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Abstract: The recent development of several new observational techniques 

has contributed significantly to our understandmg of the charactenshcs of 

electric fields and currents in the high-latitude ionosphere as well as those of 

auroral particle precipitation and the auroral distribution. This paper attempts 

to review the mam results of several years of research in these diverse fields m 

order to construct a plausible working model that is consistent with the basic 

physical requirements. Various ionospheric processes including substorm varia

tions are discussed with special emphasis on field-aligned currents. It also 

contains sections of recent efforts in synthesizing the vast amount of the obser

vations of large-scale auroras, electric and magnetic fields, and currents in the 

10nosphere and magnetosphere, and it concludes with a list of several questions 

to which satisfactory agreements have not been reached. 
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1. Introduction 

The purpose of this paper is to examine ( 1) what are believed to be agreeable 
and ( 2) what are still matters of serious controversy and thus need future clanfi
catlon for some important topics in studies of magnetosphenc and ionosphenc 
processes For this purpose we attempt to sum up the mam observational results 
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of the electric fields and currents in the polar ionosphere obtained during the 
period from 1973 to the present. The choice of the year 1973 as the starting time 
for this topical review is made based on the author's view that efforts in deducing 
some consistent interpretations from accumulated data of various rocket- and 
satellite-borne and ground-based measurements have begun around 1973, and 
that during the last several years (1973 to the present), a significant advance has 
been made on the electrodynamics of the polar ionosphere owing to the develop
ment of new techniques, such as the ISIS, DMSP and TRIAD satellites, and in
coherent scatter radars in auroral latitudes. It was also in 1973 that the National 
Institute of Polar Research, Tokyo was established as the center of polar research 
programs in Japan. While many new measurements relevant to the high-latitude 
phenomena have been accumulated in the course of observational studies during 
the last several years, quite a few important problems remain unanswered. 

Undoubtedly, the International Magnetospheric Study (IMS) is a most excit
ing period for the studies of the electrodynamic phenomena in the polar ionosphere, 
since many coordinated spacecraft and ground-based observations in progress and 
under contemplation will provide crucial data sets which should unveil the basic 
ionospheric and magnetospheric processes. We believe that it is quite timely to 
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make clear the present status of our observational understanding of the electric 
fields and currents in the polar ionosphere, in terms of considerable progress during 
the last years and future problems. There is no doubt that this task of reviewing 
such diverse subjects is extremely difficult for one author to cover the whole topics 
which are to be combined into a single consistent description, and also that such 
an attempt itself is subject to bias of the author. It is the present author's hope 
that the contents which follow will contribute to an improved understanding of 
various pieces of observational evidence of the high-latitude electric fields and 
currents, as well as serve as a reference source for the scientific community of 
related sub3ects It should be noted that there are several areas on important 
aspects of polar phenomena which are not intentionally covered in this paper. 
They are, for example, observations of geomagnetic pulsations and parallel electric 
fields, that are reviewed extensively in this conference by KOKUBUN ( 1979) and 
TERASAWA ( 1979), respectively. Thermospheric and 10nospheric disturbances 
caused by particle bombardment, electric fields and currents during polar sub
storms are also excluded from this review. Readers are encouraged to consult 
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REES ( 1975) , WICKWAR et al. ( 1975) , ROBLE and REES ( 1977) , and BREKKE 
( 1977) for these topics. 

In Fig. 1 a, we show a logic diagram of electromagnetic processes occurring 
in the magnetosphere and ionosphere system in a way it is outlined by V ASYLIUNAS 
( 1970) . The same 'loop' of the large-scale coupling between the magnetosphere 
and the ionosphere has been utilized by WOLF ( 1975) to discuss a self-consistent 
calculation of the convection electric field in the equatorial plane of the magneto
sphere. Although it is extremely complicated to obtain a solution of the complete 
chain even with drastic simplifications, it is possible to break the 'closed' loop 
into individual links. 

The link which is dealt with in this review paper is marked with a dashed 
box in Fig. 1 a, and it is further decomposed into several boxes from a physical 
viewpoint m Fig. 1 b. The number alongside each box expresses section number 
of this paper in which the corresponding topic is discussed. 

2. Electric Field 

The large-scale electric field plays a key role in the electrical coupling be
tween the ionosphere and the magnetosphere. The motion of charged particles 
and the resultant pressure distribution in the magnetosphere are determined prima
rily by the electric field. A history of the observational study of the electric field 
is relatively new, compared with observations of the distribution of trapped particles 
and the magnetic field. During the 1973-1978 period, general reviews concerning 
the electric fields in the ionosphere and the magnetosphere have been published, 
including the work of MOZER ( 1973a) , PUDOVKIN ( 1974) , KANE ( 1976) , GURE
VICH et al. ( 1976) , PFOTZER ( 1976) , ROEDERER ( 1977) and STERN ( 1977) . 

2.1. Double probe observations 
Experimental methods by which the electric field in the vicinity of the earth 

could be, directly or indirectly, determined are described in detail by STERN ( 1977) . 
Satellites in polar orbit equipped with electric double probe, such as OGO 6 and 
IN JUN 5, have determined the existence of a roughly circular region around the 
magnetic pole, called the polar cap, where the dawn-to-dusk electric field exists 
almost always. The measurements are in agreement with models in which the 
plasma convection across the polar cap is adequately described by a two-cell pattern, 
corresponding to the original idea of the magnetospheric convection by AXFORD 
and HINES ( 1961) . The electric field has usually a total potential drop of the 
order of 20-100 kV across the entire region. The first global survey of the con-
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vection electric field was obtained from the double-probe experiment on the low
altitude (677 to 2528 km) satellite INJUN 5 (CAUFFMAN and GURNETT, 1971, 
1972; GURNETT, 1972a, b). The most prominent feature of the INJUN 5 electric 
field data is the persistent occurrence of abrupt reversals in the electric field ( and 
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thus m the convection velocity) at about 70 ° to 80 ° invariant latitude, with the 
occurrence of generally anti-sunward convection poleward of the reversal m the 
polar cap and sunward convection equatorward of it. These reversals are evident 
in Fig. 2 which is reproduced from GURNETT ( 1972b). FRANK and GURNETT 
( 1971) found that the so-called trapping boundary for electrons with energies 
£>45 ke V 1s located essentially coincident with the electric field reversal. This 
feature 1s clearly seen in Fig. 2 in which the times when the high-latitude termi
nation of E>45 ke V electron intensities is traversed by the satellite are shown by 
the vertical dashed lines at 1443 and 1453 UT. Since open magnetic field Imes 
cannot sustain trapped energetic electron mtensities, the observed correspondence 
between the electron trapping boundary and the electric field reversal provides 
evidence that the electric field reversal corresponds to the boundary between open 
and closed field lines (GURNETT, 1972b). A double-probe electric field experi
ment was also earned out by the OGO 6 satellite (HEPPNER, 1972a, b, c) Fig. 3 
shows a relatively typical traverse across the polar region in the northern hemi
sphere. Although large fluctuations exist m the profile of the anti-sunward flow 
over the polar region observed by these satellites, the gross pattern shows a close 
similanty between the INJUN 5 and OGO 6 measurements in the dawn-dusk 
meridional plane, mcludmg the magnitude of the total potential difference across 
the entire polar cap The most important pomt to be noted is that the electric 
field pattern under very quiet conditions is basically the same as that observed 
under disturbed conditions (HEPPNER, 1972a). HEPPNER (1972a) thus concluded 
that electric field changes on a global scale cannot be mvoked as a direct cause of 
magnetospheric substorms. 

A quantitative disagreement between the observations with the INJUN 5 and 
OGO 6, however, seems to exist concernmg the relative occurrence of the different 
types of convection profiles The INJUN 5 data showed that cases of umform 
anti-sunward convection over the polar cap were relatively uncommon, as seen in 
Fig. 4a, while HEPPNER ( 1972a) showed that the convection pattern was nearly 
uniform over the polar cap region, as in Fig 4b The dased line in Fig. 4, separat
mg the two reg10ns of the sunward and anti-sunward flow, is the average location 
of the electric field reversal. It 1s, at present, unclear whether or not these two 
different flow patterns mcorporate each other, and more practically, a question re
mams unsettled concerning under what condition each of the flow patterns occurs. 

Dawn-dusk asymmetry of the magnitude of the dawn-dusk component of the 
electric field across the polar cap, occurs correlated systematically with the By 

component of the interplanetary magnetic field (HEPPNER, 1972b) An important 
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Fig. 4. Schematic diagram showing "average" convectzon patterns observed by INJVN 5 
and OGO 6, ranging from (a) distinctly non-uniform and often asymmetrical ant1-
sunward fiow over the polar regzon to (b) essentially uniform antz-sunward fiow 
over the entire polar cap (after GURNETT, 1972b). 

feature is that the electric field distribution is strongly skewed toward either the 
morning or evening hours, depending on the azimuthal angle, ¢, of the interplane
tary magnetic field (see also HEPPNER, 1973) . That is, the electric field tends to 
be stronger in the side of the polar cap on which the azimuthal component of the 
IMF and the projection of the earth's magnetic field into the equatorial plane 
point in the same direction; away from the sun's field, causing an enhancement 
on the dawnside of the northern hemisphere and the reverse is true for a sunward
pointing interplanetary magnetic field. RUSSELL and ATKINSON ( 1973) have 
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pointed out that the basic dawn-dusk shift of the convection field can be explained 
as an effect of the merging of magnetic field lines at the nose of the magnetosphere. 

However, it should be pointed out that plasma flow patterns corresponding 
to away and toward sectors of the interplanetary magnetic field are not simple 
mirror images in the noon-midnight plane (HEPPNER, 1972b), suggesting that an 
additional effect which squeezes the antisunward flow toward the dawnside of the 
polar cap still remains. ATKINSON and HUTCHISON ( 1978) and KAMIDE and 
MATSUSHITA ( 1978b, c) have shown that an ionospheric conductivity gradient de
creasing toward the nightside in the polar cap can produce such an effect. 

Based on OGO 6 data, HEPPNER ( 1977) presented most recently empirical 
model convection ( electric field) patterns corresponding to the two possible direc
tion of By of the mterplanetary magnetic field. These patterns are further modified 
on the nightside to represent the observed slant of the Harang discontinuity (MAY
NARD, 1974a), as reproduced here in Fig. 5. Both types of models have a total 
potential difference of 76 kV. It was noted that these 'observed' field distributions 
at and near the polar cap boundary do not resemble the distributions frequently 
used in theoretical studies in that the maximum field mtensities occur actually 
within the auroral belt and not at its polar cap boundary as depicted in theoretical 
models. 

SWIFT and GURNETT ( 1973) studied the electric field behavior in the vicmity 
of auroral forms for both quiet and substorm times, using the INJUN 5 data. It 
was found that in the region of substantial electric field, a diffuse auroral arc was 
observed during the magnetically quiet pass, and auroral patches were observed 
during the substorm pass. In the substorm case, the electric field reversal tended 
to occur very near a discrete auroral arc at the poleward side of the diffuse arcs 
and patches. It was further noted, by comparmg the qmet and substorm cases, 
that the convection electric field penetrates deeper into the magnetosphere during 
a magnetospheric substorm. Fig. 6 shows one substorm event when an anomalously 
large potential drop (,.....,240 kV) was observed across the polar cap under the 
typical substorm circumstance (GURNETT and AKASOFU, 1974). They also found 
for the event that the electric fields across the polar cap immediately before the 
substorm onset and during the maximum phase of the substorm were essentially 
unchanged, ind1catmg that an enhancement in the ionospheric conductivity rather 
than the electric field must be responsible for the large increase m the auroral 
electroJet current during the substorm. 

It should be noted that the results from the INJUN 5 and OGO 6 data need 
not completely match. Some differences in detector sensitivity and data resolution 
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between the two satellites have been noted by GURNETT ( 1972b) . The discrepancy 
may also be attributed either to the difference in the altitudes at which the satellite 
observations were made (PuoovKIN, 1974) or to the fact that the both experiments 
used only a single pair of antennas and thergore were able to observe only one 
component of the electric field depending on the probe direction ( STERN, 1977), 
or both. 
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The similar double probe is carried by various sounding rockets which are 
orbited into active auroral forms (MAYNARD and JOHNSTONE, 1974; WHALEN et al., 

1974, 1975; KELLEY et al. , 1975; CARLSON and KELLEY, 1977 ; MAYNARD et al. , 

1977; EVANS et al. , 1977). It is one of the advantages of the rocket measurements 
that various conditions for auroral forms and substorm activity can be chosen for 
the particular rocket flights, thus allowing one to study in detail the small-scale 
field configuration in the auroras, whereas the orbital period c,-,100 min) of the 
polar-orbiting satellites is too long to follow individual auroral displays. Some 
results of the vector electric field associated with auroral arcs are discussed later 
together with the results based on other methods. 

We discuss the results of measurements of horizontal electric field by means 
of balloon-borne double probes in the upper atmosphere (MOZER, 1973a). Al
though this method resembles those of satellite- and rocket-borne probes, it ob
serves the field strength in the neutral atmosphere (,-'30 km altitude), not in the 
ionosphere or above it; see MOZER (1973b) and OGAWA (1973, 1976) for the 
reliability of this technique. PARK (1976) and BERING et al. (1977) have drawn 
attention to the problem of electrical coupling between the ionosphere and the 
lower atmosphere and indicated that the horizontal electric fields in the ionosphere 
map down to nearly 10 km with little attenuation. Fig. 7 a shows hourly averages 
of electric field components as a function of local time which were measured in a 
nonrotating frame obtained from 32 balloon flights in the auroral zone (MOZER 
and LUCHT, 197 4). These average values mapped in the equatorial plane of the 
magnetosphere ( shown in Fig. 7b) fit well into the general picture of the sun ward 

20 

08 12 16 20 24 

LOCAL T I ME 
Fig. 7a. Hourly averages of electric field components measured 

zn a nonrotatmg frame of reference on 32 balloons fiown 
in the auroral zone (after MOZER and L UCHT, 1974). 
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t 1 mV/m 

Fzg. 7b. Hourly averaged electrzc field vectors plotted on the 
equatorial plane of a nonrotatzng frame of reference, as 
viewed from above the north pole (after MOZER and 
LUCHT, 1974) . 

streammg plasma. 
Electric field behavior obtained from individual balloon flights was also com

pared with other simultaneous observed parameters, such as the interplanetary 
magnetic field and the auroral distribution ( MOZER, 1973c ; MOZER et al., 1974; 
KELLEY and MOZER, 1975; MADSEN et al. , 1976). 

