極光帯―プラズマポーズ領域の ULF 波動の特性

林 幹治*・小口 高*・国分 征*・鶴田浩一郎** 渡辺富也***・R.E. HORITA****

ULF Wave Characteristics in the Auroral Zone through the Plasmapause

Kanji Hayashi*, Takasi Oguti*, Susumu Kokubun*, Koichiro Tsuruda**, Tomiya Watanabe*** and R E Horita****

Abstract: Geomagnetic pulsations in the auroral zone through the plasmapause were examined on the basis of IMS observation data obtained in Canada It was shown that the geomagnetic pulsations in the daytime are reasonably accounted for in terms of HM waves propagating from outside, and that the pulsations in the dawn sector, on the other hand, are likely due to the fluctuations in the ionospheric electric currents related to the pulsating auroral precipitations It was also shown that the wave characteristics of Pc 1 pulsations in the dusk sector are consistent with the confinement of their initial source region in a small extent, spreading through the upper ionospheric duct

要旨 カナタ,マニトハ州において, IMS 観測の一環として実施した,極光帯 からプラスマポースにかけての地磁気脈動の観測結果から,次の事柄が知られた. 昼間帯の地磁気脈動は,がいして広範囲にわたってよい相関を示し,磁気圏にお ける HM 彼の効果と見なしてよいが,明け方の地磁気脈動は相関距離が短く,脈動 型オーロラに伴う電離層電流のゆらぎによるものと考えられる.また,夕方側によ く見られる Pc1 型脈動は,その波原は小さな領域に限られており,広範囲の拡が りは主として上部電離層のダクト伝搬によるものと思われる.

1. 序 論

ULF 波動の多くは、極光帯近傍に対応する磁気圏領域に起源を持つと考えられている. こ のあたりから磁気圏の内側に伝搬する HM 波動がプラズマ圏境界域でマクロな構造的共鳴

^{*} 東京大学理学部地球物理研究施設. Geophysics Research Laboratory, University of Tokyo, 11– 16, Yayoi 2-chome, Bunkyo-ku, Tokyo 113.

^{**} 東京大学宇宙航空研究所. Institute of Space and Aeronautical Science, University of Tokyo, 6-1, Komaba 4-chome, Meguro-ku, Tokyo 153.

^{***} Department of Geophysics and Astronomy, University of British Columbia, 2075 Wesbrook, Vancouver 8, B. C., Canada V6T 1W5.

^{****} Department of Physics, University of Victoria, Victoria, B. C., Canada V8W 2Y2.

128 林 幹冶・小口 高・国分 征・鶴田浩一郎・渡辺富也・R E HORITA 〔南極資料 を起こし、これがそのあたりの脈動のピークに対応する、と考えるのが一般的てある 確か にそのような部分は存在すると思われるが、実際にその領域での観測に基づいた実証は、必 ずしも十分行われているとは言えない.

この領域の地上における ULF 波動の特性を総合的に理解するために, IMS 観側の一環と してカナタフリティノュコロンヒア大学と共同でマニトバ州に数点の ULF 観測点をおき, そのうち 1-2 点てはオーロラ TV および VLF-DF の観測をあわせ実施した.

2 観 測
 1975年夏にトンフソンおよびスターレイクにおいて予備調査を行い,1976年8-9
 月,1977年2月,1977年9月の三回にわたりチャーチルよりウィニペクに至る間に数点を選んて観測を行った 観測項目,観測点を表1に,観測点の分布を図1に示す.

