C	-40°C	-10°C	-16°C	-8°C	-5°C
天候	曇	地吹雪	晴	晴	曇~晴	曇~晴	曇∼晴
風 メイン電源	3~6m/s 乾電池	15~20m/s 乾電池	0m/s 本文参照	0~5m/s AC(雪上 車)	2~10m/s AC(ラング 小屋)	5~15m/s AC(ラング 小屋)	0~10m/s サイクロン電 池
内蔵乾電池の併用	-	-	本文参照	Yes	Yes	Yes	No
使用ロガー	VF	VF	VF	VF	VF	VF	VF&SH
電気あんかの使用	-	No	Yes	Yes	Yes	No	No
毛布の使用 結果	設置前にロ ガー故障.	No 故障. データ取 得ならず.	Yes 本文参照	Yes 本文参照	Yes 地震起こら ず.乾電池暖 かい.	No 乾電池破裂.	No 本文参照

表1 データーロガー性能評価のための野外観測一覧 Table 1. Summary of all outdoor operations for performance test of data loggers.

3. 主な三つのオペレーションの詳細と昭和基地定常観測データとの比較

表1に示したように野外での観測旅行は計7回,総観測時間は約150時間になるが,観測 された波形の考察は表1の(1)極寒期における観測,(2)氷床上での観測,(3)新旧2台デー タロガーによる並行観測の三つのオペレーションについて行う.この時の測定パラメターを 表2に示した.番号は表1に対応している.ローパスフィルタの欄はその遮断周波数を示し た.

ここで、センサー及びロガーの設置方法についてまとめておく.地震計の設置は基盤岩または雪の上に設置した.センサーの固定は12月までは雪で行えたが、1月には日射のため溶けてしまうので、粘土(設備工事用のシール剤)を使用した.

表2 本文で取り上げる三つのオペレーションの, 各チャンネルへの入力成分と測定パラメ ター

Table 2. Input components into each channel and measurement parameters used in the three operations described in Section 3.

番	号	場 所	チャンネルと入力成分	ローパスフィルタ	ゲイン	サンプリングレート
(1)		スカルブスネス	ch1:上下, ch2:南北, ch3:東西, ch4:開放	30 Hz	6 dB	10 Hz
(2)		S16	ch1:上下, ch2:南北, ch3:東西, ch4:開放	30 Hz	40 dB	10 Hz
(3)	VF	ラングホブデ	ch1:南北, ch2:上下, ch3:上下, ch4:開放	30 Hz	60 dB	20 Hz
(3)	SH	ラングホブデ	ch1:東西, ch2:上下, ch3:上下, ch4:開放	30 Hz	60 dB	20 Hz

ロガーはセンサーのそばに段ボールの中に入れて設置した.保温のために用いた電気あんか(消費電力 20 W 程度)はロガー正面にじかに接するようにした.毛布は電気あんかの上からロガーを包むようにして覆った.

3.1. (1) 極寒期の観測

1995 年 8 月 22-24 日にスカルブスネスのきざはし浜で観測を行った(図 1).

観測を行うとき、データロガー (LS-8000) はタイマーを用いての人工地震モードとトリ ガー式による自然地震モードのうちいずれかを選ぶ.ここでは将来の使用計画にならい、主 に人工地震モードを選択した.表2に示すようにチャンネル (ch)4 を開放とした理由は、8 月までの動作テストの段階でセンサーをつながず開放でロガーを動作させると、原因の分か らない電圧値オフセットが生じることがあったので、これをモニターするためである.

ロガーと電気あんかの電源は地学カブース (JARE-35 設置) 横の発発 (2 kW 程度) から電 気コードドラムを延長し供給した.発発とセンサーの距離は約 60 m である.センサーの設 置状況を図 2 に示す.

