Surface Distribution of Chlorophyll *a* Along the Course of the FUJI (1980/81) in the Southern Ocean

Kentaro WATANABE* and Yasushi NAKAJIMA**

「ふじ」航路(1980/81)における南大洋表面海水中のクロロフィル a 分布

渡辺研太郎*·中嶋 泰**

要旨:第22次南極地域観測隊の海洋生物定常観測の一環として、1980年12月から 1981年3月にかけ、「ふじ」航路に沿った南大洋インド洋区において表面海水中の クロロフィルa量を測定した.クロロフィルa濃度は亜熱帯水域で 0.2 mg/m³ 以 下と低く、亜南極海域でやや高くなり、南極収束線(AC)の北側では 0.50、0.24 mg/m³の極大値が得られた.ACの南側の外洋域では概してクロロフィルa濃度 は低かったが、ACのはるか南の 58°S 付近では 0.84(南下航路上)、62°S 付近 では 0.58 mg/m³(北上航路上)の高い値が測定された.1980年12月の西行航路上 で行った測定において、浮氷域の中ないしは近くでクロロフィルa濃度は極大を示 し、水温・塩分ともに低下した.定着氷に囲まれた氷湖中では 0.66、0.80 mg/m³ の高い濃度を測定した.これに対して北上航路上の浮氷域での値は低く、西行航路 上での結果と異なった.これらの結果より、海氷とクロロフィルa濃度とが何らか の関係を持つことが示唆される.

Abstract: The measurement of the chlorophyll a concentration of the surface water in the Southern Ocean was performed along the course of the icebreaker Fuji from December 1980 to March 1981 as a part of the 22nd Japanese Antarctic Research Expedition. The chlorophyll a concentration was low (less than 0.2 mg/m^3) in the Subtropical Water, which became a little higher in the Subantarctic Water and the maximum values of 0.50 and 0.24 mg/m^3 were observed on the north side of the Antarctic Convergence (AC). The value was generally low in the open water south of the AC, but high values of 0.84 (58°S) and 0.58 (62° S) mg/m³ were measured farther south of the AC in the southward and northward legs respectively. In or near the pack ice water, the chlorophyll a concentration formed a peak in the westward leg in December 1980 where the water temperature and salinity decreased. In a polynya surrounded by the fast ice, high values of 0.66 and 0.80 mg/m³ were recorded, whereas in the pack ice water, the value was low in the northward leg different from the results in the westward leg. These results suggest a relation between the chlorophyll a concentration and the presence of sea ice.

1. Introduction

The routine measurement of the chlorophyll *a* concentration of the surface water has been carried out annually since 1965 as a part of the Japanese Antarctic Research

^{*} 国立極地研究所. National Institute of Polar Research, 9-10, Kaga 1-chome. Itabashi-ku, Tokyo 173.

^{**} 三洋水路(株). Sanyo Hydrographic Survey Co., Ltd., 3-17, Horidome-cho 1-chome, Chuo-ku, Tokyo 103.

〔南極資料

Expedition (JARE) on board the icebreaker FUJI. The results were reported by the scientists participated. FUKUCHI (1980), summarizing these results, estimated the regional standing stock of chlorophyll a in the Southern Ocean. The data from each cruise are quite valuable as well to study the annual variation of the surface distribution of the chlorophyll a, because the most part of the course and the season of the FUJI cruise are identical. The authors made the chlorophyll a measurement of the surface water on board the FUJI along the JARE-22 cruise from November 1980 to April 1981. In this report, the data from the surface water obtained between Fremantle and Port Louis are dealt with.

2. Methods and Materials

Surface water was collected with a plastic bucket, usually two times a day at 0800 and 1800 by local time, along the course of the FUJI (Fig. 1). Samplings four times a day (*i.e.* at 0800, 1300, 1800 and 2300 LT) were carried out from Fremantle to Port Louis except for the section from Stns. 86 to 122 where the vertical observations were made. Generally, 5-15l of sea water was filtered with a 47 mm Whatman GF/C glass fiber filter. The concentration of chlorophyll *a* was determined by the colorimetric method with a HITACHI Model 101 spectrophotometer, following the method and equation of UNESCO (1966). Water temperature and salinity were measured by the oceanographers of JARE-22, KURAMOTO and KOYAMA (1982).