TANAKA et al. ( 1977a, b) have recently reported the results of measurements 
of vector electric fields made with balloons launched at Syowa Station, Antarctica, 
and obtained the convection pattern that has been normally observed in the auroral 
belt. It was also found that enhancements of the electric field were generally ob
served during polar substorms, but shorter period variations were shown not to 
correspond to those in ground magnetic fluctuations, indicatmg the importance of 
the great variability of the ionospheric conductivity. 

HOLZWORTH et al. ( 1977) reported the results of four days of simultaneous 
auroral zone electric field measurements on balloons flown from six sites spanning 
approximately 180° of magnetic longitude. It was shown that if the observed con
figuration of the electric fields is mapped to the equatorial plane, the instantaneous 
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field does not generally exhibit a steady global dawn-dusk component, although 

there is a dawn-dusk component on the average at most local times. This indicates 

that at any given time the electric field can be quite variable. Their electric field 

data obtained during quiet periods also exhibit some characteristic differences 

from balloon data of electric field obtained for more active periods by MOZER 

and LUCHT ( 1 97 4) , in that the region of relatively large electric field during quiet 

times is more confined near midnight than that for more active times. 

2.2. Barium cloud releases 

This method of measuring the electric field involves releases of barium vapor 

into the atmosphere, as discussed by HAERENDEL et al. ( 1 967 ) and DAVIS and 

WALLIS ( 1972) . The experiment is usually carried out when the sun is below 

the horizon of the earth's surface but it still illuminates the released cloud, which 

can be visible and be partially ionized. Many releases provided interesting results, 

including a confirmation of the large-scale electric field pattern deduced from other 

measurements (WESCOTT et al., 1 969, 1 970) . 

Recently, by the method of barium shaped charges injection it has become 

possible to follow plasma on magnetic field lines to great distances (WESCOTT et al. ,  

1 974 ) and to test whether the assumption that the field lines are equipotentials 

is correct. Such shaped-charge injections of barium clouds were used to examine 

substorm features of the electric field, in particular, the parallel field (WESCOTT 

et al. , 1 97 5 ) ,  and the electric field structure in the vicinity of the dayside cusp 

(JEFFRIES et al., 1975 ; WESCOTT et al. , 1 978 ) .  

2.3. Rocket and satellite observations of ion drifts 

It may also be possible to estimate the electric field by observing from space

craft the bulk velocity of ambient plasmas. This method has been most extensively 

utilized in near-earth spacecraft, the AE-C satellite (HANSON et al. , 1973 ; HANSON 

and HEELIS, 1975 ;  HEELIS et al. ,  1 976) . BURCH et al. ( 1 976 ) have studied the 

characteristics of pairs of oppositely directed spikes in ionospheric convection ve

locities and found that these phenomena tend to occur near the large-scale reversal 

from sunward to antisunward convection on the nightside of the earth, where in

verted V-type electron precipitation is observed. This relationship between the 

electron precipitation and the electric field spikes is consistent with an upward

flowing current that is fed by Pedersen currents. They also have shown a case in 

which the step-like electric fields were pointing away from the region in between, 

where a sharp electron flux dropout was seen. This may be an indication of 

counterparts to inverted V-structure existing in regions of downward field-aligned 
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currents. 
A determination of the convective electric fields from rocket measurements of 

the ionospheric bulk flow of thermal ions was made recently by MORGAN and 
ARNOLDY ( 1978) . 

2.4. Incoherent scatter radar 
Doppler shifts of radar waves scattered incoherently from the ionosphere can 

give the bulk velocity in the ionosphere at altitude up to approximately 500 km 
(LEADABRAND et al. , 1972; DOUPNIK et al. ,  1972; BANKS et al . ,  1973 ; BREKKE 
et al. , 1973, 1974 ; HORWITZ et al . ,  1978a) At altitudes above 1 60 km, ion ve
locities are almost entirely due to EXB drifts, thus from velocity measurements 
by the radars at these altitudes, the electric field impressed in the ionosphere can 
be obtamed directly This field is mapped down to £-region altitudes (ECKLUND 
et al , 1 977) , where ion motion is influenced by ion-neutral collisions as well . This 
method provides an important tool for deriving the electric field, since it can 
monitor the field variation continuously for a comparatively long period and it 
provides simultaneously some other ionospheric quantities, such as currents, con
ductivity and neutral wind ( e .g , PERREAULT et al., 1977) . The only facility of 
this kind presently operationing on a satisfactory basis in high latitudes is that at 
Chatanika, Alaska, which conducts many useful observations of the electric field 
near and in the auroral region during quiet and substorm times ; see the review 
paper by BANKS and Do UP NIK ( 1 97 5) . A second facility of the mcoherent scatter 
radar is the EISCAT system in Scandinavia, scheduled to begin the operation in 
1 978 (BOSTROM, 1 975b ; BREKKE, 1978, personal communication) . 

2.5. Some recent topics 
In this subsection, some relevant topics of the high-latitude electric fields 

are bnefly highlighted. 
2 5 . 1. Electnc field associated with auroras 

It is reasonable to expect that the large-scale electric field and current are 
modified locally m and near auroral arcs, since an arc is a region of enhanced 
conductivity. However, the problem of the electric field and current inside an 
auroral arc associated with energetic electron precipitation is not well settled Ac
cordingly, the following two important problems remain unsolved · ( 1) What are 
the main charge carriers responsible for field-aligned currents and where do these 
particles originate? (2) How are the field-aligned currents connected to ionosphere 
currents in and near auroral arcs? In order to examine observationally these ques
tions, it may be necessary to conduct simultaneous measurements of, at least, the 
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electric field and the auroral location. 
As discussed by RosTOKER ( 1977) , there appear two conflicting measurements 

of the electric field associated with auroral arcs where an intense electron pre
cipitation exists. AGGSON ( 1 969) , POTTER ( 1 970) and WESCOTT et al. ( 1969) 
indicated a decrease of the electric field within auroral form, whereas MOZER 
and FAHLESON ( 1 970) , GURNETT and FRANK ( 1 973) , and SWIFT and GURNETT 
( 1 973) observed an increase in the southward electric field inside auroral arcs. 
Most recently, MAYNARD et al. ( 1977) have shown by the use of a rocket measure
ment that electron precipitation is anticorrelated with electric field intensity (both 
in the north-south and east-west components) inside the arc, in agreement with 
the earlier report of MAYNARD et al. ( 1973) . EVANS et al. ( 1977) have suggested 
for this particular observation that a polarization electric field is built within the 
arc such that current continuity is held at the arc boundary. 

On the other hand, CARLSON and KELLEY ( 1 977) have found based on ion 
flow data of a rocket double-probe that within a substorm-activated auroral arc, 
the electric field and energetic electron flux are correlated. EDWARDS et al. ( 1 97 6) 
have reported that there was no simple relationship between the intensities of the 
electric field and precipitating electron flux. 

In most of these conflicting observations, it was not conclusive enough to 
derive a definite understanding concerning the field and current around auroral 
arcs, because only a few ionospheric parameters were measured. As pointed out 
by BANKS and DouPNIK ( 197 5) , however, the incoherent scatter radar can de
termine most of the electromagnetic properties. DE LA BEAUJ ARDIERE et al. ( 1977) 
have recently presented a set of comprehensive observations made with the Chata
nika radar. These measurements are made with a relatively simple technique in 
which the radar antenna was pointed stationarily to the magnetic west, but discrete 
auroral arcs moved in the north-south direction so that one could observe the 
spatial variation of the physical parameters of interest assuming no temporal vari
ation occurred during the observation interval. They have noted that the electric 
field data are interpreted by separating into two parts; an ambient field that is 
the large-scale electric field and an arc-associated electric field within the arc form. 
It is essential to stress this point in discussing the electric field intensity in relation 
to auroral arcs, since, as seen in the diurnal change of the electric field shown in 
Fig. 7, the large-scale electric field in the auroral latitudes is directed primarily 
northward in the evening sector while southward in the morning sector. According 
to DE LA BEAUJARDIERE et al. ( 1 977) , evening sector arcs yield a reduced north
ward electric field in the region where the enhanced electron density is present, 
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indicating that the reduced northward field is due to an added southward field 
associated with the auroral arc. For morning sector arcs, the southward field is 
stronger inside the arcs compared with outside. These features are clearly demon
strated in Figs. Sa and Sb, which are reproduced from Figs. 5 and 13, respectively, 
of DE LA BEAUJARDIERE et al. ( 1977) . 
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the intense morning arc (after DE LA BEA UJARDIERE et al , 1977). 

It is noted in this connection that the results of DE LA BEAUJ ARDIERE et al 

( 1977) may explain the opposite conclusions reached by several workers regard
ing correlations of the electric field intensity with energetic electron fluxes and 
electron density inside auroral arcs. It is interesting to point out that the obser
vations by MAYNARD et al. ( 1977) were indeed made when the ambient electric 
field was directed northward, while those of CARLSON and KELLEY ( 1977) were 
obtained when the southward electric field was present in the vicmity of the sub
storm-associated arc. It is noted, however. that HORWITZ et al ( 1978a) have 
recently compared the electric fields probed at several latitudes by the Chatamka 
radar with optical auroral data from DMSP and all-sky photographs, and obtained 
that m the morning sector, sharp reductions of the southward electric field strength 
were seen in regions of bright, active auroras, with large electric fields often 
appearing immediately poleward of the high-latitude borders of these auroral re-
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gions. Note also that MAHON et al. ( 1 977 ) have recently observed a southward 

electric field with 35-40 m V /m intensity in the region of 2 kR diffuse aurora. 

2.5.2. Electric field near the Harang discontinuity 

Various phenomena reverse or change significantly their characteristics across 
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Fig. 9a. Schematic diagram of the convective fiow and electric field distributzons zn the 
polar regzon (after MA YNARD, 1974a). 
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Fig. 9b . Schematic diagram showing the different geomagnetzc 11H and electric field pat
terns observed for northward and southward dzrectzons of the interplanetary mag
netic field (after HORWITZ et al. , 1978b). 
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the 'Harang d1scontinmty', denoted by HEPPNER (1 972d) . One of the phenomena 
that are used to identify the discontinuity is the d1Iect1on change of the electric 
field. That 1s the locus separating the northward and southward electnc fields. 
Fig 9 shows a schematic illustration of typical convective flow and the correspond
ing electnc field d1rect1ons in the polar region (MAYNARD, 197 4a) , where the 
Harang d1scontmmty can be seen which occurs m higher latitudes at earlier local 
times. MAYNARD ( 1974a) showed that the discontinuity in the electnc field data 
obtained from OGO 6 double probe measurements is present even during extremely 
quiet times. It was then noted that the existence of the Harang d1scontmmty at 
quiet times would be difficult to recognize on the basis of other signatures, such 
as the H component reversal of ground magnetometer records . 

It is also important to note that the reversal of the electric field cannot occur 
abruptly from northward to southward, but the northward-directed field would 
gradually rotate counterclockwise across the Harang d1scontmuity (MAYNARD, 
1 97 4a) . KAMIDE (1978) stressed the importance of the predominance of the 
westward electnc field in the Harang discontinuity 'region' m understandmg the 
ionospheric current distribution in the prem1dnight sector, and showed a schematic 
diagram of latitudmal changes of the electric field in the vicmity of the Harang 
d1scontinmty It was emphasised that the 'Harang discontinuity region' is defined 
by the area with a finite width in which the westward component dominates over 
the north-south component; note that the electric field in the evening and morning 
sectors is dominated by its north-south component. The predominance of the 
westward field had been reported by WESTCOTT et al (1969) and BANKS et al. 
( 1 973) . Their studies were based on barium cloud release experiments and the 
Chatanika radar, respectively. MAYNARD ( 1974b) further reported that the lati
tudinal width varies in conjunction with magnetic activity ; the width becomeg 
smaller under disturbed conditions and broadens under quiet conditions. WEDDE 
et al. (1 977) showed that when the Harang discontinuity is traversed by ground-
based instruments, such as the incoherent scatter radar, the discontinuity region 
(i e , the region where the convection flow direction changes from westward 
through south to eastward) , occurs over a fairly wide local time range, say, 1-2 
hours. HORWITZ et al. ( 1978b) have recently examined the latitudinal distributions 
of the electric field configuration near the Harang discontinmty region which were 
compared with those of isointensity ilH contours in latitude and time and with 
the north-south component of the interplanetary magnetic field. Fig. 9b shows an 
illustration of the electric field and ilH distributions in response to the changes 
in the interplanetary magnetic field, in which the Harang discontmuity is clearly 
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seen. It has been argued by them that although previous observations of the 
electric field in the premidnight sector stressed the enhancement of the westward 
component following the southward turning of the interplanetary magnetic field, 
overall oval expansion in latitude as indicated in Fig. 9b may be far more con
spicuous than the enhancement of the westward field which is only observed near 
midnight. Moreover, westward field enhancement in the midnight sector could 
result from the latitudinal shift of the electric field pattern near the Harang dis
continuity without a major change in the gross structure of the electric field. 

The westward field in the discontinuity region has been shown to be modulated 
in the presence of discrete auroras (BANKS et al. , 1974; RINo et al. , 1974) . How
ever, the ionospheric conductivity changes across the Harang discontinuity have 
not been observationally established yet, although WEDDE et al. (1977) have 
reported that for at least one event, the discontinuity encounter by the Chatanika 
radar is accompanied by an abrupt increase in electron precipitation, the most 
intense part being located slightly east of the center of the discontinuity. We note 
that the day dealt with by the WEDDE et al. (1977) paper featured continuous 
substorm activity, so that it is difficult to distinguish unambiguously the auroral 
particle injection due to the Harang discontinuity region itself ( i.e . ,  spatial change) 
and that to a substorm-related energization ( i.e . ,  temporal effect) . 