現地では低温のため、タイマーのスケジュール設定のためにロガーを起動させることでさ え、大変困難であった.結局、結露予防用のビニール袋に入れて雪上車のヒーターの吹き出 し口に 30 分ほど置くことで立ち上がった.また、パソコンも液晶部を手で暖めながら操作し なければならず、視認性の悪い液晶ディスプレイであるためさらに手間取った.また、撤収

図 2 スカルブスネス, きざはし浜でのセンサー及びロガー設置状況 Fig. 2. Photo of installation for sensors and logger on Kizahasi Beach, Skarvsnes.

時にはコード類が低温により硬化しており,破損させないよう回収するのに苦労した.

観測期間中,太平洋一南極海嶺で地震が発生した(56.883°S, 141.654°W,深さ 12 km, *M* 5.9, 発震時刻 13 時 14 分 42.4 秒 UT).昭和基地の短周期地震計では,初動の着震時刻が 8 月 23 日 13 時 24 分 11.9 秒 (UT) で継続時間が 790 秒程度であった(図 3a).図 3b はこのイベントを含むスカルブスネスでのロガー記録波形であるが,顕著な地震波は見られない.また,開放にした ch4 が ch1 と同程度のノイズレベルである.ch2 と ch3 はそのノイズの振幅に偏りが見られ,ノイズレベルは ch4 の振幅の 2 分の 1 となった.

スカルブスネスでの観測は、 -40°C の環境下でも電気あんかと毛布を併用することによ り、ロガーの動作(測定パラメータ設定やデータ回収)は正常に行えたが、プリアンプ、AD 変換器等のアナログ部のノイズが大きくなったり、オフセットを生じたりした. 電気あんか を用いなかった場合にはロガーそのものが動作しなかった. 低温対策を行って得られた波形 データの振幅は入力換算で 5 mV であり、AD 変換器の最小単位の 125 倍のノイズである. これは、常温で計ったカタログ値(1 µVrms 以下、ただし DC~30 Hz, 40 dB 以上時)に比べ 5000 倍大きくなっている. また、水平動成分については大きなオフセットも見られた. 考え られる理由としては、低温によるロガーの動作不良、発発という特に低温時には不安定な電 源を用いたことによる測定精度の低下のため、などが挙げられる. こういった動作不良は 10 月以降はほとんど発生しなかったことから、低温による性能低下と思われる.

地震波をとらえられなかった直接の原因は設定したゲイン (6 dB) が不適切であったため であった. ここで観測が期待された地震は,昭和基地のアナログ記録(図 3a)によると,1.1 ×10⁻⁵ cm/s 程度である. すると,データロガーでは,入力換算 0.01 mV 程度の入力電圧が得

図 3a 昭和基地 HES 地震計に記録された太平洋―南極海嶺の地震. 時刻は世界時 Fig. 3a. Observed seismic signals from an earthquake in the Pacific-Antarctic Ridge recorded by HES short-period seismometer at Syowa Station. The time is universal time.

図 3b スカルブスネスにおける観測波形. 横軸は世界時. 上から上下動, 南北動, 東西動, 開放. 予想される地震波到達時刻は 13 時 24 分 12 秒付近

Fig. 3b. Observed signals in Skarvsnes. The horizontal axis is universal time. From top to bottom: U/D, N/S, E/W, and open in order. It is expected that the seismic waves were reached around the time 1324: 12.

られるはずである. これを 6 dB に換算すると 0.02 mV となる. これは 6 dB 時の分解能 0.04 mV (= フルスケール入力電圧 2500 mV を 16 ビット AD 変換器の 2^{16} で割った値) よりも小 さい値である. したがって, 6 dB というアンプゲインの設定では不十分であった.

3.2. (2) 氷床上の観測

1995 年 10 月 26-27 日に大陸氷床上の S16 で観測を行った(図 1). 観測は順調で,トラブ ル無くデータ収録まで行うことができた.

