# みずほ高原の飛雪の酸素同位体組成と沿岸低気圧 による水蒸気輪送

加藤喜久雄\*。渡辺興亜\*。佐藤和秀\*\*

## Oxygen Isotopic Composition of Drifting Snow in Mizuho Plateau, East Antarctica

KIkuo KATO\*, Okitsugu WATANABE\* and Kazuhide SATOW\*\*

*Abstract*: Oxygen isotopic composition of drifting snow sampled at the various stations along the traverse routes in Mizuho Plateau was determined, in order to investigate transportation of water vapor to Antarctic ice sheet resulting from the approach of a circumpolar cyclone The oxygen isotopic composition of drifting snow in every season at the stations below 1800 m in altitude is largely controlled by the supply of <sup>18</sup>O-rich water vapor resulting from the approach of a circumpolar cyclone, but it is not so at the stations above 2000 m A large anomaly is found in the variation with altitude of oxygen isotopic composition of drifting snow at the stations at altitudes between 3100 and 3200 m, in (austral) spring The area where the anomaly is found is the boundary between the spheres of influence of circumpolar cyclones and Antarctic anticyclones, and it changes its position seasonally influenced by circumpolar cyclones

要旨 みすほ高原の飛雪の酸素同位休組成( $\delta^{15}$ O)を求め, それを決定している 因子を考察することにより, 南極氷床への水蒸気輸送に重要な役割を果していると 考えられる沿岸低気圧による水蒸気輸送について検討した. 高度 1800~2000 m 以 下の地域の飛雪の  $\delta^{18}$ O 値には, 気象の日変化が反映されており, その変動は沿岸 低気圧による <sup>18</sup>O に富んた水蒸気の供給とよく相関している. 高度のより大きい 地域の飛雪の  $\delta^{18}$ O 値には, 沿岸低気圧による <sup>18</sup>O に富んだ水蒸気の供給の影響は 見られない. これらのことは, 高度 1800~2000 m 以下の地域へは沿岸低気圧によ り <sup>18</sup>O に富んた水蒸気が大量に供給されていることを示す. 内陸にわすかに入るた けて飛雪の  $\delta^{18}$ O 値に著しい増大が見いたされた高度 3100~3200 m の地域は, 沿 岸低気圧と南極高気圧の勢力圏の境に当たる. この境は季節により変化していて, 冬のみすほ基地(高度 2230 m) は南極高気圧下にあることが多いと考えられる.

<sup>\*</sup> 名古屋大学水圈科学研究所 Water Research Institute, Nagoya University, Chikusa-ku, Nagoya 464

<sup>\*\*</sup> 長岡工業高等専門学校 Nagaoka Technical College, Nishi-Katakai-machi, Nagaoka 940

#### 1. はじめに

大量の水が固相として存在している南極氷床は,地球上における大気循環,水循環に深く かかわっており,氷床や海氷の消長に関連して気候変動におよぼす影響も大きい.そこで, みずほ高原における飛雪の酸素同位体組成を求め,それを決定している因子について考察す ることにより,南極氷床への水蒸気輸送に重要な役割を果たしていると考えられる沿岸低気 圧による水蒸気輸送に関して検討した.

南極氷床における飛雪の同位体に関する組織的研究は, KATO (1977),加藤他 (1977) およ び KATO et al. (1978) により,始めてみずほ高原の飛雪の酸素同位体組成に関して行われた. その結果,飛雪の酸素同位体組成から沿岸低気圧および南極高気圧により水蒸気の供給され る地域に関する情報がえられる可能性が示された.しかし,これらのことは一時期の内陸ト ラバースによって採取された飛雪についてのみえられた結果である.そこで,さらに4回の 内陸トラバースで採取された飛雪の酸素同位体組成を求め,それが沿岸低気圧による水蒸気 輸送とどうかかわっているか検討した.