3 二種の ULF 変動特性

この領域の Pc2より周期の長い ULF 変 動は、二つのクループに分類てきることが 知られる その一つは昼間側で顕著に見ら れる Pc3,4,5 等の周期領域のもので、そ の特徴は広い緯度範囲にわたって変動が

- 図 1 ULF 観測点の分布, CH チャーチル, GL キラム, TH トンプソン, IL アイ ラントレイク, RV リハートン, SL ス ターレイク
- Fig 1 Distributions of the ULF stations, CH. Churchill, GL Gillam, TH Thompson, IL Island Lake, RV Riverton, SL Stat Lake

Periods	Sep 1975	Aug - Sep 1976	Feb 1977	Sep 1977
Station	500 1975			
Churchill		A , U, V	A, U, V	U
Gıllam		U		
Thompson	A, U	A, U, V		U
Island Lake		U		U
R ₁ verton				A, U, V
Star Lake	U	U		U

表 1 観測ステーンョン, 観測期間, 観測項目一覧表 *Table 1 Stations, periods of campaign and observation items*

A aurora, U. ULF, V VLF-DF

coherent なことである. 図2がその一例で, 図に見られるように波形は必ずしも規則的では ないが, チャーチルからスターレイクまでの緯度範囲にわたって, 一対一対応がつけられる ほど, よい波形の類似性を示している. この事実は, この種の昼間側の脈動が磁力線に垂直 な方向にもかなり長い波長を持ち, したがって, 外部磁気圏から HM 波として地上に到達し ていると考えるのが妥当てあることを示しているものと言える. すなわち, この種の脈動は,

SEPT 18, 1976	
CHURCHILL III	
- mathing and the second se	
ETICH/QUIN REFUGED THE	
HdD/dt E	
GILLAM	
A.E.A. K. Dr. Walter Hand	
(비용의) 민준이는 (1)	
14월22 회식(화 17일 우리)	
THOMPSON -	
· [1] 注意的问题 [1] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2	
ISLAND LAKE	
STAR I AKE	
Here and the second	
HETHELT PROPERTY	

- 図 2 昼間の脈動の例(水平成分およひ偏角成分) チャーチルからスターレイクまで波形がよく似ていることが分かる 磁気圏より入射する波によるものと理解てきる.1976年9月18日,1905-1945 UT
- Fig 2 An example of dayside geomagnetic pulsation Wave form is similar from Churchill through Star Lake, suggesting that the pulsation is mainly due to incoming ULF wave 1905–1945 UT, September 18, 1976

その起源が外部磁気圏または磁気圏の外に あり、磁気圏内てのマクロな共鳴効果で地 上における振幅,位相などの分布がきまる と考えてよい (LANZEROTTI *et al*, 1974)

これに対して同じ領域でも明け方に見ら れる不規則な脈動は,その性質が著しく異 なる.図3に示すのがその一例で,観測点 毎に波形は変化し,対応のつけられない場 合が多い.一般に,同時の記録では高緯度 側で長周期成分が卓越し,低緯度側では短 周期成分が強く,かつ短周期成分の位相が 観測点ごとに著しく異なっているのが特徴

Fig 3. An example of geomagnetic pulsation in the dawn sector. (H component). Wave form is generally irregular, and the correlation distance is as short as a few hundreds of km. 060140–060510 UT, September 18, 1976 林 幹台・小口 高・国分 征・鶴田浩一郎。渡辺富也。R E HORITA

である.変動のパワースペクトル(図4)は この事情をよく表している.すなわち,ス ペクトル型はノイズ的であり,スターレイ クにおけるスペクトルは,チャーチルのそ れより著しく短周期側に張り出したパワー

130

を持っている.

上述のように相関距離の短いのがこの種 の脈動の大きな特徴であるが,もう一つの 特徴はこの種の脈動の,特に短周期成分が 局地的なオーロラ脈動とよい対応を示すこ とてある.図4のスペクトルからも知られ るように,低緯度側ての特徴的な周期は数 砂ー十数砂てあるが,この周期性は典型的 なオーロラ脈動の周期と一致する.図5に 典型的なオーロラ脈動と,地磁気脈動の例 を示す 図は,TV カメラて得られたオー ロラ画像から,さまさまな点てのオーロラ の脈動の時間変動をとり出したものてあ り,同時に示された地磁気脈動は,オーロ