The problem of electric field in the Harang discontinuity region lies also in 
the nature of the discontinuity in the magnetosphere, in spite of the fact that several 
attempts have been made to map the discontinuity onto the equatorial plane of 
the magnetosphere (MAYNARD, 1974a; FAIRFIELD and MEAD, 1975; BREKKE, 1977) .  
There i s  little doubt that the discontinuity represents the convection boundary 
dividing the eastward and westward plasma drifts in the magnetosphere. However, 
the question of why various phenomena ( such as ionospheric currents, auroral 
features and other substorm dynamics) change their characters across the dis
continuity is unanswered. From a statistical study of plasma behavior at the 
synchronous orbit, LEZNIAK and WINCKLER ( 1970) defined a 'fault line' near 
local midnight, west of which inflation of magnetic field occurs and east of which 
collapse of magnetic field is observed during substorms. MAYNARD (1974a) sug
gested that when the Harang discontinuity is mapped onto the magnetotail, it can 
be identified as the fault line. However, a question is how the fault line forms 
the well-known local time dependence of the Harang discontinuity, namely, a 
'slant' boundary. To resolve this question, detailed studies, both observational 
and theoretical, may be needed as to the large-scale convection characteristics 
related to ionospheric conductivities and field-aligned currents. 
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BREKKE ( 1977) has recently indicated that the Harang discontinuity defined 
by the electric field reversal corresponds to the substorm injection boundary in 
the magnetosphere This identification was made by comparing the north-south 
component field reversal observed by the Chatanika radar with the encounter of 
the injection boundary by the ATS 5. It is noted, however, that the injection 
boundary observed by the ATS 5 (MclLWAIN, 1974; MAUK and MCILWAIN, 1974) 
and Explorer 45 (KONRADI et al. , 1975, 1976) can be mapped to the equatorward 
boundary of the auroral belt (KIVELSON, 1976; KAMIDE and WINNINGHAM, 1977), 
rather than to the Harang discontinuity. 

It is finally remarked that a new tool for inferring the ionospheric electnc 
field 1s Doppler backscatter radars (HALDOUPIS and SoFKO, 1976 ; SOLVANG et al , 

1977), which measures the drift velocity of electron density irregularities. Data 
from the ST ARE system, together with ground magnetic data taken from the 
Scandinavia meridian chain of observatories operated by the University of Miinster, 
should provide a comprehensive situation of the ionospheric electric field and 
current near the Harang discontinuity. GREENWALD et al. ( 1978) have shown an 
interesting example of the ST ARE radar data in which the eastward drifting region 
( southward electric field) penetrates to the north of the westward drifting region 
(northward field) in the evening sector. The fairly dense network of the Scandi
navia magnetic station dunng the IMS period has a clear ability to yield quantitative 
information in the fine spatial variation of the auroral electrojets in the region 
covered by the STARE radar system (KOPPERS et al. ,  1978). Some preliminary 
reports of the comparison between the radar and magnetic data are described in 
Section 8 
2.5.3.  Parallel electric field 

We have so far discussed the perpendicular electnc field only, but strong 
evidence of the existence of the parallel electric field has recently been reported 
The understanding of the field-aligned electric field is one of the most exciting 
and significant subjects of substorm physics relating to acceleration of auroral 
particles (SHAWHAN et al. , 1978). WESCOTT et al. ( 1976) and MOZER et al. (1977) 
have independently shown measurements of parallel electric field m the altitude 
range of 2000-8000 km in auroral latitudes. 

It is interesting to note that ZMUDA et al. ( 197 4) pointed out that the motion 
of the transverse magnetic field of field-aligned currents leads to induced electric 
fields parallel to the main geomagnetic field 

For summary of theoretical studies which predict the existence of such a 
field, the reader may refer to the review paper by TERASA w A ( 1979) in this issue. 
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2.5.4. Penetration of high-latitude electric field into low latitudes 

83 

It is one of the important problems associated with magnetospheric convec

tion how the high-latitude origin electric field can penetrate deep into lower latitudes 
(SWIFT, 1971; VASYLIUNAS, 1972; PELLAT and LAVAL, 1972; VOLLAND, 1973 ; 

JAGGI and WOLF, 1973 ; MALTSEV, 1974; WOLF, 1974; YASUHARA, 1975 ; KAMIDE 

and MATSUSHITA, 1978c). The observational study of low-latitude effects of 
substorm-associated electric fields appears, at present, to be only at its beginning 

(TESTUD et al. , 1975). CARPENTER and KIRCHHOFF (1975) found by comparing 
the electric fields observed by two incoherent scatter radars at Chatanika, Alaska, 

and Millstone Hill, Massachusetts, that daily variations at the two radar sites are 
quite similar. KIRCHHOFF and CARPENTER ( 1976) examined the daily variations 

in ionospheric drift velocities at Millstone Hill and found that daily variations of 

electric field during with high geomagnetic activity were different from those during 

low geomagnetic activity, and that the electric field data on disturbed days followed 
basically the usual convection pattern but they included large day-to-day varia

tions. HARPER (1977a, b) used variations in the electric fields measured at Arecibo 
and variations in ground magnetic perturbations at a nearby observatory, San Juan, 

to discuss the origins of the ionospheric electric fields and currents at mid-latitudes 

during both quiet and disturbed periods. It was suggested that the variations in 
the ground magnetic field on the very disturbed days appear not to be primarily 

due to the ionospheric currents. On the other hand, CARPENTER and AKASOFU 
( 1972) showed that the westward electric field in the plasmasphere inferred from 

radial motions of whistler ducts is considerably intensified during substorms. 

TESTUD et al. (1975) reported also an enhancement of the westward field observed 
by an incoherent scatter radar at St. Santin, France, but not all substorms cause 

the enhancement. BLANC et al. ( 1977) and BLANC (1978) have recently suggested 

that while low-latitude extension of the convection electric field is not associated 

with all the substorms, it occurs in conJunction with the development of the partial 

ring current, indicating that large dawn-dusk asymmetry in ionosphere-magneto

sphere coupling during substorms may be responsible for the lack of electric field 
shielding in mid-latitudes. By examining the world occurrence of sudden storm 
commencements, ARAKI ( 1977) has suggested that it is possible for the electric 

field impressed on the high-latitude ionosphere to penetrate deep into the equatorial 
region. SMIDDY et al. (1977) have conducted a DC electric field experiment on 

a polar-orbiting satellite (S3-2). Intense localized electric fields directed poleward 
in the pre-midnight sector near the ionospheric projection of the plasmapause were 
shown to be related to substorm activity. 
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Fig . 10. Electric field observed by IMP 6 and simultaneous surface magnetograms (after 
A GGSON and HEPPNER, 1977) 

2.5 5. Large transient electnc field 
The final topic of the high-latitude electric field relates to transient electnc 

field events observed m the midmght sector at geocentric distances of 3 5-5 5 RE 

with the long double-probe instrument carried by the IMP 6 satellite An example 
is shown m Fig 10, reproduced from Fig. 5 of AGGSON and HEPPNER ( 1 977). 
These events usually have a total duration of 1 to several minutes, which occur 
under magnetically disturbed conditions, and m most cases can be associated with 
negative dH / dt excursions at magnetic observatones located near the foot of the 
field lme intersecting IMP 6. AGGSON and HEPPNER ( 1977) then suggested that 
such transient electric fields provide an obvious mechanism for the impulsive ac
celeration and mJection of plasma to populate the radiation belt 

3. Auroral Particle Precipitation 

The problems of precipitation patterns of auroral particles, their temporal 



No. 63 .  1979] Review of Electric Fields and Currents in the Ionosphere 85 

variations, and their energy spectra play a central role in high-latitude phenomena 

and magnetospheric processes. BATHER (1973 ) proposed that mstead of the 

concept of the auroral oval defined statistically from visible auroras, the regions 

of particle precipitation that are subdivided by particle type and energy, would 

give a more physically meaningful framework for ordering a vast amount of 

geophysical data m high latitudes . During the period of 1973 to the present, a 

number of particle measurements have been carried out by low-altitude satellites, 

such as INJUN 5 (FRANK et al. ,  1976 ) , ISIS 1 and 2 (SHEPHERD et al. ,  1973 ; 

WINNINGHAM and HEIKKILA, 1974; BURROWS, 1974; WINNINGHAM et al. , 1975; 

VENKATARANGE et al. , 1975; MCDIARMID et al. ,  1975, 1976) , DMSP (MISERA et 

al., 1975; MENG, 1976; MENG et al. , 1977) ,  BSRO (RIEDLER and BORG, 1972 ; 
HOLMGREN and APARICIO, 1973 ; DEEHR et al. , 1973 ; HULTQVIST, 1975) , OGO 6 

(WILLIAMS and TREFALL, 1973 ) ,  and USAF 1971-089A (JOHNSON et al. , 1974; 

CAVERY, 1975; IMHOF et al. , 1975a) ,  rockets in auroral region (REASONER and 
CHAPPELL, 1973 ; ARNOLDY and CHOY, 1973 ; BRYANT et al., 1973 ; SHARP and 

HAYS, 1974; ARNOLDY et al. , 1974; REARWIN and HONES, 1974; WHALEN et al., 

1974; Vu et al. , 1975; MILLER and WHALEN, 1976; ARNOLDY and LEWIS, 1977) , 

and by ground-based optical instruments (MENDE and BATHER, 1975; SHEPHERD 

and BATHER, 1976; CHRISTENSEN et al., 1977) , and auroral X-ray measurements 

(KANGAS et al. , 1974, 1975; IMHOF et al., 1975b; RosSBERG, 1976; ROSENBERG 
et al. , 1977) . 

3.1. Diffuse and discrete auroral precipitations 
One of the important findings in the auroral particle study is the identification 

of diffuse and discrete precipitations (WINNINGHAM et al. , 1975) .  The charac

teristics of both types of auroral particles are a complicated function of local time 
and latitude, and also of substorm time. HULTQVIST ( 197 4) reviewed the charac

teristics of the auroral electrons and protons which impmge mto these two auroral 
regions. HOLMGREN and APARICO (1973 ) and WILLIAMS and TREFALL (1976) 

have indicated that for > 30 ke V electrons, field-aligned precipitation can occasion

ally be observed in the evening and midnight sectors. PETERSON et al. (1977) 
have recently measured electron energy spectra extending to very low energy 
(,-,10 eV) in steady diffuse auroral forms by the AB-C and -D satellites . 

The upper half of Fig. 11 (LUI et al. , 1977) shows both 5577 and 3915 A 
photometer records which were taken from the ISIS 2 satellite . Both photometers 
show two peaks of intensity. The lower panel shows the spectrogram obtained by 
the same satellite for electrons and protons . Detailed inspection of these data 



86 y ohsuke KAMIDE 

1971 DECEMBER 1 5  
SIGHTING TIMES 1 8  42 19 0 0  1 9  17 1 9  35 1 52 20  10 ' 2 0  2 7  20 4 5  2 1  0 3  2 '1 2 01 

r:------=_.:..::.......:.:_��c..-:Ll!���������� 

� -
a: > 
w W 
z :.::  w -

<{ 0. .... <t) 
<{ x '"" 

0 :::, !... _J � u.. .. 
z a:: .,  0 w 
a:: ro "'  
.... ::E E 

:::, (,) 

() z -
UJ 
...J w x -;:  

:::, "' _J u.. ., 
>- N 
'-' E 
a:: (,)  w '  z "' 

w z 
_J 0 <( -
u (/) 
(/) � 

::E >- w 
>-
iii 
z 
w 
>-� 

1 0 8 

06 

1 0° 

10-2 

w ;;;  

UT -1 0-4 

INV L AT 
'10 0 

>-
t, - 1 0 a:: >  w W 
z "'  0 '1 w -

0 0 1  

1 8 0  
0. 

< Cl)  9 0 , 
1- x "" 109 
ct :::> !-
C -' � 

LL. .,.  

Z :5 ., 1 07 

0 aJ N  
I- ::E E 
0 :::, .., 

,10 5  z -
0:: 
a. 

'1 00 
X � 
::::, .. 
;: "' 
>- N 
'-' E a:: (,)  w ..... z "'  w :;;  

1 0  0 

'1 0 

02 20 02 21 02 22  02 2 3  
7 4  2 71 5 68 8 6 6  2 

02 2 1  0 2  2 2  02 2 3  

02 24 02 2 5  0 2  26 
63 5 6 0  8 5 8  2 

02 24 02 25  02 26 

1 0 w z 

� �  
(/) �  

:E 
>- w 
>-

0 1 iii z 
w 1-z 

02 27  
55 6 

02 27 
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indicates that the precipitation region can be divided into two regions. At the 

highest latitude end, there is a precipitation region in which both the intensity 

and energy of electrons are highly variable. Its latitudinal range is between 73.5 ° 

and 70.0° which corresponds to the region where discrete auroral arcs are present. 

Equatorward of this region, there is an extensive precipitation region with fairly 

uniform intensity, called the diffuse aurora. A very characteristic decrease of 

electron energies (i.e. softening of auroral particles) is seen toward the equatorward 

boundary. 

Fig. 1 2  shows four energy spectra of auroral electrons which were taken at 

the times A, B, C and D indicated in Fig. 1 1 . LUI et al. ( 1977) have shown by 

comparing the spectra A and D, which correspond to the discrete and diffuse 

auroral regions, respectively, that the most important difference between them is 
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fuse aurora (after LUI et al. , 1977) . 
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Fzg . 13. Schematzc illustratzon to summarize the results of comparison between 
regwns of auroral and particle preczpztatwn . Each satellzte pass is rep
resented by three lines to indicate the extent and characterzstzcs of par
ticle precipztatwn and the types of aw ora (after LUI et al , 1977) 



No. 63 . 1979J Review of Electric Fields and Currents in the Ionosphere 89 

the presence of a peak of the flux at about 3.5 keV in A, whereas it is absent in D. 
Note that GURNETT and FRANK ( 1973) have already shown the existence of the 
diffuse, structureless precipitation in the region a little equatorward of inverted V 
precipitation region. 

