ISレーダーの原理と極域電離圏の観測について

深尾昌一郎*・加藤 進**

On the IS-Radar Theory and Observations of the Polar Ionosphere

Shoichiro FUKAO* and Susumu KATO**

Abstract: The application of the incoherent scatter radar technique to the observation of the earth's ionosphere is described. The basic theory of the incoherent scatter is reviewed briefly and the radar parameters for these investigations are roughly estimated using the radar equation. Ionospheric parameters obtained directly from the incoherent scatter radar measurements are then described. The scheme for derivation of the *E*-region parameters—neutral winds, electrical conductivities, electric fields and currents—is discussed. The parameters of the Chatanika incoherent scatter radar which is the only radar of this type existing in the polar region are referred to and such ionospheric quantities that being obtained by this radar are also presented.

要旨:インコヒーレント散乱(略して IS と呼ぶ)レーダー技術を用いた電離圏 観測について述べる.まず,いわゆる IS の基礎理論を概観し,きわめて微弱な IS エコーを受信するために,必要なレーダーの基本パラメータをレーダー方程式 に基づいて評価する.続いて IS レーダー観測で直接得られる電離圏物理量につい て述べる.これらの直接観測量を用いて,他の種々の物理量を推定することが可能 であるが、ここでは一例として、E 領域パラメータ、たとえば中性風、電気伝導度、 電場および電流等を推定する方法の一つについて論ずる.最後に、極域に存在する 唯一の IS レーダーであるチャタニカレーダーについて、そのレーダーパラメータ と現在得られつつある電離圏の諸物理量について言及する.

1. はじめに

IS レーダーを用いて、電離圏の各種物理量を観測する技術は、ここ10年来飛躍的な発展を遂げた(たとえば Evans, 1974). 今やこのレーダーが、最も強力な地上観測装置の 一つであることは、衆目の等しく認めるところであろう. 既存の IS レーダー施設では、

^{*} 京都大学工学部電気工学第二教室. Department of Electrical Engineering II, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606.

^{**} 京都大学工学部附属電離層研究施設. Ionosphere Research Laboratory, Kyoto University, Gokanosho, Uji 611.

ー層詳細な電離圏の観測が行なわれる一方,この技術を中層大気のダイナミックスのリモ ートセンシングへ応用するという,まったく新しい研究分野が開拓されつつある(Wo-ODMAN and GUILLEN, 1974; CZECHOWSKY *et al.*, 1976; 深尾・麻生, 1976). 極域でも,ア ラスカのチャタニカ (CHATANIKA; 地磁気緯度 64.9°N,経度 103.3°W) で 1971 年から 本格的な観測が開始された (LEADABRAND *et al.*, 1972).

飛しょう体観測は、その軌道に沿ったあらゆる点で可能であるが、空間変化と時間変化 を分離できない. 他方 IS レーダーは、アンテナビームに沿ったあらゆる点の時間変化を 連続して観測できるが、観測領域はレーダー周辺の上空に限定される. 前者は空間分解能 に、後者は時間分解能により優れている. 両者は決して競合するものではなく、互いに補 い合うべきものである. 極域電離圏研究の究極の目標が、広大な宇宙空間を舞台に目まぐ るしく展開するオーロラを伴う諸現象の発生・発展機構の解明にあるとすれば、IS レー ダーが果たすべき役割は、飛しょう体に比べて決して劣るものではなかろう.

以下では, IS レーダーの 原理を略述した後, 極域 における IS レーダーの話題を二, 三紹介する.