## 2. 試料と酸素同位体組成の測定法

みすほ基地(図 1)において、1974年1月~1975年2月にわたり飛雪を、第15次日本 南極地域観測隊の1974年~1975年にわたる内陸トラバースルート(図 1)上の観測地点に おいて飛雪およびピットの雪を採取した.飛雪は箱や雪上車などの風下側に積雪したものを 採取した.ピットは、みずほ基地においては深さ2.6m、幅6mの雪壁を、内陸トラバース ルート上の観測地点での2mピットとしては深さ約2.2m、幅約2.5mの雪壁を掘り、層位 解析(層構造、粒度、密度、硬度)を行い(WATANABE, 1977)、その結果に基づいて、酸素 同位体組成測定のための試料を採取した.これらの雪はポリエチレンビンに入れ、冷凍状態 で名古屋大学水圏科学研究所の冷凍室まで輸送された.酸素同位体組成の測定の直前に溶か して測定を行った.

酸素同位体組成は, EPSTEIN and MAYEDA (1953)の方法を一部修正した方法で測定した. 試料水と 25°C で酸素同位体平衡にした炭酸カスの<sup>18</sup>O/<sup>16</sup>O 比を,名古屋大学理学部地球科 学教室の Varian Mat CH-7 質量分析計を用いて測定した. 測定結果は次式のように,標準 海水 (SMOW; CRAIG, 1961)からの<sup>18</sup>O/<sup>16</sup>O 比の千分偏差 (‰)で表す.

 $\delta^{18}O = \frac{({}^{18}O/{}^{16}O)_{i\bar{k}\bar{k}\bar{k}} - ({}^{18}O/{}^{16}O)_{i\bar{\ell}\underline{*}\underline{*}\underline{a}\underline{k}}}{({}^{18}O/{}^{16}O)_{i\bar{\ell}\underline{*}\underline{*}\underline{a}\underline{k}}} imes 1000,$ 

#### 加藤喜久雄•渡辺興亜•佐藤和秀



- 図 1 1974-1975 年における 第 15 次日本南極地域観測隊の 東南極みずほ 高原 における トラバースルート.
- Fig. 1 Route map of traverses of the 15th Japanese Antarctic Research Expedition, 1974–1975, in Mizuho Plateau, East Antarctica

測定誤差は ±0 2‰ である. 試料の採取地点および採取年月日と一部の δ<sup>18</sup>О 値は別に報告 してある (KATO, 1977).

## 3. 結果と考察

## 3.1. みずほ基地における飛雪

図 2 にみずほ基地の飛雪および昭和基地の降雪の  $\delta^{18}$ O の月平均値を求め、月平均気温、 月平均気圧との関係を示した、雪の  $\delta^{18}$ O の月平均値は、ます雪の  $\delta^{18}$ O の各旬の平均値を求 め、さらに各旬の平均値から月平均値を求めた、

みすほおよび昭和両基地の月平均の気温および気圧の変動は、ほほ同様の傾向を示しているといえる.月平均気圧がほかの月より高い8月に、δ<sup>18</sup>Oの月平均値は昭和基地ではその他の月に比べ非常に小さくなっているのに、みずほ基地ではさほと小さくなってはいない.

昭和基地では、低気圧下て生成された降雪の $\delta^{18}$ O値は大きく、高気圧下でのそれは小さ くなっていて、低気圧による <sup>18</sup>O に富んだ水蒸気の供給が降雪の $\delta^{18}$ O 値を大きく規制して いる. 月平均気圧がほかの月に比べかなり高かった8月は、低気圧により供給された <sup>18</sup>O に 富んだ水蒸気の量がほかの月より少なかったことを図 2 は示している (Kato, 1978; Kato



- 図 2 1974 年における昭和基地の降雪(●) およびみずほ基地の飛雪(■)の酸素同位体組成(δ<sup>18</sup>O),気温(Tm),気圧(Pm)の月平均値の変化.
- Fig. 2. Unweighted monthly mean oxygen isotopic composition of fallen snow (ō<sup>18</sup>O) at Syowa Station and of drifting snow at Mizuho Station, monthly mean surface air temperature (Tm) and monthly mean atmospheric pressure (Pm) in 1974. S. S. (●): Syowa Station. M. S. (■): Mizuho Station.

et al., 1978; 加藤, 1979).

他方,みすほ基地の飛雪の $\delta^{18}$ O値は、少なくとも冬の7~8月には気象の日変化を反映 していない(加藤他、1977; KATO *et al.*, 1978).みすほ基地の8月の飛雪の $\delta^{18}$ O値がその 他の月に比べさほど小さくなっていないことは、低気圧により<sup>18</sup>Oに富んだ水蒸気が冬のみ すほ基地へ供給されていないことを示唆している.

