ロケット観測で得られた極域電離層の 電子密度・温度プロファイル

小川忠彦*・森 弘隆*・宮崎 茂*

Rocket Observations of Electron Density and Temperature Profiles in the Auroral Ionosphere

Tadahiko Ogawa*, Hirotaka MORI* and Shigeru MIYAZAKI*

Abstract: Six profiles of electron density and temperature under quiet daytime and disturbed nighttime ionospheric conditions were observed by the sounding rockets launched in 1976 from Syowa Station. It is found that the daytime electron density profiles have a solar zenith angle dependence and that the nighttime ones are dependent on auroral activity levels. Enhancement of the electron density amounting to $2-5\times10^{5}/\text{cm}^{3}$ was observed in the *E*-region when a rocket penetrated aurora. The electron temperature in the *E*-region was within 500–900 K, increasing with altitude, whereas that in the nighttime was within 700–1000 K, decreasing with altitude. The latter fact may indicate that heat source exists around 100 km in altitude during distrubed condition. Some discussions are made on the twenty-two electron density profiles obtained during 1970–1976 to summarize the characteristic feature of the auroral ionosphere. Finally, the empirical formulae are deduced to infer the nighttime electron density during a large substorm from the 30 MHz cosmic noise absorption and geomagnetic disturbance levels.

要旨: 1976年に7機のロケットが昭和基地から発射され, <u>昼間</u>の静穏時と夜間 のオーロラ出現時の電子密度と電子温度の高度プロファイルが観測された. 昼間の 電子密度プロファイルは太陽天頂角に依存していた. 一方夜間の電子密度は電離層 じょう乱度に強く依存し, ロケットがオーロラ中を通過した時には E 領域で (2 -5)×10⁵/cm³ に達した. E 領域の昼間の電子温度はおよそ 100 km で 500 K, 120 km で 900 K, 夜間のじょう乱時には同じく 1000 K と 700 K であった. 後 者の結果は, オーロラ出現時に 100 km 高度付近に熱源が存在していることを示 唆している.

1970-1976 年に得られた多くの電子密度プロファイルを整理して、夜間の大きな サブストーム時に地上で観測される CNA (30 MHz cosmic noise absorption) と ΔH (地磁気水平成分変動量)の値から、高度 90 km と 105 km の電子密度を推 定する経験式を得た.

^{*} 郵政省電波研究所. Radio Research Laboratories, 2-1, Nukui-kitamachi 4-chome, Koganei-shi, Tokyo 184.

1. はじめに

じょう乱時の極光帯電離層は磁気圏から降り注ぐ高エネルギー粒子によって特に下部電 離層が強く電離される(REES, 1963; KAMIYAMA, 1966). その結果,電子密度やE層を流 れる電流が増加する.地上ではイオノグラムに Es 層のエコーが出現し,宇宙雑音電波の 異常吸収 (cosmic noise absorption: CNA) や地磁気水平成分の変動(*dH*)が観測され る.このような場合地上データだけから上層大気中で起こっている諸現象を定量的に推測 することは容易でない.したがって,ロケットによる直接測定は,電離層の様子を定量的 に解明するために非常に有力な手段である.

1970–1973 年に多くのロケットが昭和基地から発射され,諸条件下での電子密度プロファイル (HIRASAWA et al., 1970; MIYAZAKI, 1974, 1975) や降下電子と光オーロラの関係 (NAGATA et al., 1975), さらにオーロラ出現に伴う電子密度の不規則構造 (OGAWA et al., 1975, 1976) が研究された. 1976年にロケット実験が再開されて,新たに6例の電子 密度プロファイルが追加され,電離層のじょう乱度と電子密度の関係についてある程度定量的な議論が可能になった. ここでは1976年に観測された結果を報告すると共に, 1970–1976年の電子密度プロファイルを昼間と夜間に分けて示す. 夜間のそれについては,地上で観測された CNA あるいは *ΔH* レベルとロケットで 測定された電子密度の関係について検討する.

2. 測 定 器

測定用プローブとして直径 3 mm 長さ 200 mm のステンレス棒を使用した. プローブ の汚れを防ぎ電子密度・温度をなるべく正確に測定するために, プローブは地上でガラス に封じ込めて上空で測定開始前にガラスを割る方式を採用した (Oyama and Hirao, 1976). 各ロケットにはガラス封じ型プローブを2本ずつ搭載し, 1本は通常のラングミュアプロ ーブ (LP と略称)として用い電子密度・温度を求める. 他の1本には約 6 V の直流電圧 を印加し, プローブに流れ込む電子電流を連続測定する(電子電流プローブ: EP と略称). ここで採用された実験パラメータのもとでは, この電子電流はプローブ周囲の電子密度に 比例するので, LP 測定と組み合せることによって連続した電子密度の高度プロファイル を求めることができる.