2. IS レーダーの原理

地球大気は、中性・電離大気を問わず VHF および UHF 帯電波に対して、ほとんど 透明であるが、大気の屈折率(あるいは誘電率)にゆらぎがあれば、そのゆらぎのスペク トル中の ブラッグ (Bragg) 波数成分によってわずかに 散乱 される (たとえば、Booker and Gordon, 1950).後方散乱は電波の半波長の大きさのゆらぎに起因する.これはあた かも狭い帯域通過フィルタでゆらぎのスペクトルをサンプルするのに似ている.サンプル されるゆらぎは、せいぜい 電波の 波長程度の 小さなスケールのものであり、大気のより 大きな スケール の 運動 に 乗っているものと 考えられるから、このゆらぎを "トレーサ (tracer)" として大気の運動、すなわち 風を求めることができる.この運動は、散乱波の パワースペクトルのドップラー偏移に現れる.

一方,ゆらぎの特性そのものは,散乱パワースペクトルのドップラー広がりおよび形状 に現れる.電離圏ではプラズマの熱的ゆらぎが卓越し,電波は自由電子によって散乱され る.散乱波は個々の電子の熱速度に応じたドップラー偏移を受ける.電子の運動が完全に ランダムであれば,散乱波の位相は揃わず(インコヒーレント),散乱波のパワースペク トルは,電子の速度分布をそのまま写した形になる(これがインコヒーレント散乱,略し て IS と呼ばれるものである). しかし,送信波長が電子のデバイ長より長いと電子はイ オンの拘束を受け,パワースペクトルは複雑な形状を持つようになる. この場合は厳密な 意味では IS でなくなり,電波を散乱するプラズマの特性に応じて,パワースペクトルの 広がりや形状が異なる. したがって,あらかじめこれらの違いを理論的に調べておいて, 観測されるパワースペクトルと照らし合わせることによって,種々の物理量を推定するこ とができる (Evans, 1969). 主としてドップラー広がりからイオン温度が,散乱パワース ペクトルの形状から電子対イオン温度比と,イオン組成が求められる. 電子密度は主とし て散乱電力によって定まる.

3. IS レーダーの大きさ

電離圏プラズマの 熱的ゆらぎによる散乱は, 当然きわめて 微弱である. それではこの IS エコーを受信するためには, 一体どの程度の規模のレーダーが 必要であろうか. 以下 でレーダー方程式を用いて, 基本パラメータのオーダーを見てみよう.

送信電力を P_i (W), レーダーアンテナの利得を g とすると, 距離 (range) R (m) に おける送信電力の密度は

$$\frac{P_t g}{4\pi R^2} \quad (Wm^{-2}) \tag{1}$$

となる. レーダービームが照射する体積を V (m³),電子密度を N_e (m⁻³) とする場合, 全散乱断面積は,

$$N_e V \sigma_e \quad (m^2)$$
 (2)

と表される. ただし σ_e は一個の電子の レーダー断面積 (~10⁻²⁸ (m²)) である. 散乱が 等方的に行われると考えれば, 散乱体から距離 R' (m) における散乱電力は,

$$\frac{1}{4\pi R^{\prime 2}}$$
 (m⁻²) (3)

倍となる. 同一アンテナを送受信に用い (R=R'), その有効開口面積を a (m^2) とする と全受信電力 P_r (W) は式 (1)-(3) と a の積で表される. つまり

$$P_r = \frac{P_t g a N_e V \sigma_e}{(4\pi R^2)^2} \quad (W)$$
(4)

となる. 高度 300 km の F2 領域からの散乱を考えて, $R=3\times10^5$ (m), $V=10^{12}$ (m³), $N_e=10^{12}$ (m⁻³) とし, 検出する受信電力として $P_r=10^{-16}$ (W) 程度のものを想定する. 式 (4) を満たす P_i , g および a の値としては, 無数の 可能な 組み合わせが考えられる

Parameter	Adjustment range	Normal operation
Transmitter		
Frequency	1280–1300 MHz	1290 MHz
Peak power	0–5 MW	3–4 MW
Duty cycle (max)	3%	2.7%
Pulse length	10–500 μs	50 and 320 μ s (alternate interpulse periods)
Polarization		Right-hand-circular
Antenna		/
Diameter		27 m
Aperture		180 m ²
Beamwidth		0.6°
Gain		47.1 dB
Receiver		
System noise temperature		110°
Video bandwidth	4– 2 00 kHz	32 kHz
IF bandwidth	≤10 MHz	50 kHz
Polarization		Left-hand-circular

表 1 チャタニカ IS レーダーパラメータ (LEADABRAND et al., 1972) Table 1. Parameters of the Chatanika IS radar (LEADABRAND et al., 1972).