MENG et al. ( 1978) examined electron precipitations above the westward 
travelmg surge, which is the domminant feature of the discrete aurora during sub
storms. The most spectacular precipitation feature is observed inside the main 
body of a surge where an unusually flat differential spectrum was observed, ex
tending from 0.2 keV to at least 20 keV. Thus, the MENG et al.'s ( 1978) measure
ments indicate a substantial precipitation of energetic electrons above 20 ke V 
inside a surge. 

Fig. 13 shows a diagram to summarize the results of comparison between 
regions of auroras and particle precipitation. Each pass is represented by three 
lines to indicate the latitudinal extent and characteristics ( for example, diffuse or 
discrete) of particle precipitation and aurora (LUI et al., 1977). The general 
features are summarized as follows : 

1) The region of discrete aurora corresponds to the region of highly struc
tured electron precipitation where the electron differential energy spectra show 
prominent peaks within the energy range of 0. 1-10 keV. 

2) The diffuse aurora corresponds to the region of relatively uniform electron 
precipitation in which the pitch angle distribution is generally isotropic. Over the 
greater part of the diffuse auroral region the dominant contribution to the intensity 
is from low-energy (Ee< l 3  keV) electrons which carry energy fluxes in an order 
of magnitude larger than the low-energy (Ep< l3 keV) protons. During substorms, 
precipitating electrons typically have monotonica1ly decreasing energy spectra in 
the low-latitude portion of the diffuse aurora. Significant softening of the electron 
spectrum is seen at the equatorward boundary of the diffuse aurora. 

Summarizing these results, Fig. 14 presents a schematic diagram illustrating 
the relationship between the plasma sheet and the two types of auroral precipitation 
for both quiet and substorm times (LUI et al., 1977). The identification of the 
diffuse auroral region as the earthward ( inner) termination of the plasma sheet 
at the auroral altitude is consistent with the works of LASSEN ( 197 4), WINNINGHAM 
et al. ( 1975) and KAMIDE and WINNINGHAM ( 1977). This suggestion is also 
similar to that of BATHER et al. ( 1976) who identified the nightside 'soft' electron 
precipitation is a consequence of loss cone drizzle of plasma sheet electrons. Since 
the discrete auroras, such as auroral arcs, occur usually m the poleward portion 
of the diffuse aurora, the source can be reasonably inferred to lie on the geomag-
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Fzg. 14. Schematic diagram to i llustrate the spatzal relatwnsl11p between th e plasma 
sheet and the two types of aurora (after LUI et al. , 1977) . 

netic field lines within the plasma sheet, near its poleward boundary, as illustrated 
in Fig. 14. This 1s one of the reasons that WINNINGHAM et al. ( 1975) referred to 
the intense and structured precipitation region as the boundary plasma sheet (BPS) . 
LUI et al. ( 1977) have further noted that the different characteristics of particle 
precipitation withm the discrete and diffuse auroral precipitations indicate that 
different acceleration mechamsms are operative in these two types of auroras. That 
is, the close resemblance of energy spectra between the plasma sheet electrons 
and the precipitatmg electrons within the diffuse aurora may suggest no need of 
sigmficant acceleration processes for the production of the diffuse aurora, whereas 
strong acceleration mechanisms producing nearly monoenergetic spectra are re
quired to account for the peaked component observed repeatedly in the discrete 
auroras. 

DEEHR et al. ( 1976) m ade a correlative study, a simultaneous observation 
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F1g. 15. All-sky camera record corresponding to the closest time of passage of the ISIS 2 
satelllte whose SPS data are displayed on the rzghthand side. The path of the 
satelllte is projected downward along magnetic field Imes to a 110 km altitude 
and shown as dots on the all-sky photograph (after DEEHR et al. , 1976). 

of the two auroral regions, from above by the ISIS 2 satellite and from below by 
the NASA 711 aircraft, which provided the electron spectrogram and all-sky picture 
of auroras, respectively. Fig. 15 shows the all-sky photograph (at the left-hand 
side) and the electron spectrogram ( at the right-hand side) , both of which clearly 
distinguish two types of auroras; an active discrete aurora located poleward and 
the diffuse aurora covering the equatorward half of the sky. Similar correlative 
studies have been made by MIZERA et al. (1975) , CAVARY (1975) , and MENG 

(1976) , and most recently by KAUFMANN et al. (1978) who compared electron 
measurements during a rocket flight over an active aurora with optical observa
tions by all-sky cameras and a TV system. 

Although HOFFMAN and BERKO (1971) showed a general agreement of the 
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shapes between the oval of visible auroras and that of high fluxes of low energy 
(,_,0.7 keV in their OGO 4 detector) electrons, CRAVEN ( 1970) , HuLTQVIST 
( 1972) , and RIEDL ER ( 1972) showed that the precipitating pattern of electrons 
for energies higher than 1 ke V differs considerably from the FELDSTEIN and 
STARKOV's ( 1967) auroral oval. A statistical examination of the precipitation 
pattern was conducted by MCDIARMID et al. ( 1975, 1976) for various energies 
of electrons in the range of 150 eV to 210 keV. Very complicated patterns in 
'magnetic local time and invanant latitude' coordinates even for such an averaged 
flux distribution are found. 

KAMIDE and WINNINGHAM ( 1977) have utilized the electron spectrogram 
from a number of ISIS 1 and 2 passes to study the effects of the interplanetary 
magnetic field in the auroral oval. It was found that the north-south component 
of the interplanetary magnetic field plays the dominant role in controlling the shift 
of the equatorward boundary of the electron auroral oval. Fig. 16 shows the loca
tion of the boundary of the diffuse electron precipitation at different local times 
for three Bz component values of the IMF. There is a significant difference m the 
amount of the shift between the evening and morning sectors; i.e., for the same 
decrease in B z value, the boundary moves more equatorward m the morning sector 
than in the evening sector. It was also noted that when the obtained oval particle 
boundary was projected onto the equatonal plane of the magnetotail along model 
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� /  0 

OF AURORAL OVAL 

/ 
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23 
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Fig 16 Location of the equatorward boundary of the diffuse electron prec1p1tatwn at 
dzfferent local tzmes zn the dark sector for three Bz values of the IMF (after 
KAMIDE and WINNINGHAM, 1977) 
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magnetic field lines (MEAD and FAIRFIELD, 1975; FAIRFIELD and MEAD, 1975), 
good agreement was found between the projected boundary and the drift boundary 
( the Alfven layer) of low-energy electrons in the presence of the dawn-dusk electric 
field. KAMIDE and WINNINGHAM ( 1977) interpreted this agreement to give new 
evidence showing that the diffuse electron precipitation that produces the diffuse 
aurora originates near and at the inner boundary of the plasma sheet. Substorm 
occurrence probability seen in the ISIS spectrograms was studied by KAMIDE et al. 
( 1977 a), who concluded that it increases as the auroral oval expands equatorward, 
in agreement with the suggestion by LUI et al. (1975). 

Rocket-borne detectors can be used to examine in detail the pitch angle 
distribution of auroral particles as well as the differential energy spectra (e.g., 
WHALEN and MCDIARMID, 1972; ARNOLDY and CHORY, 1973; SIVJEE and Mc
EWEN, 1976; LUNDIN, 1976; BRYANT et al., 1978 ; KAUFMANN et al., 1978). Peaks 
around a few ke V in the energy spectra have been confirmed by a number of 
rocket observation. Such 'mono energetic' peaks overlap the 'continuum' which 
extends below 1 keV studied in detail by REASONER and CHAPPELL (1973), SHARP 
and HAYS ( 1974) and RAITT and SOJKA (1977). BOYD and DAVIS (1977) have 
shown that a narrow field-aligned component appears superimposed on a more 
isotropic electron distribution. EDMONSON et al. (1977) measured the spectrum of 
high energy precipitating electrons ( 2-26 keV) at the onset of a magnetic storm 
by a rocket borne experiment. The spectra show an unusual double-peaked distri
bution with maxima at near 5 and 17 keV, whose intensities vary independently 
during the sudden brightening of the aurora. 

ARNOLDY ( 197 4) reviewed the results of intense fluxes of field-aligned elec
trons (i .e. , peaked near zero-degree pitch angle). An intense field-aligned electron 
flux is often confined within a very narrow spectral range. Fig. 1 7 shows such an 
example in which an intense field-aligned electron flux of energy 2 ke V is seen 
(ARNOLDY et al., 1974). BosQUED et al. (1974) showed that auroral electrons 
of energies 300 eV-5 keV indicated a large anisotropy while electrons of energies 
greater than 5 keV were almost isotropic. Note that most of the rocket observations 
were performed in the region of the discrete aurora, not of the diffuse aurora. 

Inference of energies of precipitating electrons can be done with the aid of 
auroral emission measurements (e.g., ZWICK and SHEPHERD, 1973; REES et al. , 
1976; PIKE et al., 1976; MoREELS et al., 1976; KASTING and HAYS, 1977; BEITING 
and FELDMAN, 1978). DEEHR et al. (1973) made an extensive study of the 
electron energy flux and the resultant 4278 A intensity on the basis of data from 
the ESRO satellite. MENDE and BATHER (1975) and PIKE et al. (1976) showed 
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the gross precipitation patterns over the entire polar region, which are inferred 
from the spectroscopic observations . Most recently, VONDRAK and SEARS ( 1978) 
have made simultaneous radar and photometric measurements of the mean energy 
of precipitating electrons at Chatanika, Alaska, during a variety of auroral condi
tions. The radar observations of the altitude profile of electron density were used 
by them to obtain the differential energy spectrum of the precipitating electron 
flux NAGATA et al. ( 1975) used an enhancement in the E region electron density 
to infer the occurrence of the direct ionization by precipitatmg electrons. REES 

et al. ( 1977) have recently reported results of a coordinated auroral experiment 
involving the AE-C satellite and a sounding rocket Auroral primary electron 
fluxes measured by the satellite have been used in a model calculation, in which 
the electron density and 01 emissions at 5577 and 6300 A are obtained and found 
to be in good agreement with those observed by the rocket-borne instrument 

3.2. Proton auroras 
Earlier observation of hydrogen em1ss1ons showed that the hydrogen aurora 
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appears as an oval-shaped belt, but it is displaced with respect to the electron 

auroral oval. OGUTI (1973) and FUKUNISHI (1975) showed that in the morning 

sector, the proton aurora is located a little poleward of the electron auroral region, 

while it is located equatorward in the evening sector ; see Fig. 18 which is repro

duced from FUKUNISHI (1975) . FUKUNISHI (1975) showed that in the morning 
sector, both the electron and proton auroras overlap during quiet times, but the 

proton aurora appears poleward of the electron aurora during substorms. Both 
types of auroras occur presumably in the region of the westward electrojet in 

morning hours. Furthermore, KAMIDE and FUKUNISHI ( 197 3) showed that the 

proton aurora is in general colocated with the eastward electrojet in the evening 
sector. We note here that caution should be exercised in interpreting the distri

bution of the hydrogen emission, since, as BELON et al. ( 197 4) showed, a part 

T = -2 - - 1 h r 

T= 0 - 10 m i n  

T: 30 mi n - 1 h r 

G;i P r o t o n  
A u rora 

T = - 1 - 0 h r 

T = 10 - 30 m i n  
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"'-
A rcs or Ba nds of 
E l ec t ron Au rora  

Fig 18 Schematic illustration of the development of the proton and electron au
roral substorms (FUKUNISHI, 1975). 



96 y ohsuke KAMIDE 

of the hydrogen emission might anse from the excitation of ambient hydrogen 
atoms impmged by auroral electrons Measurements of positive ion charge spectra 
were also conducted with an ion charge spectrometer on board soundmg rockets 
(LYNCH et al. , 1976, 1977). 

On the other hand, d1rect observations of prec1p1tating protons by polar-orbit
ing satellites, such as ESRO and ISIS, have most comprehensively been made by 
HULTQVIST et al. ( 1974). SORAAS et al. ( 1974) also made a rocket observation 
of auroral protons and the Hfl emission in a post-breakup auroral glow. A some
what interesting conclusion emphasized by HuL TQVIST et al. ( 197 4) 1s that the 
general precipitation pattern of protons is quite similar to that of electrons, a results 
being contrast to the observation by FuKUNISHI ( 197 5). Particularly, large differ
ences of the latitudinal distributions of the electron and proton precipitation do 
not occur during quiet conditions and there is a large-scale correlation between 
variations in proton and electron fluxes. It should also be noted that Lur et al. 

( 1 973, 1977) emphasized the importance of low-energy electrons from 100 eV 
to 10  ke V in the region of the diffuse aurora in the equatorial half of the evening 
auroral oval, where proton aurora is advocated by FUKUNISHI ( 1973 , 1 975). 

HuLTQVIST ( 1975) noted from an examination of the longitudinal distnbu
tion of the precipitation fluxes of low ( < 10 keV) energy particles that there is no 
essential asymmetry between dawn and dusk, indicating that the responsible particles 
are not injected into a narrow sector around midnight, but are generally injected 
over the total dark sector and are subject to an immediate precipitation before 
they can drift over appreciable longitude. 

3.3. Predpitatio:n in the polar cap and dayside cusp 
Auroral particle precipitation in the polar cap has most extensively been 

studied by WINNINGHAM and HEIKKILA ( 197 4). After an extensive analysis of 
the ISIS satellite spectrograms, they put forward the terms 'polar rain' and 'polar 
shower' to express, respectively, a fairly uniform precipitation of soft (.-1100 e V) 
electrons and a structured electron precipitation with energies of about 1 ke V 
inside the polar cap. It was suggested that the polar shower is responsible for 
discrete auroras in the polar cap which is greatly enhanced in conjunction with 
substorm activity; such an intensified shower is called 'polar squall' by WINNINGHAM 

and HEIKKILA ( 197 4) . 
The precipitation of electrons with energies below 1 ke V ( corresponding to 

the polar rain) over the entire polar cap in  association with the interplanetary 
magnetic field has recently attracted considerable attention (e.g. , FENNELL et al. , 
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1 975 ; YEAGER and FRANK, 1 976; FOSTER and BURROWS, 1976, 1977;  MENG and 

KROEHL, 1 977 ; see also the recent review paper by MIZERA and FENNELL, 1 978 ) .  