図1は2本のプローブの印加電圧のタイムシーケンスと測定系の検出電流範囲を示す.

LP プローブには 4 秒間 0-4 V の三角波電圧を 印加し, ラングミュアカーブ特性から電 子密度と温度を求める.次の 4 秒間は 2.5 V の固定電圧を印加し,電子密度の不規則構造 を測定する(森他, 1979).測定器の感度は 2 秒毎に高感度と 低感度に切り換え,測定系 は 32 秒毎に較正を行った.

Fig. 1. Time sequence of DC voltage applied to electron current probe (EP) and Langmuir probe (LP). The maximum input-current to the probe designed is 1×10^{-4} A for EP and 2×10^{-5} A (low-sensitivity) and 4×10^{-6} A (high-sensitivity) for LP.

表1 第17次隊(1976) ロケット観測諸元

Table. 1 List of sounding rockets at Syowa Station (JARE-17, 1976)

Rocket	Launching time (45° EMT)	Maximum altitude (km)	$\frac{\text{Ionospheric condition}}{\begin{array}{c} \text{CNA}^{*} & \Delta H^{**} \\ \text{(dB)} & (\gamma) \end{array}} \text{Ionogram}$	Remark	χ [#] (deg.)
S-310JA- 1	12:45, Feb. 13	216	0.2 0 quiet	daytime	55
S-210JA-20	02:40, June 25	118	$0.3 - 150 E_s$	in aurora	_
-21	03:23, July 26	116	$0.2 - 20 E_s$	in aurora	_
-22	02:20, Jan. 26	119	quiet weak E _s	daytime	87
-23	07:31, Sep. 13	121	quiet weak E_s	daytime	86
-24	02:54, Aug. 17	118	$0.4 - 180 E_s$	near aurora	_
-25	03:01, Sep. 1	125	quiet E_s	near aurora	_

* CNA: 30 MHz cosmic noise absorption

** ΔH : Horizontal geomagnetic disturbance

* χ : Solar zenith angle

3. 測定結果

表1に実験の諸元を示す.以下各ロケット毎に測定結果を簡単に述べる.

3.1. 昼間の静穏時のプロファイル

図 2 に S-310JA-1 の結果を示す. この図は LP から得られたもので測定値のばらつき はロケットのスピンの影響によるものである. 電子密度 N_e は 110 km 以上で (8-10) ×10⁴/cm³, 電子温度 T_e は 100 km で 500 K, 220 km で 1800 K であった. この結果 は 100 km 以上で S-310JA-2 の電子温度測定結果とおおよそ一致している. スペースポ テンシャル V_s は通常 1-1.5 V であったが, 相乗り機器の PWL のダイポールアンテ ナに +3 V が印加されると V_s は 3 V に増加している. これはロケットの電位が沈んだ ためである.

S-210JA-22 の結果を図 3 に示す. E 領域の N_e は 2×10^4 /cm³ で T_e は 100 km で 500 K, 120 km で 800 K であった. 75 km 付近の N_e のふくらみは相乗り機器の 60-80

図 2 S-310JA-L のラングミュアフローフで測定された昼间の電子密度・磁 度・スペースポテンシャルプロファイル

Fig. 2. Daytime electron density, temperature and space potential profiles observed by Langmuir probe aboard S-310J.A-1.

図 3 S-210JA-22 のラングミュアプローブ (LP) と電子電流プローブ (EP) で測 定された昼間の電子密度・温度・スペースポテンシャルプロファイル

Fig. 3. Daytime electron density, temperature and space potential profiles observed by Langmuir probe (LP) and electron current probe (EP) aboard S-210JA-22.

Fig. 4. Daytime electron density and temperature profiles observed by S-210JA-23.

図 5 S-210JA-20 と 21 で 測定された 夜間のじょう乱時の 電子密度と温度の プロファイル

Fig. 5. Nighttime electron density and temperature profiles during disturbed condition observed by S-210JA-20 (CNA=0.3 dB and $\Delta H = -150$ γ) and S-210JA-21 (CNA=0.2 dB and $\Delta H = -20 \gamma$).