が、一つの現実的な解として、 $P_t = 10^6$ (W)、 $g = 10^3$ および $a = 10^4$ (m²) のオーダーの ものが得られる. これから上部電離圏からのエコーを受信するためには、たとえば送信機 としては、メガワット級の超高出力が必要であり、アンテナとしては、パラボラとした場 合には、直径 100 m 程度の大口径アンテナが必要になることがわかる. ちなみにチャタ ニカ IS レーダーについてみると、 $P_t \sim 4 \times 10^6$ (W)、 $g \sim 10^4$ 、 $a \sim 2 \times 10^2$ (m²) である. なお、式 (2) で表わされる全散乱断面積は、 10^{-4} (m²) 程度の小さなものである. 高度 300 km の電離圏からの IS エコーを受信することは、たとえば、名古屋に置いたパチン コ玉を東京のレーダーで検出するのに等しいと言える.

IS レーダーは主として、運用周波数の違いによってそのシステムを著しく異にするが、 一例として、 チャタニカ IS レーダー の パラメータを 表1 に 示す (LEADABRAND et al., 1972). この IS レーダーは比較的高い周波数を 用いているため、 小型の全天駆動型のア ンテナを使うことができる点と、オーロラのクラタ性エコーから逃れることができる点が 大きな特徴である.

4. IS の 特 徴

先に, 散乱パワースペクトルの 特性が, デバイ長 D と電波の波長 λ との 大小で著し く異なることを述べたが, 厳密には両者の比 $\alpha = 4\pi D/\lambda$ に 依存することが示される (た とえば, FeJER, 1961). 以下では, 散乱パワースペクトルのこのような 特徴を粒子間の衝 突および磁場の効果が無視できるプラズマについて二, 三見てみよう. まず, 図1は O^+

Fig. 1. The power spectrum for different values of the parameter α . The positive ions are assumed to be O^+ . The ion and electron temperatures are assumed equal.

イオンからなる熱平衡プラズマに対する α 依存性を 描いたものである. ただし, パワー スペクトル $S(\omega)$ はドリフトが 無い場合, 送信周波数 (ω =0) に関して対称となるので $\omega \ge 0$ の部分のみを示してある. 座標軸は O⁺ イオンの平均熱速度に対するドップラー角 周波数 Ω を用いて正規化されている (以下の図も同様). 同図 (b) に ω =0 の近傍を拡 大したものを示す. すなわち散乱パワースペクトルは, スペクトル密度が小さく, 周波数 広がりの大きい成分, 逆にスペクトル密度が大きく, 広がりが送信周波数近傍に限られる 成分の二成分からなることがわかる. 前者は電子の寄与が, 後者はイオンの寄与が大きい ので, それぞれ電子成分および イオン成分と呼ばれる. 電離圏を VHF または UHF 帯 電波で探測する場合は $\alpha \ll 1$ である. 図1からもわかるが, $\alpha < 0.1$ の場合はパワースペ クトルは α にほとんど無関係であり, また散乱電力の大部分はイオン成分に集中する. したがって, 以下ではイオン成分のみに注目し, α はゼロとみなす.