FENNELL et al. ( 1 975 ) suggested that the uniform polar cap precipitation during 

quiet times consists of interplanetary-origin electrons having direct access to the 

polar cap through the magnetotail. YEAGER and FRANK ( 1 976) found a correlation 

between the intensity of these low-energy electrons in the northern tail lobe and 

the interplanetary magnetic field directed away from the sun. 

Using precipitating electron data from the DMSP satellite, MENG and KROEHL 

( 1977) showed evidence revealing significant enhancements ( as large as two 

orders of magnitude ) during magnetic storms over the quiet-time level of flux. 

A strong asymmetry between the northern and southern hemispheres was also 

observed. Moreover, MENG et al. ( 1 977) reported a clear indication of the ex

istence of the dawn-dusk gradient of the flux distribution in the polar cap, the 

direction of the gradient being dependent on the By component of the IMF. An 

example of electron precipitation over the northern polar cap region observed by 

the DMSP 32 satellite is shown in Fig. 19 ,  in which a distinct asymmetric pre

cipitation is noticed at the 200 e V channel. This character has a striking similarity 

to the distribution of the magnitude of the dawn-dusk component of the electric 

field in the polar cap obtained by HEPPNER ( 1 973 ). Simultaneous examinations 

of electric fields and electron precipitation intensity are urgently needed. FosTER 

and BURROWS ( 1 977) have recently indicated the possibility for low-energy elec

trons over the polar cap to be at times accelerated and trapped by a large-scale 

potential barrier in the magnetotail. It was proposed that if the effective potential 

difference at the barrier fluctuates randomly, a fraction of the fluxes accelerated 

toward the earth beyond the barrier may be trapped between the barrier and the 

earth. Auroral particle precipitation in the polar cap during sudden commence

ment has also been examined by LASSEN and WEILL ( 1 976) . 

Electron spectra observed in the dayside cusp region are usually to peak 

below 1 00 eV, and proton spectra peak near 1 keV (DOERING et al., 1 975, 1 976; 

McEWEN, 1 977 ; MoE et al. , 1 977; WINNINGHAM et al . ,  1 977; PoTEMRA et al., 

1 977, 1 978 ;  DALY and WHALEN, 1 978 ;  KINTNER et al. , 1 978 ) .  CRAVEN and 

FRANK ( 1976 ) determined that the electrons in this region are strongly field-aligned 

and similar to the inverted V's observed at later local times. Recent observations 

by CRAVEN and FRANK ( 1978 ) suggest that the polar-cusp electron intensities are 

regulated also by the sign of the latitude of the interplanetary magnetic field. Re-

cent reports by ROSENBAUER et al. ( 1 975 ) , HAERENDEL and PASCHMANN ( 1 975 ) ,  

PASCHMANN et al. ( 1 976) , HANSEN et al. ( 1 976) , and BAVASSANO-CATTANEO and 
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Fzg 19 An example of the low-energy electron preczpztation over the northern polar re
gion observed by the DMSP 32 satellzte The satellite crossed the northern polar 
cap from the dawn sector to the dusk sector, and the auroral intense preczp1-
tat1on was observed over the auroral oval near 73° magnetic latitude zn both 
morning and evenzng sectors. Over the polar cap a distinct asymmetric precz
p1tatwn was detected at 200 eV along the dawn-dusk meridian; no s1gnzficant 
fiuxes were observed at energzes l1 1gher than 1 keV over the polar cap (after 
MENG et al . ,  1977) 

FORMISANO ( 1 978) of flowmg plasma in the polar cusp are relevant to the question 
of access of solar wind particles to the magnetosphere; see also EASTMAN et al. 

( 1976) , and HEIKKILA ( 1975, 1978) . CROOKER ( 1 977a, b) has indicated that 
the 'entry layer' for the solar wind particles is a permanent feature which extends 
across the days1de and along the flanks to large distances down the tail on field 
Imes between extensions of the northern and southern polar cusps Ion measure
ments obtamed by the AE-C satellite were used to show systematic vanatlons of 
the cusp ion evergy as a funct10n of latitude, which are consistent with an injection 
of solar wmd protons through magnetic merging at the dayside magnetopause 
( REIFF et al , 1 977, HILL and REIFF, 1977) Cusp phenomena at the ionospheric 
level such as electron density enhancements, were studied by UNGSTRUP et al. 

( 1 975) ,  OLESEN et al. ( 1 976) , TITHERIDGE ( 1976) , WHITTEKER ( 1976) , and 
CHACKO and MENDILLO ( 1977) . 
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4. Aurora 

The distnbution of visible auroras can be observed by ground-based all-sky 
cameras and TV systems, airborne all-sky cameras, and satellite scanners from 
above the pole. Previous studies of the distribution and forms of auroras had 
relied principally upon all-sky cameras. An all-sky camera has only a limited 
'field of view' and often fails to detect the diffuse aurora, thus even the combi
nation of the IGY all-sky camera network being not extensive enough to provide 
the opportunity to observe the distribution of luminous auroras over the entire 
polar region. There is no doubt that auroral physics has been advanced to a 
significant extent by studies of photographs from a scanning camera aboard the 
ISIS 2 and DMSP satellites (ANGER et al . ,  1973a, b, 1978 ; SHEPHERD et al. ,  1973; 
ANGER and LUI, 1973 ; LUI et al. , 1973; LUI and ANGER, 1973; PIKE and WHALEN, 
1974 ; SNYDER et al. ,  1974; ROGERS et al. , 1974; SNYDER and AKASOFU, 1974; 
MIZERA et al. , 1975) . This type of camera reconstructs a map of auroral lumi
nosity from horizon-to-horizon scans of the earth by a photometer sweeping per
pendicular to the orbital path. Efforts have been made to improve computer 
programs for transforming the obtamed data into vanous coordinate systems and for 
producing latitude profiles of auroral intensities at different local times (MURPHREE 
and ANGER, 1977; HAYS and ANGER, 1977 ; HARRISON and ANGER, 1977a, b) . 
Reviews on the development of recent morphological studies of the aurora have 
been published by AKASOFU ( 1974a, 1976) and JONES ( 1974) . The similarity 
between the terrestrial auroral substorm and dynamic processes in solar flares has 
also been stressed by NAGATA ( 1975) and OBAYASHI ( 1975) . A search for auroral 
type dynamics in solar flares has been attempted (DE FEITER, 1975; BECKERS et al., 

1977) . The scanner data have revealed several new auroral characteristics which 
had not been clearly recognized by all-sky camera studies ; see AKASOFU ( 1974a) 
for details. Furthermore, it is now possible to identify the position of the auroral 
electrojets and the field-aligned currents with respect to the pattern of large-scale 
auroral display, observed from the satellites. In this section, we review briefly the 
recent progress of the optical aurora made by the new techniques, as well as some 
new features of the dynamical small-scale aurora obtained by TV and all-sky 
camera observations. 

4.1. Diffuse and discrete auroras 
AKASOFU ( 1974a) examined how various auroral patterns (such as rayed 

arcs, patches, torches, Q bands) in the combined all-sky camera records are 
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represented by the large-scale structure in the satellite-viewed pictures. Durmg 
a prolonged interval (say, > 12 hrs) of the northward mterplanetary magnetic field, 
the size of the auroral oval is approaching to its mimmum size with low v1S1ble 
brightness (AKASOFU, 1975) , namely auroral activity 1s very 'quiet' . Based on 
several montage photographs of the DMSP auroral forms, AKASOFU ( 1 976) also 
exammed overall features of auroral charactenstics in different local time sectors. 
Emerged from these studies 1s a schematic d1stnbut1on pattern m Fig 20 showing 
the mam characteristics of auroras durmg an auroral substorm. 

12  

1 8  06 

Fig . 20. Schematic diagram showzng the mazn characterzstzcs of au
roras durzng the typical auroral substorm. Discrete arcs 
are zndzcated by lznes and the d1ff use auroral regions are 
shaded (after A KASOFU, 1976). 

As previously discussed in terms of auroral particle precipitat10n, there are 
essentially two auroral belts, diffuse and discrete auroras (AKASOFU, 197 4a) . Ac
cordmg to AKASOFU ( 1977) , the diffuse aurora can be defined as a broad band 
of auroral lummosity with a width of, at least, several tens of kilometers which 1s 
separated from the discrete aurora. The diffuse auroral belt has been studied in 
detail by LUI and ANGER ( 1973) ,  SHEPHERD et al. ( 1973) ,  LUI et al. ( 1973) , 
PIKE and WHALEN ( 197 4) , and SNYDER et al. ( 197 4) . The diffuse aurora often 
covers a significant part of the field of view of an all-sky camera, making 1t difficult 
to recognize its presence from a smgle ground station. Thus, the FELDSTEN and 
ST ARKov's ( 1967) auroral oval does not necessarily represent accurately the dis
tribution of the diffuse aurora particularly m the evening sector. The fact that the 
region of the diffuse aurora covers a large latitudinal range well beyond the view 
of a single all-sky camera makes also it difficult to obtain the global distribut10n 
of the diffuse aurora However, all-sky cameras carried by two aircrafts, one 
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located in the northern hemisphere and the other in the southern h�misphere, 
might be used to study the structure of the diffuse aurora (STENBAEK-NIELSEN 

et al . , 1973) . It was found that the diffuse aurora contains complicated fine 
structures and that such fine structures in one hemisphere can be identified in the 
other hemisphere. This character of the diffuse aurora contrasts with that of the 
discrete aurora, of which conjugacy breaks down at times during intense substorms. 

It should be also noted that the poleward boundary of the diffuse aurora 
develops in various wavy forms, such as omega (Q) bands and torch structures. 
Fig. 21 shows an example of well-developed torch-like structures during an intense 

088 2 1 0 5 0  U T  10 Jan 1973 
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t 200;y 

/� I 
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Fig. 21. DMSP auroral imagery and the equivalent overhead current vectors. The signs 
of the geomagnetic Z component are also indicated (after KAM/DE and AKASOFU, 
1975). 
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substorm ( AKASOFU, 197 4a) , together with the distributions of the eqmvalent iono
spheric current (KAMIDE and AKASOFU, 1975) . In contrast with the complex con
figurations of the poleward portion, a striking feature is the remarkable smoothness 
and continmty of the equatorial boundary of the diffuse aurora. This boundary tends 
to ahgn most closely along L-shells when the auroral oval is largest in diameter, 
it is more oval-hke when the diameter of the auroral oval is smallest (DAVIS, 197 4) . 
Note that ANGER et al. ( 1978) observed arc-like auroral emissions equatorward 
of this boundary, apparently m the ionosphenc trough region. 

Table 1, taken from AKASOFU ( 1977) , summarizes some difference in mor
phohgical features of the discrete and diffuse auroras. It seems hkely that the 
diffuse aurora constitutes a broad background region m which discrete auroras 
are embeded. It is not easy to distinguish both types of auroras from all-sky camera 
photographs The equatorward edge of the diffuse aurora appears often hke a 
homogeneous arc. AKASOFU ( 197 4a) noted that in the morning sector, the diffuse 
aurora tends to develop mto several discrete auroras, some of the latter spread 
over the mornmg half of the polar cap and become the polar cap aurora. It is 
mterestmg to pomt out that there is a particular type of polar cap arc which hes 
parallel to auroral oval arcs in the evenzng sector and which bends away trom the 
oval to the usual sun-earth lme near the poleward boundary of the oval (MENG 

and AKASOFU, 1976) . WHALEN et al. ( 1977) and PIKE et al. ( 1977) have re
cently shown that both discrete and diffuse components are contamed in a band 
of enhanced 6300 A emission extended over 2-10° in latitude in the midmght 
sector. 

In studymg the ISIS 2 scanning photometer data, ANGER and MURPHREE 

Morphological 
features 

ConJugacy 
Particle 

prec1p1tat10n 
Energy 

spectrum 

Table 1 Discrete and diffuse auroras 

Discrete aurora 

A discrete aurora is a curtam
hke structure and appears as 
a smgle arc or 1s separated 
from other arcs by a dark 
space of order of a few tens 
of kilometers m width 

Varymg degree of conJugacy . 
Inverted V prec1p1tat10n 

Considerably variable and has 
a peaked component, m ad
dition to the power law and 
the Maxwellian components 

Diffuse aurora 

A diffuse aurora 1s either a broad band of 
lummos1ty at least several tens of kilome
ters m width or a group of discrete auro
ras which are closely packed along a ra
ther narrow east-west belt Patchy auro
ras develop m the diffuse aurora The 
mantle aurora and the hydrogen aurora 
may belong to the diffuse aurora 

Appears to be conJugate 
A broad and relatively umform prec1p1ta

tion 
Relatively constant , becommg soft near the 

poleward and equatorward edges The 
spectrum has the power law and the 
Maxwellian components 
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( 1976) have placed their emphasis on auroral morphology rather than auroral 
dynamics, since satellite auroral imagery is inherently of a 'snapshot' character, 
providing of itself virtually no information on the temporal development of auroras. 
It was found that auroral arcs lie within the diffuse aurora, not outside of it, 
contrasting with the previous conclusions by SNYDER et al. ( 197 4) and SNYDER 
and AKASOFU ( 197 4) that there is often a clear separation between the discrete 
and diffuse auroras. It was thought by ANGER and MURPHREE ( 1976) that the 
apparent discrepancy is probably a result of the fimte intensity threshold C--2 kR) 
of the DMSP satellites (BERKEY and KAMIDE, 1976). 