3. Results and Discussion

The surface distribution of chlorophyll a in the Southern Ocean along the course of the FUJI is shown in Fig. 1. The chlorophyll a concentration, temperature and salinity of the surface water samples taken during the JARE-22 cruise (1980/81) are given in Appendix 1. The vertical distribution of the chlorophyll a observed along the northward leg from Syowa Station to Port Louis was discussed in WATANABE and NAKAJIMA (1982).

3.1. Fremantle to Syowa Station

3.1.1. Southward leg (Stns. 31-63)

In the southward leg along 110°E, the Subtropical Convergence (STC) lay around 38°20'S between Stns. 34 and 35, the Australasian Subantarctic Front (ASF) lay around 45°40'S between Stns. 42 and 43, and the Antarctic Convergence (AC) lay around 54°00'S between Stns. 50 and 51 (Fig. 2). These positions were determined from the physical oceanographic data collected by KURAMOTO and KOYAMA (1982).

In the Subtropical Water north of the STC, the chlorophyll a concentration was in the lowest level (0.07–0.18 mg/m³) among stations from 31 to 63. Whereas in the area between the STC and the ASF, the value became higher to the range of 0.24– 0.45 mg/m³. These tendencies were also observed by the JARE biologists (FUKUCHI, 1980; TANIMURA, 1981; FUKUCHI and TAMURA, 1982). At Stn. 42, almost in the ASF zone, the chlorophyll a concentration was low (0.16 mg/m³), where the water temperature was lower than that of the neighbouring stations. At Stn. 49, on the

Ъ

111/1

No. 77. 1983]

11/24 XII/24 XII/28 11/2 ANTARCTICA 60° 90° 30 120° E

The surface distribution of chlorophyll a in the Southern Ocean along the course Fig. 1. of FUJI, 1980-81 (JARE-22).

The variations of the chlorophyll a concentration, temperature and salinity of the Fig. 2. surface water in the eastern Indian Sector of the Southern Ocean (STC: Subtropical Convergence, ASF: Australasian Subantarctic Front, AC: Antarctic Convergence).

50°

60°

〔南極資料

north side of the AC, the value rose to 0.50 mg/m^3 from the level of $0.20-0.29 \text{ mg/m}^3$ in the area between the ASF and the AC (Stns. 44-48). The remarkable increase in the chlorophyll *a* concentration was observed at Stns. 57-59 (from 57°56'S, 102° 09'E to 59°16'S, 99°40'E) in the Antarctic Water. The highest values (0.63-0.84 mg/m³) were recorded where little changes of salinity and temperature of the surface water were observed. At the other stations in the Antarctic Water, the concentration was not higher than 0.30 mg/m³, which is lower than the other JARE data as summarized by FUKUCHI (1980). The surface chlorophyll *a* concentration was not so high in the east Indian Sector of the Antarctic Ocean north of 63°S except for some restricted area in December 1980.

3.1.2. Westward leg (Stns. 63-85)

The changes of chlorophyll a, temperature and salinity of the surface water in the westward leg from Stns. 63 to 85 are shown in Fig. 3. In some parts of this leg, the FUJI cruised near or in the pack ice region. Stations 66, 67, 73–75, 77 and 85 were located in the pack ice water and Stns. 65, 76, 80, 81 and 84 were near the pack ice water. The chlorophyll a concentration fluctuated largely from 0.11 to 0.48 mg/m³ at these stations. At Stns. 67, 74, 77, 80 and 85, a peak of chlorophyll a concentration appeared and most of them were accompanied by the decrease of temperature and salinity. This decrease is accounted for by the situation of the stations, which were located in or near (Stn. 80) the pack ice waters. The occurrence of high chlorophyll a concentration in the pack ice surface water was reported by the JARE scientists (TOMINAGA, 1971; OHNO, 1976; OHYAMA and MAYAMA, 1976; KURODA, 1978; TANI-MURA, 1981; FUKUCHI and TAMURA, 1982). Some of them suggested that the high values were contributed by the ice algae released from the sea ice. On the other hand, the high values at Stns. 69 and 70 (0.39 and 0.68 mg/m³) were not associated