散乱パワースペクトルを決定する物理量を、その影響の仕方によって大別すると、二種類になる. 一つはスペクトルの形状を支配する量で、上述の α 、電子とイオンの温度比 $T_r(=T_e/T_i)$ 、イオン組成 q がこれに入る. 他の一つは、座標軸の正規化因子のみに含まれる量で、送信周波数 λ 、イオン組成 T_i 、イオン質量 m_i 、電子密度 N_e である. 前者を一定に保って後者を変化させた場合、パワースペクトルは、密度が $N_e\lambda(m_i/T_i)^{1/2} \propto N_e Q^{-1}$ に比例し、半値幅が Q に比例して伸縮するだけで、相対的な形は変化しない. したがって、縦軸を $S(\omega)Q$ 、横軸を ω/Q で表せば、スペクトルは α 、 T_r 、q のみの関数になる.

Fig. 2. The power spectrum for different ratios T_r of the electron temperature to the ion temperature ($\alpha=0$). The positive ions are assumed to be O^+ .

〔南極資料

- 図3 2種類のイオン O⁺ と H⁺ が存在する場合の比密度 q の 変化に対するパワースペクトルの変化 (α=0; T_r=1)
- Fig. 3. The power spectrum for a plasma containing both O^+ and H^+ ions for different values of the ratio q of their number densities ($\alpha=0$; $T_r=1$).

図 4 二種類のイオン O⁺ と NO⁺ & O₂⁺ が存在する場合の q の変 化に対するパワースペクトルの変化 (α=0; T₁=1).

図1で両座標軸を Ω を用いて正規化してあるのはこの理由による.

図 2 は散乱パワースペクトルに対する T_r の影響を示したものである. この図から T_r が大きくなると、スペクトルがイオンプラズマ周波数付近にピークを持つ双峰型になることがわかる.

図 3 は O⁺ イオンと H⁺ イオンが混在する場合に、O⁺ イオンの比密度 $N_0^+/N_e(\equiv q)$ を変化させた影響を描いたものである.また、図 4 は O⁺ イオンと NO⁺ & O₂⁺ イオン

Fig. 4. Same as Fig. 3 except for a plasma containing both O^+ and NO^+ & O_2^+ .

(この二種のイオンは、分子量がそれぞれ 30 と 32 で非常に近く、 弁別が困難なので分子 量 31 の仮想的なイオンとして取り扱う)が混在する場合である。 両者を比べると、O⁺ と質量が極端に異なる H⁺ イオンが混在する場合は q=0.5 の付近で、パワースペクトル が特徴的な形を示すが、O⁺ と比較的近い質量を持つ NO⁺ & O₂⁺ イオン が 混在する場 合は、q の変化に対するパワースペクトルの変化は顕著でない. このことは逆にパワース ペクトルを推定することが困難であることを意味する.

三種のイオンから成る プラズマからの IS, 磁場, 粒子間衝突 およびイオンドリフトの 影響等についても, すでに詳しく論じられている (たとえば, Evans, 1969). 最近では, 異なるイオンのドリフト速度を分離する試み (VICKREY *et al.*, 1976) や D 領域の IS を 負イオンを考慮して論じる試みがなされている (FUKUYAMA, 1978, 私信).

5. 測定物理量

IS レーダーで直接測定しうる物理量は、運用周波数とレーダーシステムの違いから、 各レーダー施設で少しずつ異なるが、おおむね表2の諸量をあげることができる. 原理的 には、散乱に影響のある物理量は、すべて観測されたパワースペクトルを解析することに より推定が可能である. しかし、実際には推定すべき物理量が多くなると、各物理量の推 定精度が落ちる. とくに、温度比 T_r と組成比 q が、散乱パワースペクトルに及ぼす効 果は類似していて、分離が困難な場合がある. その場合には解析に際して適当な仮定が置 かれる. たとえば、F 領域では、夜間は熱平衡 ($T_e = T_i$) が仮定され、昼間は He^+ イオ ンの存在が無視される. また、F1 領域では、 T_i の高さ変化を指数関数的と仮定して解析 が行われることが多い (WAND and PERKINS, 1977).