Finally, the following four points are worthwhile to note concerning the 
diffuse aurora : ( 1) The terms mantle aurora (SANDFORD, 1968), continuous aurora 
(PIKE and WHALEN, 1974), and the present diffuse aurora are essentially inter
changeable, in the sense that they all express the contmuous and relatively uniform 
belt of auroral emissions, which is persistently present even without discrete auroras . 
(2) One of the prominent features of the diffuse aurora when viewed from a 
global perspective is its well-defined equatorward boundary (LUI and ANGER, 1973 ; 
CREUTZBERG, 1976). ANGER and MURPHREE ( 1976) cautioned that the auroral 
intensity does not actually cut off as shaply as one might expect from looking at 
the satellite pictures, because each has a specific intensity threshold. ( 3) Patchy 
aurora can be formed in the diffuse aurora (see Table 1), and pulsating aurora 
is a subset of the class of the patchy aurora. SIREN ( 1975) showed using DMSP 

photographs that pulsating auroras can occur at times on the poleward, leading 
edge of a midnight sector surge. We note in this connection that although the 
identification of the diffuse aurora in the evening sector is relatively easy, it 1s 
difficult to define it exclusively in the morning sector where complicated post
breakup auroral signatures are generally observed. ( 4) It is still unclear where 
the first indication of an auroral substorm, viz., the auroral breakup, begms, al
though the first brightening occurs near an arc located between the diffuse and 
discrete auroras in the midnight sector. It is interesting to note in this respect 
that OGUTI ( 1973) suggested that the breakup may start when an electron aurora, 
which has split from the high-latitude arc, comes into contact with the hydrogen 
emission, indicating that if the electron and proton auroras are assumed to occur 
respectively at ionospheric projections of the plasma sheet and the proton trapping 
region, the onset of the auroral breakup is related to the close approach of these 
two regions in the magnetosphere. PELLINEN and HEIKKILA ( 1977) have recently 
conducted detailed observation of the onset of auroral breakup using rapid se
quences of all-sky cameras and fast meridian scans by photometers, and have found 
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that the breakup is preceded by moderate brightenmg, followed by fadmg of the 
auroral mtensity lastmg one or two minutes. LUI and BURROWS ( 1978) have 
suggested usmg fortmtous polar passes of the ISIS 2 satellite that the substorm 
tnggermg process occurs on closed magnetic field lines well within the outer and 
inner edges of the plasma sheet. 

4.2. Global auroral features and currents 
It is now possible by examining coincident data to identify the position of 

the auroral electroJets and field-aligned currents with respect to the pattern of large
scale auroral displays observed from the satellites (e .g. , WEBER et al. , 1977) . 
It should be noted, however, that because the satellite auroral imagery is available 
only once per each orbital penod (,_,100 min, for the DMSP and ISIS 2 satellites) 
which IS of the order of the lifetime of one substorm, the progressive change of 
auroral features and of the corresponding electroJet response must await the avail
ability of a series of photographs from a satellite with an eccentric orbit, capable 
of observing the ent1re polar region contmuously for several hours. There is little 
doubt that the Japanese satellite 'Kyokko', launched m February 1978, IS an ideal 
for this purpose. 

KAMIDE and AKASOFU ( 197 5) studied DMSP satellite auroral photographs 
and the simultaneous ground magnetic records from a number of polar stations. 
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Fig 22 Schematic diagram of auroral features during the typical auroral substorm and the 
distrzbutwn of equivalent current vectors wzth reference to the auroral features . 
The magnitude of each current vector zs normalized for the maximum magnitude 
of the magnetic perturbatwn of 500 nT (KAMIDE and A KASOF U, 1975). 
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By examining the distribution of the equivalent ionospheric current vectors with 
respect to the auroral configuration, it is inferred that there are two electrojets, 
eastward and westward, flowing along the visible auroral display. The reversal of 
the current direction occurs near the equatorward boundary of the auroral belt 
across the midnight meridian; eastward in the evening sector and westward in the 
midnight and morning sectors. The locus of the reversal was originally used by 
HEPPNER ( 1972d) to define the Harang discontinuity (HARANG, 1946). In Fig. 22, 
we show a schematic diagram of auroral characteristic features which is a compo
site of the major features appearing on a large number of DMSP photographs 
(AKASOFU and SNYDER, 1974). Note that this diagram shows the notable asym
metry with respect to the midnight meridian. Structured discrete auroras are 
active near the poleward boundary of the auroral oval, especially in the premid
night sector, whereas the diffuse aurora delineates a relatively stable equatorward 
boundary of the auroral belt. Using this auroral oval as the 'normalized' reference, 
the equivalent current vectors are also plotted in Fig. 22 for the total of 19 satellite 
passes which took place near the maximum phase of substorms. Fig. 22 confirms 
that the westward electrojet is most intense in midnight and early morning hours 
and that it does not end in the midnight meridian, but extends into the evening 
sector along the auroral oval. This is somewhat different from what the SD current 
system (CHAPMAN, 1935) indicates. The latitudinal width of the area where the 
westward electrojet effect is observed in the morning sector is much larger than 
that m the evening sector. In the diffuse auroral region, the eastward electrojet is 
a common feature in the evening sector. 

WALLIS et al. (1976) have recently made a similar study of the spatial 
relationship between the ISIS 2 large-scale auroral display and the auroral electro
jets, determined from the Canadian meridian chain of magnetometer data. They 
defined the latitudinal limits of auroral emissions in the evening sector on the basis 
of the auroral intensity at 3914 A and 5577 A. Summary of auroral electrojet 
locations and boundaries of auroral precipitation inferred from data of the auroral 
scanning photometer for 19 selected passes of the ISIS 2 satellite is shown in 
Fig. 23. It is seen that the eastward electro jet is contained within, and may be 
narrower than, the latitude range of auroral emission. It was also found that 
although discrete auroral arcs within the electrojet may produce enhanced con
ductivity in their vicinity, this does not necessarily lead to enhanced ionospheric 
current densities, implying the importance of the electric field in determining the 
current intensity. 

KAMIDE et al. (1978) utilized magnetic field data from the TRIAD satellite 
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DAY UT  MLT 
4 0335 1850 

4 0526 2 041  

5 0 2 1 9  1734 

6 0256 1 8 1 1  

8 02 1 7  1 732 

9 0254 1809 

1 0  0333 1848 

1 1  02 1 9  1734 

1 1  04 1 0  1925 

1 2  0255 1810 

1 2  0641 2 1 56 

1 3  0334 1849 

1 3  0525 2040 

1 5  0447 2002 

1 5  0640 2 1 55 

17 04 1 0  1925 

17 0602 2 1 1 8  

1 8  0447 2 002 

1 8  0639 2 1 54 
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CG LATITUDE 

AE  AH  

2 59 1 95 

1 89 50 

1 2 3 45 

1 8  30 

30 35 

1 1 6 80 

62 70 

2 89 2 50 

66 1 30 

95 50 

80 55.-45 

53 35 

34 50 

83 90 

1 53 95,-45 

2.48 85 

1 6 1 1 1 0,-70 

266 25,-70 

326 -280 

Frg 23 Summary of auroral electro1et locatwns and boundaries of auroral prec1p1tat1on 
inf erred from auroral scanning photometer data . Deduced locatwns for the au
roral electro1ets are shown by boxes The latitudes of the Z=O crossovers are 
shown by the vertical dotted Imes (after WA LLIS et al. ,  1976) . 

at 800 km to define the boundaries of field-aligned currents when auroral lumi
nosity along the same meridian was scanned by the ISIS 2 satellite .  Fig. 24 shows 
ISIS 2 auroral photographs of the 5577 A emission with a corrected geomagnetic 
'latitude-longitude' grid This particular trajectory occurred during the maximum 
phase of an intense substorm There is an indication of a bnght, westward traveling 
surge near 280 ° corrected geomagnetic longitude Along the TRIAD satellite 
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FEBRUARY 27� 1974 

Fig. 24. Auroral scanning photometer data (5577 A) transformed into a corrected geomag
netic coordinate system and shown zn negative format. The range of luminosity 
represented by gray shades from white to black spans 0. 60-1. 55 kR in the left 
picture, 0. 97-1 36 kR in the center picture, and 1 . 17-1. 55 kR zn the right picture 
(after KAM/DE et al. , 1978). 
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Fig. 25. TRIAD magnetometer data, the estlmated field-aligned current density, and loga
rithmic latitudinal profiles of auroral intensity along the TRIAD subtrack (after 
KAM/DE et al. , 1978). 
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traJectory (shown by a dashed line) there are two main auroral luminosity regions ; 
the equatorward auroral distribution with its well-defined equatorward boundary 
and a poleward region which is connected to the westward traveling surge. Intense 
narrow structures can be seen in the latter region and thus it is reasonable to 
1dent1fy the poleward luminosity as the discrete aurora. The equatorward aurora 
has a fairly umform distribution with latitude and can therefore be identified as 
the diffuse aurora. Available ground magnetic data showed northward perturba-
tions in the equatorward auroral region, indicating that the eastward electrojet 
was flowing in the region occupied by the diffuse aurora. Unfortunately, there was 
no ground magnetic observatory whose data are available in the region of the 
poleward portion of the auroral display. A detailed comparison of the inferred 
field-aligned currents and the auroral luminosity along the TRIAD subtrack is 
given in Fig 25, which shows the TRIAD magnetometer record and the logarithmic 
profile of albedo corrected intensities along the TRIAD trajectory. It is seen that 
some structure can occur in the diffuse auroral region and may be due to discrete 
arcs ( in the sense described by WALLIS et al., 1976) imbeded in the diffuse aurora. 
It is evident that the luminosity does not go to zero between the diffuse and discrete 
auroras. KAMIDE et al. ( 1978) pointed out that in the evening sector, the latitudmal 
boundaries of the major portion of the field-aligned currents line up very well with 
the auroral luminosity boundaries of 1-2 kR at both the poleward and equatorward 
sides of the auroral distribution, and that the boundary between the upward and 
downward field-aligned currents generally occurs at the minimum in the auroral 
luminosity profile. 

4.3. Polar cap and midday auroras 
'Sun-aligned arc' in the polar cap is another aspect of spectacular auroral 

features. As described by LASSEN ( 1972) and STARKOV et al. ( 1973), these arcs 
are found in long, narrow regions ( 30 to 200 km with a typical value of 70 km) 
having an approximate orientation toward the noon sector on the polar cusp (cleft) . 
AKASOFU and YASUHARA ( 1973) showed that the 6300 A radiation is richer in 
polar cap auroras than in auroral-oval auroras. AKASOFU ( 197 4b) presented 
midday red aurora enhanced greatly during a large magnetic storm. Observations 
of these arcs have recently been made also by means of equipments flown in ISIS 2 
(ANGER et al , 1974) and DMSP (MENG and AKASOFU, 1976) satellites. BERKEY 
et al. ( 197 6) have shown by the use of DMSP photographs that the interplanetary 
magnetic field is directed generally northward when such arcs appear in the 
polar cap. 
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ISMAIL et al. ( 1 977) have recently made an extensive study of the charac

teristics of sun-aligned arcs based on observations made between 197 1  and 1975 

by the auroral scanning photometer on board the ISIS 2 satellite, which is suitable 

for the study of auroral features because of the capability of obtaining data nearly 

simultaneously from a large portion of the polar cap. In Fig. 26, the observed 

positions of the sun-aligned arcs from 36 polar passes are plotted, in which it is 

noticeable that although their characteristic orientation is roughly in the solar 

direction, individual arcs can be curved. It was also found that there is a '2 : 1 '  

asymmetry in the occurrence frequency between the morning and evening sectors 

12  

Fig. 26. Observed positions of the sun-aligned auroral arcs in the northern polar cap plot
ted on a corrected geomagnetic coordinate system (after [SMAIL et al. ,  1977). 
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of the polar cap. ISMAIL et al . ( 1977) claimed that this morning-evening asym
metry does not result from an experimental bias, for m all cases almost the entire 
polar cap was scanned by the photometer. There are several candidates which 
could cause the asymmetry, such as the differences in the lifetime and motion of 
the mornmg-side and evening-side arcs. It is, however, mteresting to examme the 
simultaneous By component of the interplanetary magnetic field, since MENG et al 

( 1977) found the morning-evening asymmetry of the low-energy ( < 1 ke V)  elec
tron fluxes having a clear dependence on the By component of the interplanetary 
magnetic field 

There is in general an anticorrelation between the occurrence of the polar 
cap arcs and the magnetic activity, the sun-aligned arcs can be usually found only 
durmg qmet period without substorm activity The polar cap 1s often completely 
void of such polar cap auroras during an intense substorm It is then one of the 
future problems to clarify how the sun-aligned arcs behave before and jmt at the 
onset of a substorm. In other words, it should be cleared up how the sun-aligned 
arcs disappear as the substorm grows The disadvantage of the experiments by 
polar-orbitmg satellites is its inability to provide mformation about temporal 
variations in association with auroral-oval arcs during substorm activity 

On the other hand, the midday part of the auroral oval was shown to 
be a band of 2 ° -5 ° wide in latitude, in which 6300 A emission is greatly en
hanced, growmg discrete arcs Accordmg to ISIS 2 observation by SHEPHERD and 
THIRKETTLE ( 1973) and SHEPHERD et al ( 1973) ,  the maximum intensity of the 
6300 A emission was a little more than 2 kR. DERBLOM ( 197 5) noted that the 
6300 A emission in the dayside cusp region is accompanied by hydrogen emissions 
SNYDER and AKASOFU ( 1976) found a definite tendency for the midday arcs to 
converge toward the poleward boundary of the auroral oval m the noon sector, 
indicating that the auroras in the day and night sectors arise from different regions 
despite the fact that they both form a well-defined smgly connected auroral oval 
Longitudinal extent of the polar cusp has been discussed in terms of the dayside 
auroras (ZAITZEVA and PUDOVKIN, 1976) 

4.4. Smallascale auroras 
Although the large-scale auroral distribution provides a crucial clue m 

unveiling the global structure of the 10nosphenc and magnetospheric system and 
its dynamic processes in conJunction with substorm occurrence, there are charac
tenstic small-scale auroral displays as well whose dynamic behaviors are important 
in understanding the causative acceleration mechanisms in the magnetospheric and 
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ionospheric systems (LYATSKAYA and LYATSKY, 1 973 ; 0GUTI, 1 975a; VoROBJEV 

et al., 1 976 ) .  OGUTI ( 1975b) found a resemblance between global auroral pattern 

( such as the westward traveling surge and bulge) and smaller-scale structures ob

served by the DMSP satellite and a highly sensitive TV camera, respectively. 

Auroral infrasonic waves (WILSON, 1 973, 1974, 1 975 ) are generated by small

scale auroras moving supersonically. Recently, JOHNSON ( 1 976) has shown that 

numerous infrasonic waves were recorded even during a period of fairly low 

geomagnetic activity. 