昭和基地の降雪の場合(加藤, 1979)と同様,みすほ基地の飛雪について月平均気温と同 じ月の $\delta^{18}$ Oの平均値との関係,月平均気温とその次の月の $\delta^{18}$ Oの平均値との関係を図3に 示した.昭和基地の降雪の場合(加藤, 1979)と同様,前者の関係ではあまりきれいな直線 関係は見られないが,後者の関係においてはきれいな直線関係が見られる.このことは,昭 和基地の降雪同様,みすほ基地の飛雪の $\delta^{18}$ Oの月平均値も月平均気温に一月遅れた変動を することを示している.また,みすほ基地の飛雪の個々の $\delta^{18}$ O値と気象の間には何の関係 も見い出されなかった(加藤他, 1977; KATO *et al.*, 1978)が,これらの月平均値の間には 昭和基地の降雪同様の季節変化が反映されていることがわかる.しかし,昭和基地の降雪の 場合は月平均気圧の高い 8 月の降雪を除いたが,みすほ基地の飛雪については 8 月をも含



- 図 3 1974 年におけるみすほ基地の飛雪およひ昭和基地の降雪の δ<sup>18</sup>O の月平均値と月平 均気温の関係.□:月平均気温と同じ月の δ<sup>18</sup>O の月平均値, ●:月平均気温の次の 月の δ<sup>18</sup>O の月平均値.
- Fig 3 Unweighted monthly mean oxygen isotopic composition (\$\$\vec{\beta}\$^{18}\$O) of fallen snow at Syowa Station and of drifting snow at Mizuho Station against monthly mean surface air temperature (Tm) in 1974 □ Tm and \$\$\vec{\beta}\$^{18}O in the month for which Tm is given
  Tm and \$\$\vec{\beta}\$^{18}O in the month following the month for which Tm is given

140

No 67 1979] みずほ高原の飛雪の酸素同位体組成と沿岸低気圧による水蒸気輸送

め,きれいな直線関係がえられた.このことは、少なくとも冬にはみすほ基地へは低気圧により水蒸気が供給されていないか、あるいは供給されてはいるが<sup>18</sup>0に富んていないかのどちらかを意味している.

図 3 の 2 本の直線の傾きは大きく異なっており, 直線の傾きは昭和基地については 0.7, みすほ基地については 1.3 である.

降雪の  $\delta^{18}$ O 値とその生成温度との関係は,DANSGAARD (1964) が Rayleigh の式を基礎に 考察しているように,水蒸気の凝結過程と酸素同位体分別定数により異なっている. Rayleigh の式は,ある  $\delta^{18}$ O 値の水蒸気が凝結していく一連の過程における降雪の  $\delta^{18}$ O 値と生成温度 との関係を示すものであり,その関係はほぼ直線で示される.実際には,個々の生成温度の 降雪を区別して採取できないので,ある範囲の  $\delta^{18}$ O 値の水蒸気からある範囲の温度て生成 した降雪についても上のことが適用てきる,として降雪の  $\delta^{18}$ O 値と生成温度との相関関係 を示す直線の傾きについて考察する.ところが,現実には降雪の  $\delta^{18}$ O 値が,その真の生成 温度との関係において考察されているのはまれであり,多くの場合は地表の気温との関係で 考察される.その場合,個々の降雪について  $\delta^{18}$ O 値と気温との関係を考察するのてはなく, それらの月平均値あるいは年平均値について考察するのが通常である.

昭和基地の降雪に関する直線の傾き 0.7 は,降雪の生成温度からみて降雪が上昇気流に伴う湿潤断熱冷却過程で生成したことを示しており,昭和基地における高層気象観測結果 (JAPAN METEOROLOGICAL AGENCY, 1977) から求めた降雪の生成温度と降雪の $\delta^{18}$ O値との関係を示す直線の傾き (加藤, 1979) とよく一致している.このことは、地表の平均気温と雪の $\delta^{18}$ O値との関係が、雪の生成温度と $\delta^{18}$ O値との関係同様に、雪の生成した冷却過程に関する情報を提供することを示している.