図 6 S-210JA-25 で測定された夜間の電子密度と温度のプロファイル Fig. 6. Nighttime electron density and temperature profiles observed by S-210JA-25.

No. 65. 1979〕 ロケット観測で得られた極域電離層の電子密度・温度プロファイル

keV 電子フラックスの上昇と対応していたが、今のところ両者の因果関係は明らかでない. 下降時の 100-115 km に見られる N_e の減少はロケットの姿勢の影響である. V_s は 1.5±0.2 V であったが、後述する他の S-210 型ロケットについてもこの値に近かった.

図 4 は S-210JA-23 の結果で、 E 領域で $N_e = 5 \times 10^4 / \text{cm}^3$ 、 T_e は 100 km で 800 K、 120 km で 900 K であった.

3.2. 夜間のじょう乱時のプロファイル

図 5 に S-210JA-20 と -21 の結果を示す. JA-20 は discrete 状の, JA-21 は diffuse 状 のオーロラ中を飛行したので, *E* 層で N_e の増加が見られる. またじょう乱度は JA-20 ($dH = -150 \gamma$, CNA=0.3 dB) の方が JA-21 ($dH = -20 \gamma$, CNA=0.2 dB) よりも高か ったので N_e の最大値も大きくなっている. 両機に同時に搭載された高エネルギー電子フ ラックス (ESH) と N_e プロファイルとの対応関係については, 今後調べる必要がある. T_e は高度と共に減少傾向を示しており, 100 km で 1000 K, 120 km で 800-900 K であ った.

S-210JA-25 の結果を図6に示す. ロケット発射時にオーロラは存在したが, ΔH と CNA は静穏レベルにあった. ロケットはオーロラの北側を飛行したので, 図5に見られ た E 層での N_e の増加は観測されなかった. T_e は高度と共に減少し, 110 km で 800 K, 125 km で 600-700 K であった. この値は JA-20 と -21 の結果に比べて低い. いずれに しても昼間の T_e は高度と共に増加するが, 夜間のじょう乱時は逆の傾向が見られる. 夜 間のじょう乱時には 100 km 付近に熱源が存在するものと推測される.

S-210JA-24 はサブストーム時の発射であったが、何らかの不具合によって $N_e \ge T_e$ の測定はできなかった.

4. 1970-1976 年の観測結果と考察

図7は1976年に得られた ロケット上昇時の 密度プロファイルをまとめたものである. 昼間の プロファイルは CNA と dH で見る限り, 静穏時のものであるが, 太陽天頂角 (χ) 依存が見られる. 夜間のじょう乱時の N_e は CNA と dH が大きいほど増加してい る. S-210JA-20 と -21 はオーロラ中を, JA-25 はオーロラの 外側を飛行したので E 層 の N_e は前者の場合に大きくなっている. すなわち, オーロラを光らす降下電子は同時に E 層を電離し N_e を増加させる. また活動度が高いほど 100 km 以下の N_e も増加して

図7 1976年に測定されたロケット上昇時の電子密度プロファイル

Fig. 7. Summary of electron density profiles during rocket ascent observed in 1976.

図8 1970-1976 年に得られた 昼間のロケット上昇時の電子密度プロファイル. 一点鎖線は太陽 活動が低いときの中緯度の 60°<2<80° での平均的プロファイル (MAEDA, 1970).

Fig. 8. Daytime electron density profiles during rocket ascent observed during 1970– 1976. For comparison the averaged midlatitude profile for $60^{\circ} < \chi < 80^{\circ}$ in the low solar activity is shown by the chainline (MAEDA, 1970).

No. 65. 1979] ロケット観測で得られた極域電離層の電子密度・温度プロファイル

いるが,これは降下電子のエネルギースペクトルが硬くなり,高エネルギー電子が下部電 離層に深く侵入するのか,あるいは制動 X 線が放射されることを示していると考えられる.

図 8 は 1970–1976 年に得られた昼間のロケット上昇時のプロファイルを集めたものであ る (HIRASAWA *et al.*, 1970; MIYAZAKI, 1974). χ が 54° $\leq \chi \leq$ 64° $\geq 84° \leq \chi \leq$ 92° に分け て示してあるが、大体の 傾向として 各天頂角範囲 において CNA $\geq 4H$ が大きいほど N_e も増加している. また、図中の一点鎖線は太陽活動度が 低い時の中緯度の平均度の平 均的プロファイルであるが (MAEDA, 1970)、明らかに 90 km 以下において極域の N_e は 高い. これは、たとえ電離層が静穏であっても、常に磁気圏から高エネルギー粒子が降下 していることを示している. あるいは極域特有の化学反応過程で N_e が高くなっているの かもしれない (KONDO and OGAWA, 1976).