In such small-scale auroras, irregular, quasi-periodic and periodic temporal 

variations are observed which involve both motion and modulation of intensity 

(e.g., BREKKE, 1 972; S0RENSEN et al. , 1 973 ; OGUTI, 1 975c) . The dynamics of 

the small-scale, highly variable auroras have been studied by OGUTI ( 1 97 4a) and 

PEMBERTON and SHEPHERD ( 1 975 ) using TV imagery device and photometers, 

respectively. By the use of highly sensitive TV camera records as well as data 

of all-sky cameras and meridian scanning photometers at Syowa Station, Antarctica, 

OGUTI ( 1 97 4b ) showed motions of individual discrete auroral forms to have a 

clockwise sense of rotation ( as viewed from below the southern pole) and con-

Supply of energetic 
el ec trons ( toward dawn ) 
and protons ( toward dus k )  

Fig. 27. Schematic illustration of the magnetosphenc structure and the corresponding au
roral characteristics deduced from auroral morphology (after OGUTI, 1976) . 
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eluded that the auroral electron precipitation is related to the production of nega
tive charge excess 

On-off switchmg ( or pulsation) aurora is one of the characteristics of auroral 
display m the dawn sector during the post-breakup phase of substorms (see THOMAS 
et al , 1973 ;  OGUTI, 1975) . OGUTI and WATANABE ( 1976) showed that the rapid 
poleward propagation of the switch-on region occurs m association with a particular 
type of geomagnetic pulsations m the dawn sector of the auroral zone. The mor
phological features of the on-off switching auroras as well as the large-scale auroras 
are summarized m Fig. 27, which was presented by OGUTI ( 1976) . It was noted 
that particles responsible for the auroral precipitation m the dusk may 'drizzle', 
whereas in the dawn sector, they precipitate like 'ram'. 

Extensive observations at College, Alaska, with all-sky TV cameras supple
mented by observation with narrow-field TV cameras, all-sky cameras, and images 
from the DMSP satellites were conducted by RoYRVIK and DAVIS ( 1977) who 
have shown that pulsatmg auroras are broadly distributed along the auroral oval 
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Fzg 28 Schematzc diagram rllustratmg the development of an auroral substorm, emphaszz
zng the development of pulsating auroras which are zndzcated by hatched regzon 
(after ROYRVIK and DAVIS, 1977) 
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thoughout much of the auroral substorms. It was pointed out that although pulsat
ing auroras occur extensively in the morning sector of the oval during the post
breakup phase of the substorm, pulsations in the auroral intensity extend eastward 
even to around the dayside during periods of 1 arge disturbances and they are also 
observed near the equatorward boundary of the evening sector. RoYRVIK and 
DAVIS ( 1977) have given a schematic diagram illustrating how pulsating auroras 
develop in the framework of the large-scale auroral substorm presented by AKASOFU 
( 1 964) . This is shown in Fig. 28, which is reproduced from Fig. 15 of RoYRVIK 
and DAVIS ( 1977) . The great variability in the pulsating behavior, as discussed 
by them, suggests that the occurrence and the nature of pulsations are determined 
by localized parameters with large temporal and spatial variations. Recent measure
ments by BROWN et al. ( 1976) demonstrated that the altitude of the lower border 
durmg the 'on' phase of pulsation auroras is mainly in the range of 50-100 km, 
implying that a substantial portion of the energy of causative electrons is in the 
range of 10-100 keV, in general agreement with satellite measurements of particle 
fluxes over pulsating auroras by FRANK et al. ( 1 976) . 

The frequent appearance of spiral forms of 20 to 1300 km diameter is another 
aspect of the active auroral display. The availability of auroral imagery from the 
ISIS and DMSP satellites has allowed an improved mean to identity the mor
phology of the spiral auroras over ground-based conventional all-sky photographs . 
DAVIS and HALLINAN ( 1 976) have made an extensive examination of the spiral 
auroras and found that clockwise ( viewed anti-parallel to B) spirals, appearing 
singly or in spiral sheets, are a common part of the auroral display, which occur 
in the evening and midnight sectors between the equatorward boundary of the 
aurora and geomagnetic latitude 85° during substorms. HALLINAN ( 1976) sug
gested that spirals in the aurora imply the existence of upward field-aligned current. 
It is interesting to note that DAVIS and HALLINAN ( 1 97 6) state that the events 
called 'pseudo-breakups' or 'local substorms' are developments of auroral spirals. 

4.5. Auroral distribution and electric field 

The problem of how the electric field varies in the vicinity of a discrete auroral 
arc is still a matter of serious discussion, as described in Section 2. This is so at 
least partially, because it has been difficult to identify different types of auroral 
forms in each of the reported observations. Auroral forms and their motions are 
complex functions of both local time and latitude, as well as substorm time. It is 
presently judged by individual observers whether the observed particular type 
aurora is an independent discrete auroral arc or just local enhancement of bright-
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ness within diffuse aurora. In this section we examine how variations in the large
scale electric field are related to large-scale auroral activity. 

On the basis of the Chatanika radar data, DoUPNIK et al. ( 1972) , BANKS 
et al. ( 1973, 1974) and RINO et al . ( 1974) studied this problem. It was found 
that a large northward electric field is observed m the evening sector when a 
substorm is m progress m the midnight sector and that a large increase of the 
westward electric field is associated with the passage of a westward traveling 
surge in the poleward sky of the radar site. It was also observed by RINo et al. 
( 197 4) that the enhancements in the westward electric field were coincident with 
an equatorward expansion of the instantaneous auroral oval. 

Extensive observations of the electric field by balloon-borne probes let MOZER 
( l 973c) conclude that the westward component of the electric field develops about 
one hour prior to the onset of the expansive phase of substorms, while an southward 
component grows at the expansive onset. Note that MOZER ( 1973c) did not ex
amine the simultaneous auroral data to identify the expansion of substorms, while 
KELLEY et al. ( 1971) showed the growth of the westward component is well 
correlated with an equatorward motion of auroral forms, the speed of auroras 
being estimated from E/B. Recently, HORWITZ et al. ( 1978a) have shown, using 
DMSP auroral photographs, that the strong westward electric field near the leading 
western edge or nose of the westward traveling surge is one of the signatures of 
the Harang discontinuity, which divides regions of northward and southward 
electric fields on the western and eastern sides, respectively. It appears that as
sociated with the southward turning of the interplanetary magnetic field, which 
occurs prior to a particular type of substorm sequences (KAMIDE and MATSUSHITA, 
1978a) , the entire auroral oval expands equatorward, thus making the westward 
field observable at the radar site fixed on the earth's surface. 

AKASOFU et al ( 197 4) have shown, using plasma flux and magnetic field 
changes at the synchronous distance (ATS 5) and ground-based all-sky auroral 
photographs near the 'foot' of A TS 5, that specific auroral activity in specific local 
times can be interpreted by specific particle features at the synchronous distance 
by taking into account the configuration of the plasma sheet and drifts of the 
plasma sheet particles. Analysis of A TS 5 particle spectrograms and simultaneous 
meridian-scanning photometer data obtained at the 'foot' of the A TS 5 field line 
has revealed that a persistent zone of weak aurora is related to steady plasma
sheet dnzzle, and the equatorward edge of this aurora delineates field lines threading 
the inner edge of the plasmer sheet (EATHER et al , 1976) MENDE and SHELLEY 
( 1976) have shown that the local inJection of magnetospheric particle at synchro-
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nous orbit generally produces structured auroras such as breakup events and 
westward traveling surges. Correlated observations of auroral substorms and the 
corresponding disturbances were reported by HONES et al. ( 1976) . 

4.6. Radar auroras 
In recent years, workers have attempted to describe the radar aurora as a 

sequence of radar auroral substorms (BATES et al. , 1973; ECKLUND et al. , 1974; 
ROMICK et al. ,  1974; UNWIN and KEYS, 1975; TSUNODA et al., 1974, 1976b; 
TSUNODA and FREMOUW, 1976a, b ;  MOORCROFT and TSUNODA, 1978) . Once the 
exact nature of plasma instabilities associated with the radar is understood, the 
radar becomes a powerful diagnostic tool in the study of the auroral substorm 
processes (MCDIARMID, 1976; GREENWALD, 1977, 1978 ; BREKKE et al. ,  1977; 
MCDIARMID and McNAMARA, 1978) .  

It appears that radar auroral irregularities are generated by various current
associated instabilities, such as the gradient drift and/ or two-stream plasma in
stabilities. Both of these instabilities require a relative drift of the electrons and 
ions (see GREENWALD, 1974; WANG and TSUNODA, 1975; TSUNODA, 1976) . 

The correlation between the positions of the radar aurora and the auroral 
electrojets was found to be reasonably good (GREENWALD et al. ,  1973; McDIARMID 
et al. ,  1976) . PETERSON ( 1977, personal communication) has recently found that 
the maximum radar echoes originate in the center of the auroral electrojets. Fig. 29 
shows an example of radar observation during a substorm by the Anchorage radar 
at 50 MHz (BALSLEY et al. , 1973) , in which the location and its time shift of the 
radar echo are indicated together with magnetic records from the Alaska meridian 
chain of observations (GREENWALD et al. ,  1975) . The auroral echo seems to 
return from a little poleward of College between 0800 and 1000 UT when the 
center of an eastward electrojet is located there. Similarly, the onset of the sub
storm and the subsequent poleward expansion of the westward electrojet seen in 
the latitude variation of the H and Z component magnetic perturbations can also 
be identified as a motion of radar auroral forms. GRAY and ECKLAND ( 197 4) 
have further shown that there is often a good linear relationship between the total 
honzontal disturbance and the square root of the range-integrated backscattered 
power. In these studies ground-based magnetometers were used to deduce the 
general location, extent and intensity of the electrojet currents. However, because 
of limited magnetometer coverage and unknown ground induction effects, it was 
not possible to define the electrojet intensity uniquely. Most recently, SIREN et al . 

( 1977) have found, in the comparisons of auroral electro jet parameters measured 
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by the Chatanika incoherent scatter radar with VHF backscatter observed in a 
comparable area by the 50 MHz radar, that the east-west electrojet current in
tensity is the parameter that correlates best with the amplitude of the backscatter 
Irregularities. Fig. 30 shows the backscatter amplitude observed by the radar 
plotted against the height-integrated east-west current density (SIREN et al. ,  1977) , 
for evening and morning sectors separately, indicated by different symbols. Also 
shown is the corrected backscatter amplitude by taking the ionospheric D region 
absorption into account occurring in concert with the morning electrojet. If the 
amplitude is thus corrected for absorption effects, the scatter of points varies 
linearly with either eastward or westward current density with the same slope for 
both periods. 

The correlation between the positions of the radio and visual auroras is not 
necessarily good (e.g. , MCDIARMID et al , 1976) A possible explanation is that 
the electric field is important rather than other parameters, such as the ionospheric 
electron density and conductivities. TSUNODA ( 197 5) and TSUNODA and PRESNELL 
( 1976) have found using the data from a 398-MHz backscatter radar located at 
Horner, Alaska, that when the electric field strength is greater than 30 rn V /rn, 
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the auroral radar echo intensity is always positively correlated with the electnc 
field mtensity, regardless of the electron density. 

It should be noted that there are at least two types of radar echoes, discrete 
and diffuse. TSUNODA et al. ( 1976b) have shown that diffuse auroral echoes can 
be used to map the spatial distribution of the eastward electrojet and that discrete 

Fzg. 31. Maps comparing the radar and visual auroras during the expansive phase of a sub
storm (after TSUNODA et al , 1976b) 
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visual auroral arcs are almost invariably to occur poleward of the eastward electro

jet Fig. 3 1  shows consecutive maps comparing the radar and visual auroras during 

the expansive phase of a substorm (TSUNODA et al., 1 976b) . It is seen that when 

discrete radar echoes are observed, they are associated only with bright visual 

arcs. Furthermore, they noted that the association is usually confined to only the 

most equatorward visual arcs located closest to the poleward boundary of the 

eastward electrojet, namely near the equatorward edge of the westward electrojet. 

TSUNODA et al. ( 1976a) have also found that the evening diffuse radar aurora is 

collocated with the downward field-aligned currents, consistent with the obser

vation that the downward currents flow generally into the region of the eastward 

electroJet (KAMIDE and AKASOFU, 1976) . It was uncomfortable to hear, during 

the preparation of this manuscript, that the Stanford Research Institute International 

in Menlo Park, Califorma, decided to close the radar facilities at Homer, Alaska, 

because of the lack of financial support (TSUNODA, 1978, personal communication) . 

For the International Magnetospheric Study (IMS ) ,  the Max-Planck Institut 

ftir Aeronomie at Lindau/FRO is operating the Scandinavian Twin Auroral Radar 

Experiment (STARE) which consists of two nearly idential backscatter radars 

located in Finland and Norway (GREENWALD et al., 1977) . Data from the STARE 
system, along with ground magnetometer data in the same region should provide 

a comprehensive picture of the relationship between the auroral electrojets and 

the electric fields. Results from a preliminary composition are given in Section 8 .  

5.  Ionospheric Conductivity 

Using suitable models for the neutral atmospheric densities and the ion-neutral 

particle collision frequency, it is possible to compute ionospheric electrical con

ductivities from measured electron density profiles. The altitude dependent Hall 

(aH) and Pedersen (ap) conductivities are defined by the expressions 

where Ne is the electron density, e is the electronic charge, B is the magnetic field 

intensity, Qi , e = eB/mi , e is the gyrofrequency, and vi , e is the ion (or electron ) and 

neutral collision frequency. 