みすほ基地上空の温度分布 (KOBAYASHI and YOKOYAMA, 1976) から秋から冬の降雪の生成 温度は, -30~-50°C と考えられる. これらの温度における水蒸気-氷間の酸素同位体分別 定数は測定されていないので水素同位体の分別定数 (MERLIVAT and NIEF, 1967) から推察す ると, 直線の傾き 1.3 から降雪は, たぶん等圧冷却過程で生成した であろうと推定される (DANSGAARD, 1964). しかし, これらのことは, みずほ基地の秋と冬の降雪についてのみい えることである.

みずほ基地でのその他の月の気温, 飛雪の  $\delta^{18}$ O 値はわずかしか測定されていない. 月平 均気温は 1974 年 12 月が  $-17.7^{\circ}$ C であり, 11 月から翌 1 月の飛雪の  $\delta^{18}$ O 値は  $-28.4 \sim$ -35.0% の範囲にある. このことは, 図 3 に示されたみずほ基地の秋から冬の飛雪に関す

〔南極資料

る直線関係は、少なくとも夏の飛雪には相当しないことを示唆している.また、昭和基地の 降雪とみすほ基地の飛雪に関する両直線のつながりから見て、みすほ基地の夏の飛雪に関す る直線の傾きは、昭和基地の降雪に関する直線の傾き07にかなり近い値であるものと考え られる.もしそうだとすると、みすほ基地への水蒸気の輸送過程や降雪の生成過程が、夏と 冬で異なっている可能性も考えられる.

## 3.2. 昭和, みすほ両基地間の飛雪

図4に、昭和、みすほ両基地間のトラバースルート S-H-Z を示す地図と、そのトラバー



- 図4 昭和・みすほ両基地間のトラバースルートとそのトラバースルート上の観測点における3月7日~16日、5月19日~26日、9月3日~9日、10月4日~11日の飛雪の酸素同位体組成.
- Fig 4 Map showing the traverse route between Syowa Station and Mizuho Station, and seasonal variation of oxygen isotopic composition of drifting snow against altitude at the stations along the traverse route in the periods of 7–16 March, 19–26 May, 3–9 September and 4–11 October 1974

No. 67. 1979〕 みずほ高原の飛雪の酸素同位体組成と沿岸低気圧による水蒸気輸送

スルートに沿った観測地点で採取した飛雪の $\delta^{18}$ O値と高度との関係を示す. 飛雪の $\delta^{18}$ O値 は,高度約 1000 m まではほぼ一様,それ以上の高度では,高度が大きくなるにつれて小さく なっている. 4 回のトラバースを通して,飛雪の $\delta^{18}$ O値に明らかな季節変化が認められる. トラバースの期間を通しての気象観測は行われていないので,トラバースの期間の昭和基

地の気象と飛雪の  $\delta^{18}$ O 値との関係について考察した. 図 5 には,飛雪の  $\delta^{18}$ O 値と高度との関係のほかに,トラバース期間中の昭和基地における日平均気温と日平均気圧を示した.

高度 1000 m 以上での飛雪の  $\delta^{18}$ O 値と気象との関係をみると、10 月 6~11 日の気象条件 が安定していたときは、 飛雪の  $\delta^{18}$ O 値は高度が大きくなるにつれ直線的に小さくなってい る.



図 5 昭和・みずほ両基地間のトラバースルート上の観測点における3月7日~16日,5 月19日~26日,9月3日~9日,10月4日~11日の飛雪の酸素同位体組成とそれらの期間における昭和基地の気温と気圧の日変化.

Fig 5 Seasonal variation of oxygen isotopic composition of drifting snow against altitude at the stations along the traverse route S-H-Z, and daily mean surface air temperature (Tm) and daily mean atmospheric pressure (Pm) at Syowa Station in the periods of 7–16 March, 19–26 May, 3–9 September and 4–11 October 1974.

〔南極資料

気象条件に変化のあったそのほかの3回のトラバース期間中では,飛雪の $\delta^{18}$ O値と高度 は直線関係にはない.飛雪の $\delta^{18}$ O値と高度との関係を示す線は,低気圧下にあった3月9 ~10日,5月23~24日,9月7~8日では上に凸になっており,高気圧下にあった3月10 ~11日,9月5~6日ては上に凹になっている.