Fig. 3. The variations of the chlorophyll a concentration, temperature and salinity of the surface water in the Indian Sector (41°37′–92°38′E) of the Antarctic Ocean.

with the decrease of the water temperature and salinity as observed at Stns. 57–59 in the southward leg. In other area of the antarctic oceanic water south of 62° S, the chlorophyll *a* concentration was low between 0.06 and 0.22 mg/m³. This agrees with the observation of FUKUCHI and TAMURA (1982) that the values were low in the southern part of the antarctic surface water south of 63° S.

3.2. Syowa Station to Port Louis (Stns. 86–126)

The data of chlorophyll *a* concentration, temperature and salinity of the surface water were plotted and those near the $45^{\circ}E$ meridian are linked with lines in Fig. 4. In the southern part of this leg, Stns. 86–89 and 92 were situated in the pack ice water and Stns. 90 and 91 were in a polynya surrounded by the fast ice. Stations north of $65^{\circ}S$ (from Stn. 93 onward) were located in the open water. In the northern leg along the $45^{\circ}E$ meridian, the STC and the AC were determined to lie around $41^{\circ}00'S$ between Stns. 122 and 123 and around $51^{\circ}30'S$ between Stns. 116 and 117 respectively.

High chlorophyll *a* concentrations $(0.66-0.80 \text{ mg/m}^3)$ were observed at Stns. 89–91. As mentioned above, these stations had relations with the fast ice; two of them were situated in a polynya and the other was in the pack ice water near the edge of the fast ice. However, the values were low $(0.11-0.22 \text{ mg/m}^3)$ in the pack ice area which differs from the results obtained in the westward leg where the peaks and high values of chlorophyll *a* concentrations appeared in the pack ice water. As the measurements were made in December for the southward leg and from February to March

Fig. 4. The variations of the chlorophyll a concentration, temperature and salinity of the surface water in the western Indian Sector of the Southern Ocean (STC: Sub-tropical Convergence, AC: Antarctic Convergence).

〔南極資料

for the northward leg, the difference of chlorophyll a concentration in the pack ice water may reflect the seasonal changes of the degree of the ice algal contribution to the surface chlorophyll a, or of the primary production. But the data from the pack ice water are still scarce to discuss the relation between the chlorophyll a concentration and the presence of the sea ice. At five stations on the 65°S latitude (Stns. 93-97) in the southern part of the open antarctic water (off the pack ice region), chlorophyll a concentrations were low $(0.08-0.16 \text{ mg/m}^3)$. This agrees with the result obtained in the westward leg in the open water of the southern Antarctic Ocean. High values of 0.46--0.58 mg/m³ were observed at Stns. 105-107 (62°30'S) in the open water of the Antarctic Ocean where the values were generally low (0.08-0.28 mg/m³). This phenomenon was observed at Stns. 57-59 (ca. 58°30'S) in the southward leg. Moreover, it was also observed clearly in the southward leg of JARE-19 (KANDA and FUKUCHI, 1979), in the northward leg of JARE-20 (FUKUCHI and TAMURA, 1982) and JARE-21 (TANIMURA, 1981). It is suggested that a narrow zone of high chlorophyll a concentration might exist in the open water of the Antarctic Ocean where the values are generally low. The chlorophyll a concentration in the subantarctic water was generally higher than that in the subtropical water north of the STC. The value at Stns. 124–126 in the north of the STC ranged 0.11–0.17 mg/m³, which is comparable to that in the southward leg $(0.07-0.18 \text{ mg/m}^3)$.