図9は同期間の夜間の プロファイルを集めたもので (MIYAZAKI, 1974), CNA と ΔH の大きさに応じて 3 つのグループに分けて示してある。100 km 以下ではこれらの値が大きいほど N_e も大きい。100 km 以上ではたとえ CNA と ΔH が小さくても, ロケット

Fig. 9. Nighttime electron density profiles during rocket ascent observed during 1971–1976.

23

小川忠彦・森 弘隆・宮崎 茂

図 10 昭和基地で観測された 1970-1976 年のロケット実験時の 30 MHz CNA 値と *ΔH* との関係. 直線は −*ΔH*=105*x*+174 を表す. *x* は CNA 値である.

Fig. 10. Relation between ΔH and 30 MHz CNA levels observed at Syowa Station during 1970–1976. The straight line represents $-\Delta H = 105x + 174 \gamma$, x being the abscissa.

図11 図8と図9から求めた 30 MHz CNA 値と 90 km 高度の電子密度の関係. 直線は log₁₀ N_e=0.27x+4.35 を表す. x は CNA 値である.

Fig. 11. Electron density at 90 km versus 30 MHz CNA level complied from Figs. 8 and 9. The straight line represents $\log_{10}N_e=0.27x$ +4.35, x being the abscissa.

がオーロラ中を通過した場合 (S-210JA-18, -20 と -21), N_e は大きくなっている.

MIYAZAKI (1975) は 1971–1973 年のプロファイルから, N_e の静穏値からの差の最大値 およびその高度と CNA 値との関係を表わす 実験式を導いた. ここでは 1970–1976 年の プロファイルを用いて, CNA あるいは ΔH の値からそれぞれ D 層あるいは E 層の N_e を推測することを 試みる. 図 8 と図 9 の表に掲げてある ロケット実験時の CNA と ΔH の関係を図 10 に示す. 図から少なくとも夜間では CNA \geq 1 dB あるいは $\Delta H < -200 \gamma$ に対して, 両者には $-y=105x+174(\gamma)$ の関係が成り立っている. ここに $y=\Delta H < 0$, x= CNA 値 (dB) である. ΔH は E 層を流れる電流の大きさの目安を与える. CNA 値 は N_e と衝突周波数の積の積分量であるが, これが大きい時には D 層の N_e が大きいと 考えられる. したがって大きなサブストーム時に両者が線形関係にあることは,降下電子 のエネルギースペクトルは硬くて, D 層をも十分に電離しらるものであると考えられる.

次に CNA 値と D 層の N_e が如何なる 関係にあるかを見るために, 試みに 図 11 に 90 km 高度の N_e と CNA の関係を示した. CNA が小さい場合ばらつきが見られるが,

図 12 図 8 と図 9 から求めた ΔH と 105 km 高度の電子密度の関係. 直線は $\log_{10} N_e = -1.3 \times 10^{-3} y + 4.74$ を表す. y は ΔH 値である.

Fig. 12. Electron density at 105 km versus ΔH compiled from Figs. 8 and 9. The straight line represents $\log_{10} N_e = -1.3 \times 10^{-3} y + 4.74$, y being the abscissa.

夜間で x≥1 dB のとき log₁₀ N_e(90 km) =0.27x+4.35 と表せる. すなわち, CNA は積 分量であるにもかかわらず大きなサブストーム時には, 90 km の N_e がこの式からおおよ そ推測できる. ちなみに MIYAZAKI (1975) は 30 MHz 宇宙雑音電波の 最大吸収高度は 75-85 km にあることを示した. また, 図 11 において, 昼間に関しては一定の CNA 値 において天頂角が小さいほど N_e は大きくなっており定性的には太陽天頂角依存性が確認 できる. 次に ΔH と E 層の N_e の関係を 調べるために, 105 km の N_e と ΔH の関係 を図 12 に示す. 夜間に注目すると y≤-200 γ のとき log₁₀ N_e(105 km) = -1.3×10⁻³y +4.74 と表せる. 図からわかるように昼間の N_e は ΔH の増加と共に増えているが, 天 頂角依存性を調べるにはさらにデータを集める必要がある. 測定例が十分とは言えないの で,上述の関係式の妥当性は将来チェックする必要があるう.