これらは、昭和基地の降雪の  $\delta^{18}$ O 値の変動について見い出された変動と同じ規則性、いいかえれば、低気圧下て生成された降雪の  $\delta^{18}$ O 値は大きく、高気圧下でのそれは小さくなっていることを反映しているものと考えられる. すなわち、沿岸低気圧による  $^{18}$ O に富んた水蒸気の供給が飛雪の  $\delta^{18}$ O 値を大きく規制している しかし、このような現象が見られるのは高度 1800 から 2000 m まてのみてある それ以上の高度においては、低気圧下の 3 月



図 6 昭和・みすほ 両基地間の トラハースルート上の 観測点における 1974 年の年間積雪 量.

Fig 6. Annual accumulation in 1974 against altitude at the stations along the traverse route S-H-Z

16 日, 5 月 19 日, 高気圧下の 3 月 11~12 日, 5 月 22~23 日では飛雪の δ<sup>18</sup>Ο 値の気象条 件との関連性は見い出されす, 飛雪の δ<sup>18</sup>Ο 値には, みずほ基地の飛雪の δ<sup>18</sup>Ο 値と同様, 気 象の日変化は反映されていない.

図6は、トラバースルート H-Z に沿った観測地点での雪尺法による1974年の積雪量 (SATOW, 1977a) を示している. マイナスの積雪量は融雪と削剝を反映している. 高度約 1000 m 以下では融雪が起こっている. 図6から大体の傾向を読みとると, 積雪量は, 高度 1000 m 近辺で一番大きく, 高度約 1000 m と 1800~2000 m の間は高度が大きくなるにつれ て小さくなり, 高度 1800~2000 m 以上てはほぼ一様である.

融雪の起こらない 1000 m 以上の高度での積雪量の違いは, 降雪量の違い, すなわち水蒸気の輸送量の違いを反映しているといえよう.

以上のことから降雪量が高度とともに小さくなっている高度 1800~2000 m 以下の地域へ は昭和基地同様,沿岸低気圧により<sup>18</sup>O に富んだ水蒸気が大量に供給されていると考えられ る.次に,みすほ基地より内陸への沿岸低気圧による水蒸気輸送の有無について検討する.

#### **3.3.** 内陸地域の飛雪

図7には、1974年9月30日から11月28日にわたるトラバースルート S-H-Z-Y'-I-J に 沿った観測地点における飛雪の $\delta^{18}$ O値と高度の関係を示した. 昭和およびみすほ両基地間 のトラバースルート S-H-Z の結果については、すでに図4および図5に示し、考察した.

高度約 1000 m (S 30, 10 月 5 日) ~ 2900 m (Y' 210, 10 月 24 日)の間では、高度が大き くなるにつれ飛雪の  $\delta^{18}$ O 値はほぼ直線的に小さくなっている. このことは、飛雪がかなり 短い距離しか動いていないことを示唆している.

高度約 2900 m を越し, I240 までは高度による飛雪の  $\delta^{18}$ O 値の減少が非常に大きい. と ころが高度 3200 m 付近で内陸にわすかに入るだけで, 飛雪の  $\delta^{18}$ O 値が驚くほど大きくな ることが見い出された (加藤他, 1977; KATO *et al.*, 1978). I240 (11 月 3 日) では -56.7%, I320 (11 月 5 日) では -41.0% であり, この 15.7 ‰ の変動はみずほ基地における飛雪の  $\delta^{18}$ O 値の年間の変動 (図 7 において垂直の点線で示す) にほぼ相当する大きさである. し かも, 飛雪の  $\delta^{18}$ O 値は高度とともに小さくなっていき, I600 で -53.7% となるが, この 値は I240 での -56.7% よりまだ大きい.

飛雪の  $\delta^{18}O$  値とピットの雪の  $\delta^{18}O$  値との関連を検討するため、これらについて、みずほ 基地から Y'-I トラバースルート上の観測地点との距離との関係を図 8 に示した.