Acknowledgments

We wish to express our gratitude to Prof. Y. YOSHIDA and Dr. H. FUKUNISHI, the leader and the summer party leader respectively of JARE-22, for their helpful suggestions in the on-board operation. We are indebted to Captain S. NEI and the crew of the icebreaker FUJI and some members of JARE-21 and -22, especially Messrs. S. KURAMOTO and K. KOYAMA for their assistance in collecting samples.

References

- FUKUCHI, M. (1980): Phytoplankton chlorophyll stocks in the Antarctic Ocean. J. Oceanogr. Soc. Jpn, 36, 73-84.
- FUKUCHI, M. and TAMURA, S. (1982): Chlorophyll *a* distribution in the Indian sector of the Antarctic Ocean in 1978–1979. Nankyoku Shiryô (Antarct. Rec.), 74, 143–162.
- KANDA, H. and FUKUCHI, M. (1979): Surface chlorophyll *a* concentration along the course of the FUJI to and from Antarctica in 1977–1978. Nankyoku Shiryô (Antarct. Rec.), 66, 37–49.
- KURAMOTO, S. and KOYAMA, K. (1982): Oceanographic data of the 21st Japanese Antarctic Research Expedition from November 1980 to April 1981. JARE Data Rep., 76 (Oceanogr. 2), 50 p.
- KURODA, K. (1978): Distribution of chlorophyll-a contents in the surface water along the course of the Fuji to and from Antarctica in 1972-1973. Nankyoku Shiryô (Antarct. Rec.), 61, 65-74.
- Ohno, M. (1976): Chlorophyll-a content in the surface water observed during the cruise of the FUJI to Antarctica in 1974–1975. Nankyoku Shiryô (Antarct. Rec.), 57, 106–114.
- OHYAMA, Y. and MAYAMA, T. (1976): Chlorophyll-a contents in the surface water observed during the relief voyage of the FUJI to Syowa Station, Antarctica, in 1975–1976. Nankyoku Shiryô (Antarct. Rec.), 57, 115–122.
- TANIMURA, A. (1981): Distribution of the surface chlorophyll *a* along the course of the Fuji to and from Antarctica in 1979–1980. Nankyoku Shiryô (Antarct. Rec.), 72, 35–48.
- TOMINAGA, H. (1971): Chlorophyll *a* and phaeophytin contents in the surface water of the Antarctic Ocean through the Indian Ocean. Nankyoku Shiryô (Antarct. Rec.), 42, 124–134.
- UNESCO (1966): Determination of Photosynthetic Pigments in Seawater. Paris, UNESCO, 69 p

(Monographs on Oceanographic Methodology, 1).

•

WATANABE, K. and NAKAJIMA, Y. (1982): Vertical distribution of chlorophyll *a* along 45°E in the Southern Ocean, 1981. Mem. Natl Inst. Polar Res., Spec. Issue, 23, 73-86.

(Received August 9, 1982; Revised manuscript received September 10, 1982)