ここでもタイマーによる人工地震モードでの観測を行った. 強風による地動ノイズレベル の増加を念頭において, 深さ 30 cm ほどの穴の中にセンサーを設置した(図4)が, 観測時に は風速は数 m/s 以下でその影響はないと推定される. 電源は雪上車からとった. 低温対策は 行ったが, 気温は -15~-10°C と S16 にしては高く, 安定したデータを収録できた. 雪上車 とセンサーは約 50 m 隔てて電気コードドラムで接続した. これまでの経験から, ロガー内

図4 S16 でのセンサー設置状況 Fig. 4. Photo of installation for sensors in S16.

部に起因するノイズは回路上増幅されないため、ゲインは 40 dB に設定した(表 2).

観測期間中,フィジー諸島南部で地震が発生(23.320°S, 179.916°E, 深さ 540 km, M4.6, 発 震時刻 23 時 55 分 53.3 秒 UT)した.昭和基地の短周期地震計では初動の到達時刻が 10 月 27 日 00 時 07 分 23.8 秒で継続時間が 190 秒程度であった(図 5a).S16 では,S/N 比は悪い ものの上下動成分(ch1)のみが明瞭に地震波を記録している(図 5b).バックグラウンドノ イズは,センサーを接続せずに開放とした ch4 と比べて,上下動(ch1)で2倍,水平動(ch 2,3)で3倍程度となった.

3.3. (3) 新旧データロガー並行観測

JARE-37 の夏期オペレーションの 1996 年 1 月 7 日-10 日にラングホブデ(図 1) にて新旧 二つのデータロガーで並行観測を行った. VF, SH 両タイプとも, JARE-37 により持ち込ま れたサイクロン電池により電源上のトラブルも生じず, 記録も安定していた. サイクロン電 池は -65°C まで放電可能な, 大容量, 長寿命の蓄電池であり, 南極での使用には打ってつけ といえる. その持続時間は測定しなかったが, 二つの電池で合計 40 時間以上の観測を行えた ことから, 1 台で 20 時間以上の動作は保証できることになる.

ここでも VF タイプ, SH タイプともに人工地震モードにて使用した. SH タイプは AI (Artificial Intelligence) トリガーを用いた自然地震モードも何度か試みたが,工場出荷時の地 震判定アルゴリズムが現地では適当でなく,自然地震によりトリガーがかかることはなかっ

図 5a 昭和基地 HES 地震計に記録されたフィジー諸島南部の地震. 時刻は世界時

Fig. 5a. Observed seismic signals from an earthquake south of the Fiji Islands by HES short-period seismometer at Syowa Station. The horizontal axis is universal time.

図 5b S16 におけるフィジー諸島南部の地震の観測波形. 横軸は世界時. 上から上下動,南北動,東西動,開放

Fig. 5b. Observed seismic signals from an earthquake south of the Fiji Islands in S16. The horizontal axis is universal time. From top to bottom: U/D, N/S, E/W, and open in order.

- 図6 ラングホブデでのロガー設置状況. 左側が LS-8000SH で右側が LS-8000VF. それぞれの ロガーの傍らにサイクロン電池が見える.
- Fig. 6. Photo of installation for loggers in Langhovde. The left one is the LS-8000SH and the right one is the LS-8000VF. Cyclone batteries are by the side of each logger.

図 7a 昭和基地 STS 地震計に記録されたソロモン島の地震. コーナー周波数 0.5 Hz のハイパ スフィルターを掛けてある. 横軸は世界時

Fig. 7a. Observed signals from an earthquake in the Solomon Islands high-pass filtered with corner frequency of 0.5 Hz by STS broad-band seismometer at Syowa Station. The horizontal axis is universal time.

地震波形収録装置の南極における動作特性

図7b ラングホブデにおけるソロモン島の地震の観測波形. 横軸は世界時. 上から南北動, 上下動,上下動,開放. 左側が LS-8000SH,右側が LS-8000VF

Fig. 7b. Observed seismic signals from an earthquake in the Solomon Islands in Langhovde. The horizontal axis is universal time. From top to bottom: N/S, U/D, U/D, and open in order. The left-hand side is for the LS-8000SH and the right-hand side is for the LS-8000VF, respectively.