Region	Directly measured quantities*	Note
F2	$N_{e}, T_{e}, T_{i}, [O^{+}], [H_{e}^{+}], [H^{+}], V_{i}$	Either $T_e = T_i$ (night-time) or $[H_e^+] = 0$ (daytime) is assumed.
<i>F</i> 1	$N_e, T_e, T_i, [O^+], [NO^+ \& O_2^+], V_i$	T_i is assumed to be exponentially changed with height.
E	$N_e, T_i (=T_e), \nu_{\rm in}, V_i$	
D	N_e , $T_i/\nu_{\rm in}$, V_i	

表 2 IS レーダーで直接測定される物理量 Table 2. Quantities obtained directly from IS radar measurements.

* V_i is the ion drift velocity; ion number densities are indicated by [].

Observed

- 図 5 IS レーダーによって直接測定される物理量からイオンの輸送方程式 およびオームの法則を用いて中性風速度 V_n , 電気伝導度 σ および 磁場に垂直な電場 E_{\perp} , 電流密度 J_{\perp} を求める方法.
- Fig. 5. A calculation scheme for the derivation of the E-region electrodynamic parameters, applying the quantities obtained directly from IS radar measurements into the ion momentum equation and the ionospheric Ohm's law. The derived quantities are the neutral winds V_n , electrical conductivities σ , and electric fields E_{\perp} and ionospheric currents J_{\perp} perpendicular to the magnetic field.

近年、IS レーダーで直接測定された物理量から、中性大気風や電流等を間接的に求め る試みがなされている. たとえば、 E 領域の電磁力学に関する 物理量は、通常図5に示 す方法で求められる. まず、イオンドリフト速度 v_i を各高度で測定する. F 領域では磁 場に垂直なドリフト成分 $V_{i\perp}$ は、 $E \times B$ ドリフトに起因するから、これから磁場に垂直 な電場 E_{\perp} を推定できる. 求められた E_{\perp} と、E 領域で測定された v_i をイオンの輸送 方程式に用いて、中性風ベクトル v_n が計算される. 一方、電気伝導度 σ は N_e と v_{in} から計算によって求められる. こうして導かれた E_{\perp} , v_n および σ の各値をオームの法 則に用いて、磁場に垂直に流れる電流 J_{\perp} を求めることができる (Brekke *et al.*, 1974; HARPER, 1977).

また、イオンドリフト速度の各成分と、電子密度および電子温度の推定値を用いて、流入(または流出)する電子束密度およびエネルギー密度を求めることも可能である (Evans, 1975a, b).

6. 観 測 結 果

IS レーダーの観測結果については、 すでにおびただしい量の 報告がなされている. こ

Number	Parameter	Altitude region (km)
1	Electron density	60 to 500
2	Conductivities	Height-integrated ~ 80 to 150
3	Total energy flux of precipitating electrons	Height-integrated ~ 80 to 150
4	Number flux of precipitating electrons	Height-integrated ~ 80 to 150
5	Electron temperature	170 to 500
6	Ion temperature	170 to 500
7	Electric field	>170
8	Current density	Height-integrated 90 to 140
9	Neutral wind	Height-integrated 90 to 140
10	Joule heating	Height-integrated 90 to 140

表 3 チャタニカ IS レーダーによって測定される物理量 (RINO et al., 1977) Table 3. Quantities measured by the Chatanika IS radar (RINO et al., 1977).

こでは個々の事例には触れず、 チャタニカで観測されている物理量(1975年現在)を観 測高度と共に表 3 に掲げるにとどめる. これらの物理量を推定する、より具体的な方法に ついては、たとえば Nos. 1~3 については Evans (1969) に、4~10 については BARON and CHANG (1974) または BREKKE *et al.* (1974) に詳しく紹介されている. 観測しうる 物理量の種類等は決して恒久不変のものではなく、新しい解析法や信号処理システムの導 入によって改善をはかりうるものである.