- 図 4 切け方の脈動のスペクトル 緯度か下か るにつれて(特に SL)10 秒以下のハントか 卓越する このハントかオーロラ脈動に対 応する1976年9月18日,0600-60133UT
- Fig 4 Amplitude spectrum of geomagnetic pulsation in the dawn sector The band with the period less than 10 sec appears at the lower latitude stations, especially at Star Lake, and it usually corresponds to the band with the same period of auroral pulsation 0600–0613 3 UT, September 18, 1976

ラ高度を 100 km としてほぼ観側点の天頂に対応する位置に挿入してある つまり,ある点 て観測された地磁気脈動が,どの部分のオーロラ脈動に対応するものであるかを見るために, 相対的位置関係によって並べたものと考えてよい. 図から分かるように, オーロラ脈動は空 間的に同時に起こるものではなく, パッチはそれぞれ独立に脈動し (CRESSWELL and DAVIS, 1966),そのあるものが近くで起こると近傍の地磁気脈動が,そのパッチとコヒーレントに現 れる. 二点での地磁気脈動の相関は, 脈動するオーロラパッチの空間的スケールによるよう に見える.

上に述べた明け方の脈動の特徴, つまりノイズ的であること, 相関距離が一般に短いこと, 10 砂バンドが卓越すること, 局地的なオーロラ脈動とよく対応することは, この種の脈動が 少なくとも地上で観測する限り, 広範囲にわたる HM 効果そのものを見ているのてないこ とを示している. 逆に, オーロラ脈動に伴う電離層電気伝導度の変動を介して, 局地に電流

〔南極資料

- 図 5 オーロラ脈動と地磁気脈動.オーロラは,チャーチルから見て方位角7度毎,高度 角3度毎の格子点上の明るさの変動を示す.方位角番号5がほほ磁気の南に当たる. 地磁気脈動は,ほほそれぞれの観測点の天頂に当たる位置に挿入してある(オーロラ 高度を 100 km と仮定).地磁気脈動はいくつかの領域のオーロラ脈動の重ね合わせ てよく表現されているように見える.1976年9月23日,090855-091055 UT.
- Fig 5 An example of auroral pulsations (designated as A, B, C and D) along with the concurrent geomagnetic pulsations at Island Lake (IL), Gillam (GL) and Thompson (TH). Auroral pulsations at the grid points viewed from Churchill are shown with 7° in azimuthal and 3° in elevational separations The elevation number (written at the left of each segment) 7 indicates 3° of elevation and the number decreases with increase in elevation The azimuth number (written in the bottom) 5 is roughly coincident with the magnetic south and increases with azimuthal angle. The records of the concurrent geomagnetic pulsations at Island Lake, Gillam and Thompson are shown on the same coordinate system roughly at the zenith of each station at 100 km in altitude The geomagnetic pulsations at each station likely correspond to several neighboring auroral patches in pulsation 090855–091055 UT, September 23, 1976

のゆらぎを生じ,これが磁場変動として観測されていると考えれば,その方がはるかによく 事実を説明することができる.明け方の脈動は,電離層電流のゆらぎによるものと結論して よいであろう.

ここで問題は、このようにして生まれた電離層電流のゆらぎが、磁気圏にどのような効果 を及ぼすかである.地磁気変動の一部は当然 HM 波として磁気圏にフィードバックされ、 再び粒子散乱を介してオーロラ脈動にはねかえっているはずだからである.また粒子束と磁 場変動の結合のためには、ホイスラーモードの電磁波あるいは静電波なども介存しているは ずである.これに関連して明け方にはコーラスの10秒バンドもしばしば見られる.しかし、 磁気圏と電離圏とを結ぶ系での複雑なフィードバック効果は、まだ総合的に理解できるまで には至っていない.またオーロラの10秒バンドも十分よく分かっているとは言い難い