加藤他 (1977) と KATO et al. (1978) が指摘したように, 飛雪の d<sup>18</sup>O 値に著しい増大の見

#### 加藤喜久雄。渡辺興亜。佐藤和秀





Fig 7 Oxygen isotopic composition of drifting snow ( $\delta^{18}O$ ) against altitude at the stations along the traverse route S-H-Z-Y'-I-J in the period from 30 September to 29 November 1974 and annual range of  $\delta^{18}O$  of drifting snow (---) in 1974 at Mizuho Station O Route S-H-Z-Y'-I, O Route J

られる地域を境にピットの雪の  $\delta^{18}$ O 値の変動幅に不連続な変化が認められる. さらに注目 すべきことは、この地域を境に飛雪の  $\delta^{18}$ O 値とピットの  $\delta^{18}$ O 値の変動幅との関係が大きく 変化していることてある. みすほ基地から I240 まての間ては、飛雪の  $\delta^{18}$ O 値がピットの雪 の  $\delta^{18}$ O 値の変動幅の小さい方に位置しているのに、雪の  $\delta^{18}$ O 値が著しく増大した後の I320 より内陸ては、ピットの雪の  $\delta^{18}$ O 値の変動幅の大きい方に飛雪の  $\delta^{18}$ O 値が位置しており、 まったく逆の関係を示している.

図 8 には, 採取地点の高度 (SHIMIZU, 1977), 10 m 雪温 (SATOW, 1977b, 1978), 風向(北 0°, 真方位), 風速 (INOUE, 1977), についても,みすほ基地から Y'-I トラバースルート上 の観測地点との距離との関係を示した. 年平均気温を与えると考えられる 10 m 雪温 (DALRYMPLE, 1966), 風向, 風速, ピットの雪の δ<sup>18</sup>O 値の変動幅のすべてについて, 飛雪の



図 8 1974 年 10 月 14 日~11 月 12 日のトラバースルート Y'-I 上の観測点における飛雪 (●) およびピットの雪(・)の酸素同位体組成 (δ<sup>18</sup>O),高度 (A), 10 m 雪温 (Ts), 風向 (D,北 0° 真方位),風速 (V).

Fig. 8. Oxygen isotopic composition (δ<sup>18</sup>O) of drifting snow (●) and snow from the wall of pit (•), altitude (A), 10 m snow temperature (Ts), wind direction (D, north: 0° in true) and wind speed (V) at the stations along the traverse route Y'-I in the period from 14 October to 12 November 1974

 $\delta^{18}$ O 値に著しい増大の見られる地域を境に不連続な変化が認められる. 特に,風向が東よりから南よりへとまったく異なった傾向を示すのが注目される.

みずほ基地(10月14日)からI240(11月3日)までのトラバース中は毎日吹雪であった.特に,18~21日はY'100で猛烈な吹雪が続いた(INOUE,1977).この時は低気圧が沿岸

冲を通過した時にあたるが、この吹雪による飛雪の $\delta^{18}$ O 値への影響は認められない. 10月 31日~11月2日にかなり強い低気圧が沿岸沖を通過したが、I150~I250の内陸の気象には ほとんと影響していない (INOUE, 1977).

11 月 1~3 日は、南極氷床の沿岸沖を通過した低気圧の影響がみすほ基地以南にも及んて いたが、11 月 4~5 日は高気圧がみすほ基地以北まても張り出していた. そして、11 月 3~ 5 日に気温は大へん高くなり、風は弱まり、降雪がときおりみられた. 3 日と 5 日では気温 が 7.2°C も上昇した. しかし、7.2°C の気温上昇では 16‰ にも及ぶ飛雪の  $\delta^{18}$ O 値の増加 を説明することはできない(加藤・樋口、1979). I320~I600 の間のトラバース中は、風は 弱く、空は晴れ、吹雪は見られなかったが、降雪が認められた (INOUE, 1977). しかし、こ の降雪の飛雪の  $\delta^{18}$ O 値への影響は認められない.

みすほ基地へ戻る J ルートての飛雪の  $\delta^{18}$ O 値と高度との関係も 図 7 に示されている. J ルートをトラバース中の気象変化はかなり大きかった (INOUE, 1977). この J ルート上の飛 雪の  $\delta^{18}$ O 値にも, I ルートほとてはないが, かなり大きく増大する地域が認められた. J140 (11 月 19 日) ての飛雪の  $\delta^{18}$ O 値 -45.0‰ が J200 (11 月 21 日) では -48.3‰ になって おり,春に内陸から沿岸へとトラバースしていることを考えると, わずかに内陸へ入るだけ で飛雪の  $\delta^{18}$ O 値が著しく増大しているといえよう. 11 月 19~22 日までは吹雪が続いた. そして翌 23 日には降雪がときおりあったが, 飛雪の  $\delta^{18}$ O 値には特別の変化が認められな い.