一般に、観測結果の信頼度を検討する上で、他の観測手段で得られた結果と比較するこ とが必要である. IS レーダーの場合、ロケットや人工衛星の観測と比較されることが多 い. チャタニカ IS レーダーで観測された電子およびイオン温度についても、最近 Atmosphere Explorer-C (AE-C) 衛星との相互比較がなされた(BENSON *et al.*, 1977). 図 6 は その一例である. 図中、(T_e)_p は衛星搭載のラングミュア・プローブで得られた電子温度, (T_i)_{RPA} は同じく retarding potential analyzer で得られたイオン温度、(T_e)_sおよび (T_i)_s は IS レーダーで得られた電子およびイオン温度である. AE-C 衛星では顕著な空間変化 が、チャタニカ IS レーダーでは、激しい時間変化が観測されているにもかかわらず、両 者はきわめてよい一致を示すことが明らかである.

- 図 6 AE-C 衛星で観測された電子温度 $(T_e)_p$ およびイオン温度 $(T_i)_{RPA}$ と IS $\nu \beta$ ~ による温度 $(T_e)_s$ および $(T_i)_s$ との比較. 左下図は AE-C の軌道に沿った 高度,右図はチャタニカを中心とした AE-C の緯度,経度を示す. IS $\nu - \beta - \beta$ のビーム方向 (楔形斜線部) は, AE-C の高度で約 8~118 km 隔たっている.
- Fig. 6. Comparison of electron and ion temperatures measured by the AE-C satellite and the Chatanika IS radar. $(T_e)_p$ and $(T_i)_{RPA}$ are the ion and electron temperatures based respectively on the cylindrical electrostatic probe and the planar retarding potential analyzer, while $(T_e)_s$ and $(T_i)_s$ are those of the IS radar. The AE-C altitude is presented in the bottom graphs for each orbit and the latitude and longitude information is presented on the righthand side with an azimuth circle (centered on Chatanika). The direction of the IS beam, terminating at the AE-C altitude, is indicated in this circle for each orbit. The perpendicular lines to the orbital track indicate the horizontal separation between the beam and AE-C (8–118 km). After BENSON et al. (1977).

現在,極域には唯一つチャタニカ IS レーダーが存在するのみである.しかも空間・時 間変動の激しいオーロラ現象を追いかけるには,分解能は必ずしも十分とは言えない.し かし,オーロラ,とくに,オーロラエレクトロジェットのダイナミックスの解明に,この IS レーダーの果しつつある 役割はきわめて大きい. 最近では,比較的小スケールの現象 を高い時間分解能で観測する試みもなされている.

また,現在ヨーロッパ連合(フランス,西独,英国,ノルウェー,スウェーデンおよび フィンランド)によってスカンディナビアに"EISCAT"と呼ばれる IS レーダーシステ ムの建設が進められている (GIRAUD, 1974; 図7参照). このレーダーでは, UHF 帯 (958

Fig. 7. The EISCAT radar system. After GIRAUD (1974).

MHz) と VHF 帯 (248 MHz) の 2 周波数を利用することが予定されている. UHF 帯 では送信は Tromsö (ノルウェー)の 50 m¢パラボラによって行い, Tromsö の他 Kiruna (スウェーデン) と Sodankyla (フィンランド) で受信するものである. 後の 2 受信点で は, fan-beam によって受信が行われるため, 異なる高さの観測を同時に行うことができ る. 一方, VHF 帯はモノスタティック方式で Tromsö で送受信が行われる. アンテナと しては, 開口面積 100 m×100 m の矩形アレイが, ピークパルス出力は 5 MW が予定さ れている. これら 2 つのレーダーシステムで, 中間圏から高度 1000 km 以上の領域を カバーできると期待されている (Du CASTEL and TESTUD, 1974).

現在のところ南極地域に IS レーダーを設置する計画は無い.しかし,電離圏の諸物理 量を同時に,全高度で把握できるという卓抜した能力を考えるとき,その果すべき役割を もう一度考えてみる必要があると思われる.