た. その理由はこの時期,氷震が多発し,その振幅はほとんどの遠地地震より大きいため, 頻繁にトリガーがかかってしまうためである.

ロガーは2台並べて、サイクロン電池とともにダンボール内に置いた(図6).

観測期間中,昭和基地の短周期地震計記象及びラングホブデでの測定でともにとらえたの は7日のソロモン島の地震 (緯度 6.948°S,経度 155.863°E,深さ 33 km, M5.5,発震時刻 13 時 14分 29.0秒 UT)である.図7aは昭和基地の広帯域地震計のデジタルデータの波形で, 地震波が見やすいよう遮断周波数 0.5 Hz のハイパスフィルターを掛けてある.一方,図7b の左半分が SH タイプ,右半分が VF タイプの記録である.縦軸のオフセットは各チャンネ ルで異なるが,スケールは同じである.選択したゲインはともに最大の 60 dB である (表 2). 両者とも ch4 はロガー内部に起因するノイズをモニターするため,センサーと接続せずに開 放とした. SH タイプと VF タイプの上下動成分において、2 秒程度のピークのずれがみられる. 理由 は SH タイプが GPS 時刻更正に失敗したためである. 短時間で時刻更正を行うには、あらか じめアルマナックファイルを得ておく必要がある. アルマナックファイルとは衛星軌道情報 のことで、前回使用した位置または時間から大きく隔てて使用するときに、更新する必要が ある. これは GPS 衛星を数時間程度受信することで得られる. ここでの時刻更正の失敗は、 SH タイプのアルマナックファイルの更新を怠っていたのが原因である. 上下動のバックグ ラウンドノイズのレベルは SH タイプ、VF タイプともに ch4 の振幅の 3 倍程度である. し かし、SH タイプは VF タイプの 2/3 程度の振幅に収まっており、ロガーとしての性能の向上 が見られる.

4. 生じた故障及び動作不良とその対応

JARE-36の観測上の問題点は以下の五つに分類できる.ここでは,そのときの状況,対応, そして改善すべき点を示す.

1) ロガーからパソコンへのデータ回収不能

これは VF タイプにおいて、かなり頻繁に起こった。データ回収は原則として室温で行っているので、純粋なロガー・パソコン間の通信エラーと考えられる。多いときは 20 回ほど回収を試みてようやく成功したこともあった。SH タイプではこのような動作不良は発生しなかった。

2) ソフトウエアのバグ

VF タイプにおいて, データマークアシスト (ロガーの動作設定を行うパソコンソフト) で ゲイン設定をチャンネルごとに変えた場合に発生した. SH タイプではこのような動作不良 は発生しなかったが,回収したデータのグラフ表示を行おうとすると,エラーが出て描画で きないファイルが一つあった.これらも 2) 同様低温とは無関係であるが,動作安定の向上を 期待する.幸い,昭和基地は衛星回線を利用したデータ伝送が可能なため,ソフトウェアの バージョンアップは迅速に行うことが可能である.

3) 電源の問題

1995年12月5日のラングホブデでの観測中に起こった.このとき電源は発発によるAC 外部電源と内蔵乾電池ボックスの二つを併用していた.かねてから外部電源と乾電池を併用 すると乾電池が暖かくなることは感じていたが、この時遂に破裂に至った.最初から欠陥が あったのか、越冬中に回路基板にいろいろ手を加えたために生じたものかはわからない.こ れまでは気温が低かったために破裂にいたらなかったが、この時は最高気温が0°を越え日射 も強かったため、破裂に至ったと思われる.また、1995年10月13日に基板上のリチウム電 池が液漏れしているのに気付いたが、これも乾電池の発熱が原因の一つと考えられる.この ときも外部電源を併用し、室内に置いてあった.この性能不良も極地に限らず起こりうるも のである.しかし,このようなハードウェアの問題は年に1度しか輸送の行われない JARE においては,致命傷となりかねない.機器の改善を望む一方,十分な予備器や交換部品を準備しておくべきである.