4. Pc1 脈動の特性

プラズマポーズから極光帯にかけての領域では、またしばしば Pc1 脈動が起こる. 起こ

132 林 幹治・小口 高・国分 征・鶴田浩一郎・渡辺富也・R E HORITA 〔南極資料 る時間は午後から真夜中にかけて、夕方側が多く、生起緯度およひ周波数に顕著な時間依存 性が現れる すなわち、午後から夕刻にかけて、生起緯度は高い方から周期の長い(~4秒) Pc1 が起こり始め、次第に夜中に近づくにつれて活動の中心か低緯度側に移り、周期が短か く(~1秒)なる 局地的なオーロラの expansion に先立って(おそらく空間的に)低緯度側 て一層強い Pc1 が現れることも多い. これは、真夜中側て起こった expansion に伴って加速

図 6 Pc1 型脈動の強度、上軸方向, 偏波, およひ周波数スペクトロクラム 強度, 主軸, 偏波の演算を行った周波数は, 周波数スペクトロクラム中の横線て示されている ス テーションは, トンブソン, リハートン, スターレイク 强度の強い領域て左回り偏 波てあること,離れるにつれて王軸が東西の直線偏波になる傾向かあることか分かる. 1977 年9月 25日, 0800-0900 UT

Fig. 6 Temporal and spatial changes in amplitude, direction of the major axis of oscillation, polarization and period spectrogram of Pc 1 observed at Thompson, Riverton and Star Lake This horizontal lines in the spectrograms indicates the period by which the amplitude, direction of the axis and the polarization are obtained Polarization linear with decrease in the intensity elongated in the E-W direction されてたプロトンが、西向きにドリフトすることによって起こる、つまり、夕方の Pc1 は 夜側の expansion の結果を見ているものと理解される (FUKUNISHI, 1973). ここで顕著な発生 緯度および周期の時刻依存は、プロトンのドリフト距離があまり長くないことを示している と言える.また同時に、トリフトするプロトンは空間的に局在し、したがって Pc1 の発生 領域もまた実際にはかなり局在していることを示すものでもある.このことは、従来言われ ている電離層-磁気圏タクトによる汎世界的な Pc1 の伝搬と矛盾するものではない.活動の 中心から周囲への伝搬は当然起こっているはずであるが、実際に電離圏近傍への入射領域は 比較的狭いということである.

このことを端的に示していると思われるのが図6てある. 図には Pc1 脈動の強度, 偏皮, 主軸の向き, および周波数スペクトロクラムが示してあるが, この範囲で言えることは, 強 度最大の点の近傍で偏波は典型的に左回りで, 主軸はやや南北が長く, 強度の弱い領域では 右回りが現れたりもするが, 一般には直線偏波に近づき, 主軸は東西に延びる. この特性は, 限られた領域に磁気圏から入射した Pc1 波動が, 次第にダクト伝搬に変わって行く過程で 理解できるものである.

5. 結 論

極光帯—プラズマポース領域の地磁気脈動にはいろいろな種類があり、一口にはその起源 を論ずることは難しいが、一般的性質について言えば、昼間側ではがいして遠方の波源から 伝搬してくる HM 波の成分を見ていること、これに対して明け方側では、がいして電離層 電流のゆらぎという近い波源を見ていることが結論される.また夕方によく見られる Pc1 脈 動については、その波源領域が空間的に限られており、その中では左回り偏波特性を示し、 離れるにつれて直線偏波となり、ダクト伝搬の特性に変わって行くことが知られた.

文 献

CRESSWELL, G. R and DAVIS, T N (1966). Observations on pulsating auroras. J Geophys. Res, 71, 3155-3163

FUKUNISHI, H. (1973) Occurrence of IPDP events accompanied by cosmic noise absorption in the course of proton aurora substorm J. Geophys Res, 78, 3981–3986.

LANZEROTTI, L J., FUKUNISHI, H and CHEN, L (1974). ULF pulsation evidence of the plasma pause.
3. Interpretation of polarization and spectral amplitude studies of Pc 3 and Pc 4 pulsating near L

=4 J Geophys Res, **79**, 4648–4653.

(1978年6月10日受理)