Stn. no.		Date		Time	Latitude	Longitude	Chl. <i>a</i> (mg/m ³)	Water temp. (°C)	Salinity (%)
1	1980	Nov.	26	0800	32°33′N	139°05′E	0.25	22.9	34.770
2	1700	1.0.1		1800	30 41	139 24	0.27	23.1	34.772
3			27	0800	27 57	139 15	0.16	23.5	34.795
4				1800	25 56	138 11	0.11	24.9	34,990
5			28	0800	23 04	136 45	0.09	26.8	34.862
6				1800	20 55	135 35	0.05	27.9	34.878
7			29	0800	18 13	133 53	0.05	27.9	34, 869
8				1800	16 16	132 38	0.05	28.3	34.834
9			30	0800	13 30	130 55	0.06	28.7	33.988
10				1830	11 35	129 41	0.07	28.8	33.756
11	1980	Dec	1	0800	8 45	127 59	0.04	28.7	33, 507
12	1700	200.	•	1800	6 49	126 56	0.05	29.1	33, 592
13			2	0800	4 02	124 00	0.14	29.0	33,976
14			-	1800	2 37	122.04	0.21	29.7	33, 732
15			3	0800		119 46	0.21	28.7	33, 205
16			5	1800	1 34 S	118 55	0.14	30.2	33, 408
10			4	0800	4 22	117 53	0.16	29.9	34, 226
18			•	1800	6 11	116 46	0.20	30.1	34 298
19			5	0800	8 45	115 44	0.20	27.7	34,203
20			5	1800	10 40	115 12	0.07	30.3	34 494
20			6	0800	13 36	114 40	0.07	29.0	34 566
21			0	1800	15 34	114 40	0.07	29.0	34 821
22			7	0800	13 34 18 2 0	113 50	0.02	26.2	34.021
23			'	1800	10 20 20 14	113 30	0.05	26.5	34 017
24			0	0800	20 14	113 27	0.04	20.0	34. 217
25			0	1900	22 39	112 37	0.05	24.4	25 107
20			0	1000	24 43	112 55	0.10	22.9	25 197
27			9	1800	2/4/	112 56	0.11	21.5	25 606
20			10	1800	29 49	115 30	0.07	21.0	25.090
29 EDEM/			10	0800	51 59	115 40	0.19	20. 5	55.700
FREMA 20	ANILE		16	1800	27 47	114 46	0 10	2 0 1	35 770
21			10	1000	32 47	114 40	0.10	20.1	25 156
22			17	1200	35 25	112 47	0.18	15.9	25 476
32 22				1200	30 09	112 03	0.10	10.5	55.470 25.656
24				1000	37 03	111 20	0.07	10.0	33.030
34 25			10	2300	3/ 34	110 48	0.13	15.0	24 041
33 26			10	1200	39 18	110 20	0.33	12.9	34.941 24.996
30 27				1900	40 05	110 14	0.30	12.8	34.000
3/				1800	40 36	110 08	0.24	12.3	34.831
38			10	2300	41 36	109 53	0.33	11.7	24 7(1
39 40			19	1200	43 11	110 10	0.43	10.5	34. 701
40				1200	43 56	110 14	0.39	10. 7	34.780
41				1000	44 42	110 12	0.30	10.0	34.010
42			20	2300	43 20	110 04	0.10	0.2 0.7	24 470
43			20	1200	40 30	110 05	0.35	ð./	34.4/Y
44				1700	4/ 5/	1 10 09	0.19	8.U	34.180
43				1/00	48 14	110 09	0.18	b. /	34.069
40			0 1	2300	49 08	109 50	0.29	5.9	22 070
4/			21	0800	50 51	109 57	0.27	4.8	55.970

Appendix 1. Chlorophyll a concentration, water temperature and salinity of surface water observed during the cruise of FUJI (JARE-22), 1980/81.