5. おわりに

1976年に観測された電子密度・温度プロファイルから次の点が明らかになった.

1) 昼間の静穏時の密度プロファイルには太陽天頂角依存が見られた.

2) 夜間のじょう乱時には CNA と *ΔH* 値が大きいほど密度は増加した. 特に, ロケットがオーロラ中を通過した場合 (S-210JA-20 と -21), *E* 層の最大電子密度は (2-5)×10⁵/cm³ になった.

3) 電子温度はロケット毎にばらつきが見られたが,おおよそ E 層高度で 500-1000 K であった. 昼間は高度と共に増加し,夜間は減少する傾向が見られた. 夜間には 100 km 付近に熱源が存在していることを示唆したが,これはオーロラを光らす降下電子のエネル ギーが,この付近の高度で最も効率よく放出されるためであると考えられる.

4) 1970-1976 年に観測された密度プロファイルから, 昼間は太陽天頃角依存が見られ, かつじょう乱度が大きいほど Ne も増加することが判明した. 夜間についてはじょう乱度 が大きいほど Ne も増加することは明らかである.

5) 同上のデータから, 地上で 観測される CNA あるいは ΔH 値から 90 km あるい は 105 km の N_e を推定する経験式を求めた. 大きなサブストーム時 (CNA \geq 1 dB ある いは $\Delta H < -200$ r) には, この式から N_e をおおよそ推定できるものと考えられる.

第18次隊と19次隊でも N_e と T_e の観測が実施されるので,ここで報告した結果とあ わせて 70-200 km 範囲の密度と温度プロファイルが多く蓄積され,極域電離圏の諸現象 の研究に役立つものと期待される.

謝 辞

厳しい環境の中で ロケット実験の成功にご努力された 芳野隊長をはじめとする第17次 南極観測隊越冬隊のロケット実験班の各位に深く感謝します.また全天カメラ写真やマグ ネトグラムを提供していただいた国立極地研究所の福西浩助教授と、イオノグラムとリオ メターのデータを提供していただいた電波研究所の大瀬正美主任研究官に感謝します.ガ ラス封じ型プローブは東京大学宇宙航空研究所の平尾研究室より提供されたものである. ロケット実験は国立極地研究所によって支援された.

- 文 献
- HIRASAWA, T., NAGATA, T., KAWAGUCHI, S. and HIRAO, K. (1970): Rocket observations of electron density of the daytime ionosphere at Syowa Station, Antarctica. Rep. Ionos. Space Res. Jpn., 24, 237–243.
- KAMIYAMA, H. (1966): Ionization and excitation by precipitating electrons. Rep. Ionos. Space Res. Jpn., 20, 171–187.
- MAEDA, K. (1970): Mid-latitude electron density profile in the low solar activity. J. Geomag. Geoelectr., 22, 551-557.
- KONDO, Y. and OGAWA, T. (1976): Odd nitrogen in the lower thermosphere under auroral perturbations. J. Geomag. Geoelectr., 28, 253-282.
- MIYAZAKI, S. (1974): Rocket observations of the ionosphere over Syowa Station, Antarctica. J. Radio Res. Labs., 21, 551–572.
- MIYAZAKI, S. (1975): Relation between lower ionospheric electron density profiles and cosmic noise absorption during auroral zone disturbances. J. Geomag. Geoelectr., 27, 113-129.
- 森 弘隆・小川忠彦・宮崎 茂 (1979): ロケットによる極域電離層プラズマのじょう乱の観測. 南 極資料, 65, 36-44.
- NAGATA, T., HIRASAWA, T., TAKIZAWA, M. and THOMATSU, T. (1975): Antarctic substorm events observed by sounding rockets, ionization of the *D* and *E*-regions by auroral electrons. Planet. Space Sci., 23, 1321–1327.
- OGAWA, T., MORI, H. and MIYAZAKI, S. (1975): Electron density irregularities observed in the Antarctic auroral *E* region. J. Radio Res. Labs., 22, 1–21.
- OGAWA, T., MORI, H. and MIYAZAKI, S. (1976): Rocket observations of electron density irregularities in the Antarctic auroral *E* region. J. Geophys. Res., 81, 4013–4015.
- OYAMA, K. and HIRAO, K. (1976): Application of a glass-sealed Langmuir probe to ionospheric study. Rev. Sci. Instrum., 47, 101–107.
- REES, M. H. (1963): Auroral ionization and excitation by incident energetic electrons. Planet. Space Sci., 11, 1209–1218.

(1978年6月10日受理)