11月25日以降は南極高気圧が南極沿岸までも張り出した. この間に, 飛雪の $\delta^{18}$ O値は 急激に大きくなっている. このことは,内陸においては,南極高気圧下で生成した降雪の  $\delta^{18}$ O値は,昭和基地における降雪とは対称的に,大きくなることを示唆している.以上の ことから,少なくとも春には沿岸低気圧により供給された<sup>18</sup>Oに富んだ水蒸気も高度1800~ 2000 mまでに多量の降雪をもたらせた後は,高気圧へ供給される水蒸気よりも<sup>16</sup>Oに富む ものと考えられる.したがって,飛雪の $\delta^{18}$ O値に著しい増大の見い出された高度3100~ 3200 mより内陸は,各気象要素の不連続な変化も考慮して,南極高気圧下にあったと推察 される.

図9には, 飛雪の ô<sup>18</sup>O 値と年平均気温を与えると考えられる 10 m 雪温 (DALRYMPLE, 1966) の関係を示した.

H228 から I240 まではほぼ一直線上にのり, I320 から I600 までは別の直線上にのる. このことは,飛雪がかなり短い距離しか動いていないことを裏付けている. さらに, これらの



図 9 1974年10月5日~11 月 12日のトラバースルート H-Z-Y'-I 上の観測点の飛雪の 酸素同位体組成と 10m 雪温の関係.

Fig. 9. Oxygen isotopic composition of drifting snow against 10 m snow temperature at the stations along the traverse route H–Z–Y'–I in the period from 5 October to 12 November 1974.

直線の傾きは大きく異なっていて,I240 より沿岸側とI320 より内陸側では,水蒸気の輸送 過程や凝結過程が違うものと考えられる.直線の傾きから水蒸気の凝結過程を考える(加藤 ・樋口,1979)と,沿岸側は昭和基地と同様,雪が湿潤断熱冷却過程で生成している沿岸低 気圧の勢力圏にあり(加藤,1979),内陸側は等圧冷却過程の南極高気圧勢力圏にある(加 藤・樋口,1979)と考えられる.これらのことから内陸にわずかに入るだけで,飛雪の δ<sup>18</sup>O 値に著しい増大の見い出された高度 3100~3200 m まで,少なくとも春には沿岸低気圧によ り水蒸気が供給されているといえる.

これらの両勢力圏の境は、沿岸低気圧と南極高気圧の勢力関係で季節により大きく変化していると考えられる.この境が一定のところにあるならば、図8に示されるようなピットの雪の  $\delta^{18}$ O 値の変動幅に対する飛雪の  $\delta^{18}$ O 値の位置関係が、両勢力圏で逆の関係になることはない.両勢力圏の境が季節により大きく変化しているからこそ、そのような関係になると考えられる.

したがって,前述したみずほ基地では,冬には南極高気圧下にあることが多いと考えられる.

## 4. ま と め

みすほ高原の飛雪の酸素同位体組成を求め、それを決定している因子を考察することにより、南極氷床への水蒸気輸送に重要な役割を果たしていると考えられる沿岸低気圧による水 蒸気輸送について検討した.

気象の日変化が反映されていないみすほ基地(高度 2230 m)の飛雪の  $\delta^{18}$ O 値は、少なく とも冬には、沿岸低気圧による <sup>18</sup>O に富んだ水蒸気が供給されていない.また、冬の雪の生 成過程は、沿岸低気圧の影響を大きく受けている昭和基地の降雪の生成過程とは異なってい る.

高度 1800~2000 m 以下の地域の飛雪の  $\delta^{18}$ O 値には気象の日変化が反映されていて、その変動は沿岸低気圧による <sup>18</sup>O に富んだ水蒸気の供給とよく相関している.高度のより大きい地域の飛雪の  $\delta^{18}$ O 値には、沿岸低気圧による <sup>18</sup>O に富んた水蒸気の供給の影響は見られない.これらのことは、高度 1800~2000 m 以下の地域へは昭和基地同様、沿岸低気圧により <sup>18</sup>O に富んだ水蒸気が大量に供給されていることを示し、雪尺法による年間積雪量の高度変化とよく一致している.