文 献

BARON, M. J. and CHANG, N. (1974): ICECAP 73A, Chatanika radar results. Tech. Rep., 4,

Contract DNA001-74-C-0167, SRI Project 3118, Menlo Park, California, Stanford Research Institute.

- BENSON, R. F., BAUER, P., BRACE, L. H., CARLSON, H. C., HAGEN, J., HANSON, W. B., HOEGY, W. R., TORR, M. R., WAND, R. H. and WICKWAR, V. B. (1977): Electron and ion temperatures-A comparison of ground-based incoherent scatter and AE-C satellite measurements. J. Geophys. Res., 82, 36-42.
- BOOKER, H. G. and GORDON, W. E. (1950): A theory of radio scattering in the troposphere. Proc. IRE, 38, 401-412.
- BREKKE, A., DOUPNIK, J. R. and BANKS, P. M. (1974): Incoherent scatter measurements of *E* region conductivities and currents in the auroral zone. J. Geophys. Res., 79, 3773–3790.
- CZECHOWSKY, P., KLOSTERMEYER, J., RÖTTGER, J., RÜSTER, R., SCHMIDT, G. and WOODMAN, R. F. (1976): The SOUSY-VHF-Radar for trop-, strato- and mesospheric sounding. Proc. 17th Conf. on Radar Meteorol., Boston, Am. Meteorol. Soc., 349–353.
- DU CASTEL, F. and TESTUD, J. (1974): Some aspects of the design concept of a European incoherent scatter facility in the auroral zone (EISCAT project). Radio Sci., 9, 113-119.
- Evans, J. V. (1969): Theory and practice of ionosphere study by Thomson scatter radar. Proc. IEEE, 57, 496–530.
- EVANS, J. V. (1974): Some post-war developments in ground-based radiowave sounding of the ionosphere. J. Atmos. Terr. Phys., 36, 2183–2234.
- Evans, J. V. (1975a): A study of F2 region daytime vertical ionization fluxes at Millstone Hill during 1969. Planet. Space Sci., 23, 1461–1482.
- Evans, J. V. (1975b): A study of F2 region night-time vertical ionization fluxes at Millstone Hill. Planet. Space Sci., 23, 1611–1619.
- FEJER, J. A. (1961): Scattering of radio waves by an ionized gas in thermal equilibrium in the presence of a uniform magnetic field. Can. J. Phys., 39, 716-740.
- 深尾昌一郎・麻生武彦 (1976): MU レーダー計画. IS レーダーシンポジウム, 昭和 51 年度文部 省科学研究費総合研究 (B) 報告書, 199-214.
- GIRAUD, A. (1974): Le Courrier du CNRS. 13, 40-44.
- HARPER, R. M. (1977): A comparison of electric currents, magnetic variations and electric fields at Arecibo. J. Geophys. Res., 82, 3233-3242.
- LEADABRAND, R. L., BARON, M. J., PETRICEKS, J. and BATES, H. F. (1972): Chatanika, Alaska, auroral-zone incoherent-scatter facility. Radio Sci., 7, 747-756.
- RINO, C. L., BREKKE, A. and BARON, M. J. (1977): High-resolution auroral zone *E* region neutral wind and current measurements by incoherent scatter radar. J. Geophys. Res., 82, 2295–2304.
- VICKREY, J. F., SWARTZ, W. E. and FARLEY, D. T. (1976): Incoherent scatter measurements of ion counterstreaming. Geophys. Res. Lett., 3, 217–220.
- WAND, R. H. and PERKINS, F. W. (1970): Temperature and composition of the ionosphere; Diurnal variations and waves. J. Atmos. Terr. Phys., 32, 1921–1943.
- WOODMAN, R. F. and GUILLEN, A. (1974): Radar observations of winds and turbulence in the stratosphere and mesosphere. J. Atmos. Sci., 31, 493–505.

(1978年6月10日受理)