Stn. no.	Date		Time	Latitude	Longitude	Chl. a (mg/m ³)	Water temp. (°C)	Salinity (‰)
-48	1980 Dec.	21	1 300	51°42′S	109°58′E	0.20	5.5	33.981
49			1800	52 38	110 00	0.50	3.9	34.005
50			2300	53 35	110 05	0.25	3.5	
51		22	0800	55 40	109 58	0.21	2.9	33.999
52			1100	56 20	109 58	0.27	2.7	34.005
53			1400	56 29	109 03	0.26	2.7	
54			1800	56 43	107 48	0.22	2.9	34.020
55			2300	56 57	106 11	0.26	1.9	
56		23	0800	57 20	103 13	0.27	1.5	34.052
57			1300	57 56	102 09	0.63	0.9	34.015
58			1800	58 34	100 55	0.84	0.8	33.937
59			2300	59 16	99 40	0.73	0,4	
60		24	0800	60 28	97 18	0.14	0.2	33,945
61		2.	1300	61 08	95 50	0.26	0.4	34,006
62			1800	61 44	94 19	0.30	0.4	34, 541
63			2300	62 40	92.38	0.11	0.0	
64		25	0800	63 21	89 04	0.15	0.0	34 110
65		20	1300	63 37	86 57	0.15	-0.6	33 918
66			1800	63 57	85 19	0.24	-1.2	33, 136
67			73 00	63 12	85 17	0.24	-1.2	55.450
69		26	2300	63 12 63 41	82 40	0.30	-1.2	22 452
60		20	1200	62 41	82 40 70 54	0.17	-0.2	33.432
70			1 200	62 J1	79 34	0.39	0.1	33.002
70			2200	63 03	77 45	0.08	0.2	55.908
71		27	2300	63 11	75 55	0.09	-0.1	22 780
72		27	1 200	03 34	/1 02	0.11	0.1	33.789 22.000
73			1300	63 55	69 17	0.16	-1.0	33.060
/4			1800	63 35	68 11	0.21	-1.2	32.873
75		•	2300	63 48	66 36	0.13	-0.6	
76		28	0/40	64 4/	63 48	0.32	-0.8	33.225
77			1300	64 31	62 17	0.37	-0.9	33.073
78			1800	64 23	59 59	0.16	1.2	33.679
79			2300	64 28	57 18	0.06	0.5	
80		29	0800	65 39	52 47	0.29	-1.4	33.795
81		30	1300	65 38	52 03	0.23	-1.6	33.688
82			1800	65 41	49 32	0.22	-1.0	33.822
83			2300	65 44	47 02	0.11	-1.0	—
84		31	0800	66 11	42 51	0.11	-1.2	33.856
85			1300	66 47	41 37	0.48	-1.5	33.440
ICE EI	DGE OFF SY	'OWA	STATI	ON				
86	1981 Feb.	7	0800	67 01	42 35	0.11	-0.8	
87		8	1800	67 01	43 43	0.12	0.0	
88		9	0800	66 18	44 45	0.12	-0.2	33.622
89		10	0800	67 31	45 45	0.67	-1.6	_
90		11	0800	67 11	46 21	0.66	-1.1	
91		16	1800	67 36	45 06	0.80	-1.6	—
92		19	1800	66 47	45 22	0.22	-0.7	33.547
93		20	0800	65 00	44 55	0.08	0.4	33.924
94			2300	64 59	42 33	0.11	0.5	
95		21	0800	65 00	40 08	0.10	0.9	33.884

Appendix 1 (continued).

Stn. no.		Date		Time	Latitude	Longitude	Chl. a (mg/m ³)	Water temp. (°C)	Salinity (‰)
96				2300	65°00′S	36°56E′	0.16	1.2	
97			22	0800	65 01	35 00	0.08	0.1	33.888
98				2300	63 52	35 00	0.28	1.4	
99			23	0800	62 28	35 03	0.28	1.4	33.908
100				2300	60 51	35 02	0.27	1.8	
101			24	0800	60 00	34 58	0.14	1.9	33.876
10 2				23 00	59 59	37 43	0.24	1.8	
103			25	0800	60 00	39 59	0.19	1.8	33.840
104				2300	61 43	40 03	0.28	1.6	
105			26	0800	62 29	40 01	0.58	1.5	33.897
106				2300	62 26	42 26	0.46	1.6	
107			27	0800	6 2 31	45 03	0.48	1.3	33.841
108				2300	60 52	45 00	0.18	1.7	
109			28	0800	59 58	45 03	0.22	1.9	33.867
110				2300	58 46	45 04	0.27	2.0	
111	1981	Mar.	1	0800	57 31	44 59	0.22	2.3	33.939
112				1800	56 35	45 00	0.10	2.4	33.946
113				2300	55 45	44 59	0.16	2.4	
114			2	0800	54 06	45 00	0.10	2.8	33.968
115				1800	52 46	45 00	0.13	3.5	33.940
116				2300	51 47	45 00	0.12	4.2	
117			3	0800	50 13	45 01	0.24	5.5	33.769
118				1800	49 41	45 04	0.17	5.4	33.798
119				2300	48 51	45 00	0.13	5.8	<u> </u>
120			4	1800	46 0 2	45 5 2	0.25	7.6	33.814
121			5	0800	43 18	44 57	0.25	8.2	33.800
122				1800	41 39	45 55	0.37	12.2	34.050
123				2300	40 31	46 31	0.29	16.5	
124			6	0800	38 37	47 34	0.17	19.7	35.530
125				1300	37 33	48 11	0.16	19.4	
126				1800	36 22	48 44	0.11	19.6	35.481
127				2300	35 14	49 18	0.05	21.9	_
128			7	0800	33 13	50 18	0.05	22.7	35, 423
129				1300	32 11	50 52	0.05	23.0	
130				1800	31 06	51 2 0	0.04	25.4	35.487
131				2300	30 04	51 39	0.06	25.5	
132			8	0800	27 57	51 02	0.12	26.5	35.214
133			Ū	1300	26 47	50 47	0.12	27.4	
134				1800	25 34	50 44	0.05	27.5	35.221
135				2300	24 27	50 55	0.05	27.7	
136			9	0800	23 16	52 44	0.07	27.8	35.218
130			,	1300	22 39	53 44	0.06	28.2	
138				1800	22 01	54 47	0.08	27.9	35.228
139				2300	21 26	55 57	0.04	28.2	
140			10	0800	20 08	57 28	1.85	28.1	
PORT	LOUIS				00	_ 0			
141			17	1800	19 01	58 45	0.05	28.7	34.942
142	1981	Mar.	18	0800	17 21	61 18	0.05	28.7	34.994