内陸にわすかに入るたけて飛雪の $\delta^{18}$ O値に著しい増大が見い出された高度 3100~3200 m の地域を境に、雪の生成過程や気象要素に変化が認められ、この地域は沿岸低気圧と南<u>極高</u>気圧の勢力圏の境に当たることが分かった.しかし、この境は季節により変化していて、ピットの雪の $\delta^{18}$ O値の変動幅を大きくし、その変動幅に対する飛雪の $\delta^{18}$ O値の位置関係に大きな変動をもたらしている.したかって、冬のみすほ基地は南極高気圧下にあることが多いと考えられる.

なお本研究にあたり,酸素同位体組成の測定にこ協力をいただいた名古屋大学理学部の中 井信之教授,富山大学理学部の水谷義彦教授の両氏および適切な助言をいただいた名古屋大 学水圏科学研究所の樋口敬二教授,北野康教授の両氏に心から感謝の意を表します.

## 文 献

DALRYMPLE, P. C (1966). A physical climatology of the Antarctic Plateau Studies in Antarctic Meteorology, ed by M J RUBIN, Washington, Am Geophys. Union, 195–231 (Antarct Res, Ser, 9.)

DANSGAARD, W (1964) Stable isotopes in precipitation Tellus, 16, 436-468.

EPSTEIN, S and MAYEDA, T (1953) Variation of O<sup>18</sup> content of water from natural sources Geo-

150

CRAIG, H (1961) Standard for reporting concentrations of deuterium and oxygen-18 in natural waters Science, 133, 1833–1834

chim. Cosmochim. Acta, 4, 213-224.

INOUE, M. (1977): Meteorological data in 1974–1975. JARE Data Rep , 36, 142–153.

- JAPAN METEOROLOGICAL AGENCY (1977): Meteorological data at the Syowa Station in 1974. Antarct. Meteorol. Data, 15, 1–215.
- KATO, K. (1977): Oxygen isotopic composition and gross  $\beta$ -radioactivity in firm. JARE Data Rep, **36**, 158–169.
- KATO, K. (1978). Factors controlling oxygen isotopic composition of fallen snow in Antarctica. Nature, 272, 46–48.
- 加藤喜久雄 (1979): 南極における降雪の酸素同位体組成. 南極資料, 67, 124-135.
- 加藤喜久雄・樋口敬二(1979): 南極高気圧下て生成した雪の酸素同位体組成. 南極資料, 67, 152-163.
- 加藤喜久雄・渡辺興亜・佐藤和秀 (1977): 南極みずほ高原の雪の酸素同位体組成. 南極資料, 58, 263-270.
- KATO, K., WATANABE, O and SATOW, K (1978): Oxygen isotopic composition of the surface snow in Mizuho Plateau. Mem Natl Inst. Polar Res., Spec. Issue, 7, 245–254.
- Ковачаян, S and Yokoyama, K. (1976). Observations of the stationary katabatic wind in Mizuho Plateau, East Antarctica. Nankyoku Shiryô (Antarct. Rec.), 56, 1–13.
- MERLIVAT, L and NIEF, G (1967): Fractionnement isotopique lors des changements d'étet solidevapeur at liquid-vapeur da l'eau à des températures inférieures à 0°C. Tellus, 19, 122–127.
- SATOW, K. (1977 a): Net accumulation of snow measured (in 1974–1975) by stake method JARE Data Rep., 36, 36–58
- SATOW, K (1977 b). Snow temperature at a depth of 10 meters JARE Data Rep , 36, 59-60.
- SATOW, K. (1978): Distribution of 10 m snow temperature in Mizuho Plateau Mem Natl Inst Polar Res, Spec. Issue, 7, 63–71.
- SHIMIZU, H. (1977): Corrected result of altimetric surveys of ice sheet surface made in 1969–1975. JARE Data Rep , 36, 170–182.
- WATANABE, O (1977). Stratigraphic observations of surface snow cover. JARE Data Rep., 36, 61– 125.

(1979年4月26日受理)