4) 基板上のフューズ切れ

これは VF タイプにおいて多数回起こった. 最初は 1995 年 5 月 20 日で,内蔵電池ボック スに並列に別の電池ボックスを取り付けたとき,誤ってショートしたことによる. 1995 年 8 月 2 日には、ロガー設置時に地吹雪が激しくロガー内部に雪が入り込み,雪上車に回収した 時に中の雪が融けてショートしたと思われる. 基板は基本的には防滴加工されている. しか しこのとき切れたフューズは,基板上のフューズの足に並列に取り付けてたものであり, ショートしやすい状況にあったと言える. 南極での使用においては,交換の容易なタイプの 採用を提案する. SH タイプにおいては,使用期間が夏の短期間であったこともあり,フュー ズが切れることはなかった.

5) その他

上に述べた機器上の問題以外に、トウゾクカモメや雪鳥によって AC 電源のコードが引き 抜かれる事故が起こった. 真白の雪面上では観測器材が目立ち、鳥の興味を引きやすい. あ らかじめ、機材の配色を変えておくか浅く埋めておく等の対策が必要である. また、ロガー をパソコンに接続して観測データを吸い上げていた時に、そばの VHF 無線機に雑音が入っ たこともあった.

これまで述べたことをまとめると, LS-8000 使用における極域特有の問題点は観測時の保 温にしぼられる.予定されている人工地震観測は夏季であるので,24 時間続く日射を利用し た保温性に優れた容器を採用すれば,ロガーの動作の安定が期待できると考える.

5. まとめ

本稿では、構造探査用地震波形収録装置(データロガー)の極域での環境下における動作 特性について、JARE-36 での野外における観測結果の報告と観測された波形の S/N 比につ いて若干の考察を行った. 低温下 -40°C においても AC 電源での動作が確認され、また夏 期間においては、期待された程の S/N は得られなかったものの、サイクロン電池を使用し て、地震波形を収録できることが確認された. サイクロン電池の導入により、長時間かつ安 定して使用できる目処が付いたと言える.

今後は、複数台のアレイ的観測により波形の相関を調べるとともに、氷床中の地震波伝播 特性を研究し、将来の構造探査の解析に活用したいと考えている.また、保温のより効果的 な方法の確立と設置に要する時間の見積りと短縮化も重要な課題である.さらに実際の探査 時に必要とされる各種測定パラメター(例えばトリガー条件やゲイン)の最適値を確立する ことが望まれる.

謝 辞

越冬期間中は召田成美第 36 次越冬隊長をはじめ隊員の方々にご協力いただきました.特に加藤泰男,藤原淳一両隊員にはロガーにトラブルが生じた際の修理をしていただきました.

また、本稿をまとめるにあたり、国立極地研究所の神沼克伊、渋谷和雄両教授、白山工業 株式会社の吉田 稔氏には有益な助言を頂きました.また匿名の査読者の方のご意見は本稿 をよいものにするために大変役立ちました.

以上の皆様に記して感謝の意を表します.

文 献

- 伊神 輝・一ノ瀬洋一郎・原田道昭・神沼克伊 (1980): 南極における人工地震観測の概要. 南極資料, 70, 158-182.
- 伊藤 潔・伊神 煇・渋谷和雄・神沼克伊・片岡信一 (1983): 南極における人工地震観測の概要(続). 南極資料, 79, 107-133.
- 金尾政紀 (1996): 東南極リソスフェアの構造と進化計画 (SEAL 計画). 日本地震学会ニュースレター, 7(6), 15-18.
- 森田裕一・浜口博之・吉田 稔 (1995): 地震観測用データロガーの改良と地震判定プログラムの開発. 日本地震学会講演予稿集.
- 渋谷和雄•酒井量基 (1989):第28 次南極地域観測隊あすか観測拠点地学部門報告 1987. 南極資料, 33, 269-292.

(1996年8月2日受付; 1996年10月25日改訂稿受理)