Appendix 1 (continued).

Stn. no.		Date		Time	Latitude	Longitude	Chl. <i>a</i> (mg/m ³)	Water temp. (°C)	Salinity (%)
144			19	0800	14-27S'	65-28E'	0.15	28.8	34. 330
145				1800	13 16	67 17	0.09	29.2	34.494
146			29	0700	11 29	69 52	0.13	29.5	34.656
147				1800	10 04	71 57	0.10	29.9	34.358
148			21	0700	8 27	74 12	0.12	29.5	34.234
149				1800	7 02	76 12	0.06	29.0	34.019
150			22	0800	5 04	79 03	0.12	29.7	34.629
151				1800	3 39	81 04	0.09	29.5	34.504
152			23	0800	1 48	83 32	0.07	29.8	34.485
153				1800	0 47	84 58	0.08	29.9	34. 388
154			24	0800	0 41 N	87 06	0.11	29.5	34.381
155				1800	1 33	88 16	0.08	29.8	34.259
156			25	0800	3 03	90 33	0.09	29.7	34.816
157				1800	4 46	92 53	0.08	29.5	34. 543
158			26	0800	5 44	94 11	0.12	29.5	34. 391
159				1800	5 59	95 55	0.18	29.9	32. 521
160			27	0800	4 55	98 3 6	0.24	29.3	32.702
161				1745	3 46	100 06	0.70	29.9	31.261
162			30	1800	2 29	101 35	0.76	30.1	32.726
163			31	0730	1 08	103 47	0.55	29.3	32.318
SINGA	PORE								
164	1981	Apr.	8	1800	1 49	105 25	0.27	28.5	33.060
165			9	0800	3 10	108 23	0.21	28.5	33.236
166				1800	5 14	109 28	0.08	29.1	33.472
167			10	0800	8 01	111 01	0.11	28.5	33.754
168				1800	9 33	112 02	0.20	28.9	33.500
169			11	0800	12 09	113 49	0.17	28.7	33.217
170				1800	13 42	115 21	0.10	29.2	33.845
171			12	0830	16 03	117 46	0.11	29.1	33.283
172				1800	17 41	119 13	0.07	29.4	33.550
173			13	0800	19 55	121 25	0.12	26.9	34.450
174				1800	21 39	122 33	0.08	27.0	34.547
175			14	0800	24 19	123 25	0.29	25.6	34.496
176				1800	25 42	124 52	0.20	25.5	34.622
177			15	0800	27 50	127 46	0.16	23.1	34. 574
178				1800	29 13	129 44	0.21	24.3	34.640

Appendix 1 (continued).