On the basis of the Chatanika radar observations of the electron density 

profiles and atmospheric models tabulated by BANKS and KocKARTS ( 1 973 ) ,  
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Fzg 33 The ratw of the height-zntegrated Hall to Pedersen conductivities for a very quiet 
day (top) and a strongly disturbed day (bottom) (after BREKKE et al , 1974) 

BREKKE et al. ( 1974) obtamed the typical altitude dependence of the radar
measured electron dens ity and the denved conductivities, which are shown in 
Fig 32. It can be seen that the height-mtegrated Hall conductivity (2H) emphasizes 
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the electron density in the region below 125 km, whereas the Pedersen conductivity 
(2p) obtains its maximum contribution between 125 and 110 km. Fig. 33 illus

trates the daily variation in the ratio 2 H / 2 P for two different days, one very quiet 
and the other strongly disturbed (BREKKE et al. , 1974) .  For the quiet day the 

ratio is fairly constant being close to 2, while during the disturbed day, several peaks 
occur corresponding to substorm activity. The ratio between the two conductivities 

gives a crude first approximat10n to the energy of the precipitating particles (REES, 

1963 ) ,  since energetic auroral electrons penetrating the atmosphere reach different 
altitude levels depending on their energy. BANKS and Do UP NIK (197 5 )  noted 
that the ionospheric conductivities during an extremely quiet day reflect a domi

nance of normal EUV produced ionization and vary strongly with solar zenith 

angle. The errors in the deduced conductivities from the Chatanika radar ob

servations are estimated to be of the order 10-20% ,  most of which results from 

the uncertainties in the atmospheric model . 

Latitudinal distributions of the height-integrated conductiv1t1es have been 

measured with the Chatanika radar for the range of invariant latitudes 63 ° to 68 ° 
(WEDDE et al. , 1977; HORWITZ et al. , 1978b) . It was found that the local time 

transition between the diffuse precipitation-conductivity zone in the evening sector 
(2 p= 8-12 mho, 2 H = 16-24 mho) and the harder, active precipitation-conductivity 
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Fzg. 34. Height-integrated Hall and Pedersen conductzvitzes as computed throughout the 
rocket fizght of Polar 3 over an auroral arc (after EVANS et al., 1977). 
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zone in the midnight and morning sector (l'p= l0-16 mho, l'H=20-60 mho) com
cides with the Harang discontinuity defined by the electric field reversal. 

EVANS et al. ( 1977) utilized the auroral electron data obtained during a 
soundmg rocket flight over a stable auroral arc as an input to a computation of 
the Hall and Pedersen conductivities. They used a different atmospheric model 
(see BOSTROM, 1973; JONES and REES, 1973) from that used by BREKKE et al. 

( 1974) . Fig. 34 displays the height-integrated conductivities during the rocket 
flight, where the strip of highly conducting ionosphere associated with the maJor 
auroral arc 1s clearly seen. The change m the ratio of the two conductiv1tles 
from a value of 1 .4 above the auroral form to 0.8 further northward is a mam
festat1on of the softenmg of the auroral electron spectrum outside the arc 

6. Ionospheric Current 

As descnbed in Sections 2 and 5, the recent new techmques allow one to 
denve the height-mtegrated conductivities and electric fields from high-quality 
measurements of the electron density and plasma drift m the ionosphere. Knowl
edge of these quantities leads to a description of the ionospheric currents and 
thus to a clear demonstration of local time changes of the auroral electrojets and 
their relationship with intensities of the electric field and field-aligned currents. 
Thus, 1t was the first time in the history of ionospheric physics and geomagnetism, 
data from the mcoherent scatter radar at Chatanika, Alaska, made it possible to 
deduce contmuously the ionospheric current density (B REKKE et al . ,  1974, BANKS 

and DoUPNIK, 1975) . 

6.1. Ionospheric currents and ground magnetic perturbations 
Several attempts have been made to correlate the deduced ionospheric currents 

with ground magnetic perturbations, confirming that ionosphenc currents, called 
the auroral electrojets, can account for most of the H component perturbations at 
auroral latitudes (BREKKE et al. , 1974; KAMIDE and BREKKE, 1975 ; KAMIDE et al. , 

1976a; DoUPNIK et al. , 1977) . 
Fig 35 shows an example of the eastward and northward components of the 

deduced height-integrated ionospheric currents together with the H and D compo
nents from the College magnetogram for a very quiet day (BREKKE et al. , 1974) . 
In agreement with the fairly smooth behavior in both the conductivities and electric 
fields, only small variations exist in the calculated ionospheric currents. A small 
positive bay of about 40 nT is seen in the H component between 0630 and 
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Fig. 35. Height-integrated ionospheric currents in geomagnetic coordinates and the H and 
D component magnetic reords at College (after BREKKE et al. , 1974). 

0930 UT and is reproduced by the calculated eastward ionospheric current. In 

the morning hours ( 1200-2200 UT) ,  there is a large eastward deflection in the 

D component that is not reproduced by the ionospheric currents. BREKKE et al. 
( 197 4)  suggested that this discrepancy might be removed by considering field

aligned currents flowing toward the earth from the dawnside magnetopause and 

flowing outward to the dusk side magnetopause from the afternoon sector of the 

auroral oval (KAWASAKI and AKASOFU, 1973 ) ,  by assuming that College is normally 

located south of the auroral oval during daytime. 

Fig. 36a gives another example of the ionospheric currents in the northward 

and eastward components at Chatanika together with the corresponding magnetic 

traces of the H and D components observed at Poker Flat, which is only 3 km 

north of the radar site. Moderate magnetic disturbances were observed all day. 

In the figure the ordinate scales are given in such a way that 1 A/m in the current 

density and 400 nT in the magnetic perturbations are represented by the same 
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scale length. Time variations of the east-west current density are quite similar to 
the corresponding variations in the H component of the geomagnetic field near 
the radar site. There are some disagreements, in magnitude, between the two 
quantities during the period 0400-0730 UT, but they can be reasonably explained 
by the fact that the eastward electroJet had a small latitudinal width during that 
period. It can be said that the total intensity of the eastward current was much 
less than that of the westward electrojet in midnight and morning hours. The 
relationships between the north-south current density and the ground D com
ponent appear, however, to be more complicated. From about 0500 UT, the 
Chatanika radar observed a gradual increase of the northward current followed 
by a sudden intensification of it at about 0730 UT. Until about 1 130 UT, the 
ionospheric current has essentially a northward component, regardless of the 
change of the sign in the D component. The disagreement between the north
south ionospheric current and ground D is most serious prior to local midnight, 
except for the short time intervals of 0750-0850 UT and 0950-1020 UT. That 
is, there are many periods in which the Chatanika radar data give results com
pletely contrary to the observed D perturbations on the earth's surface. 

On the other hand, the disagreement becomes less serious in the morning 
sector. There are, at least, two eastward deviations (LlD>O) at Poker Flat which 
occurred at about 1145 and 1420 UT associated with intense negative H bays. 
It is noted that these eastward perturbations were observed at all the Alaska ob
servatories except Sitka along the meridian, which are caused by the southward 
ionospheric current actually observed at Chatanika. 

These characteristics may be more clearly seen in the vector representation 
at four instances ( two of them were observed in the evening sector and the other 
two in the morning sector) . In Fig. 36b, we show the vector J of the deduced 
ionospheric current at Chatanika and the magnetic perturbation vector L1 F m the 
horizontal plane (LlF = J L1H2 + L1D2

) observed at Poker Flat, along with the pre
dicted direction of LlF ( assuming that it results purely from the observed overhead 
ionospheric current J) . Disturbance vectors at Point Barrow and Fort Yukon 
are also given for comparison. At 0730 UT, when a typical positive H bay was 
in progress at Poker Flat, the strong westward electrojet was flowing in higher 
latitudes, as seen in the negative H bays at Point Barrow and Fort Yukon. The 
radar measurement indicates that the ionospheric current was directed north
eastward, thus the expected LlF on the earth's surface should be directed north
westward (LlH>O, LlD<O) ,  as illustrated by the dashed line. However, the actually 
observed vector LlF was directed northeastward (LlH> O, LJD > O). 
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20 October 1973 

Fig. 36b.  Vector J of the deduced zonosphenc current and the magnetic perturbation 
vector JF in the horizontal plane. The dashed lzne represents the predicted 
direction of JF assuming that it results purely from the observed overhead 
ionospheric current J (after KAMIDE et al. ,  1976a). 
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current and the corresponding geomagnetic D perturbatzon as a functzon of uni
versal time. The occurrence of the D event, which cannot be explained solely 
by the zonosphenc current, 1s hatched (after KAMIDE et al , 1976a) . 
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At 07 45 UT, the ground perturbations in the H component at all the three 
stations were negative, whereas the D perturbation at Poker Flat was positive, 
and was negative at higher latitudes. Again there is a large discrepancy between 
the predicted and the observed ilF. The angle between these two vectors is 
almost 90° for both cases. 

In morning hours, however, the direction of ilF, predicted based on the 
deduced ionospheric current vector, agrees reasonably well with that observed 
at Poker Flat for both cases at 1205 and 1522 UT which were during the maximum 
phase of the two substorms. 

An attempt has been made to confirm statistically the above relationship 
between the north-south ionospheric current deduced from the radar observations 
and the ground D perturbation on the basis of data for ten disturbed days when 
the radar was operated. In the analysis, only clearly-defined perturbations in the 
north-south component of the ionospheric current during each UT interval were 
taken, ignoring rapid fluctuations with periods of a few minutes. 

In Fig. 37, the occurrence frequency of the northward or southward iono
spheric current and the corresponding magnetic deviation in the D component are 
shown as a function of UT. It is generally seen that the northward ionospheric 
currents prevail in the evening sector, whereas the southward currents prevail in 
the morning sector. If the ionospheric current in the north-south direction is the 
main source of the ground magnetic perturbations in the D component ( as the 
east-west ionospheric current is so for the H perturbation), then we should have 
expected that there would be a corresponding predominance of the westward and 
the eastward deviations in the evening and morning sectors, respectively. The oc
currence of the D perturbations, which cannot be explained by the ionospheric 
current on this background, is hatched. The eastward (LlD>O) deviation is a 
common feature, independent of the local time at Poker Flat and College. This 
suggests that the main part of the ground D perturbation in the evening sector is 
not caused by ionospheric currents but probably by field-aligned currents. Then, 
why does the ground LlD observation suggest the incorrect direction of the current 
in the evening sector? This contradiction is at least partially solved by a finding 
that the intensities of the upward and the downward field-aligned currents are, in 
general, not equal (Y ASUHARA et al . ,  1 97 5). After qualitative considerations, 
KAMIDE et al. (1976a) have proposed a current flow model including both iono
spheric and field-aligned currents. This is shown m Fig. 38. The dashed line 
represents the Harang discontinuity which divides the region of the eastward current 
from the region of the westward current in the evening sector. On the equatorward 
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Fig 38. Schematzc drawing of ionospherzc current fiow , together wzth the Harang 
dzscont znuzty (dashed l zne) (after KAMIDE et al , 1976a) 

side of the discontinuity, the ionospheric current flows northeastward, as can be 
seen in the examples at 0730 UT (Fig. 36b) . On the other hand, the direction 
of the ionospheric current on the poleward side is northwestward; this can be 
seen in the vectors at 0745 UT (Fig. 36b) . These should not be confused with 
the equivalent current vectors derived from the ground magnetic perturbations. 

Recently, rocket measurements of the electric field vectors and the electron 
density profile have made it possible to deduce the ionosphenc currents Ev ANS 

et al. ( 1 977) obtained, as shown in Fig. 39, the pattern of the height-integrated 
ionospheric currents with respect to the location of an auroral arc in the evening 
sector It is seen that the eastward current m and near the auroral arc has a 
northward component as well 

6.2. Overllneacll folillosn.1hernc cunen� approxiima�liolill 
There have been several conventionally used methods to infer the 10nosphenc 

current density One of the most popular methods 1s the infimte overhead current 
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Fig. 39. Auroral electrojet current pattern which shows the relationship with the visu-
al auroral forms. The dashed line marks the orientation and location of 
the southern edge of the main auroral form (after EVANS et al. , 1977) . 
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approximation (see NAGATA and FUKUSHIMA, 1971) . The determination of an 
equivalent overhead current vector has usually been made by converting the magni
tude ( in nT) of the horizontal magnetic perturbation at the point of observation 
on the earth's surface into the overhead current density (in amperes per kilometer) 
by assuming that geomagnetic disturbances are produced by an infinite, uniform 
sheet current. Such an assumption is undoubtedly unrealistic, since it is well known 
that polar substorms are characterized by localized currents called the auroral 
electro jets. 

KAMIDE and BREKKE ( 1975) examined how well the use of the equivalent 
ionospheric current approximation can reproduce the height-integrated ionospheric 
current density deduced by the Chatanika incoherent scatter radar data. Fig. 40 
shows the relationship between the ground H perturbation at Poker Flat and the 
height-integrated current density in the east-west component at Chatanika for 36 
positive and negative H bays. For comparison, the linear relations based on the 
infinite overhead current approximation for k= l, 2/3, and 1 /2 are also given. 
Note that k= 1 corresponds to the particular assumption that there is no induction 
current within a flat earth and k= 1 /2 corresponds to an infinite sheet current above 
a perfectly conducting flat earth. In Fig. 40 it is clear that even the extreme ap
proximation (k= l )  underestimates the current density by a large factor. Note 
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Fig 40. Relationship between the zonosphenc east-west current density provided by the 
Chatanika radar observations and the magnitude of the corresponding geomag
netic H perturbatzons on the ground. The lines show the expectable current 
density based on the overhead current approximation for three different values 
of correctzon factor k of the znductwn effect w1thzn the earth (after KAM IDE and 
BREKKE, 1975) . 

that whereas for an infimte sheet current one would expect 1 /2<k< 1 and a 
spatially constant k, this is not so for an electrojet flowing in the finite area. Note 
also in Fig 40 that there is a significant difference in this relationship between 
positive and negative bays 

It is important to note that the overhead current approximation almost always 
underestimates the current density by a factor of 2 or more. Thus, great caution 
should be exercised m estimating the ionospheric current intensity on the basis 
of this approximation. As discussed in detail by KAMIDE and BREKKE ( 1 97 5) , 
some obvious causes for the underestimation are ( 1) the latitudma] width of the 
auroral electrojet, ( 2) the distance from the center of the electroJet, ( 3) the lati
tudinal dependence ( i.e . ,  gradient) of the current density, and ( 4) field-aligned 
current effects. 
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6.3. Altitude dependence of ionospheric currents 

A sounding rocket (launched into a westward electro jet) measurement of the 

ion flow velocity and the electric field by the double probe was performed by 

BERING et al. ( 1973 ) .  BERING and MOZER ( 1 975 ) have shown that altitudes 

above 140 km the electric fields deduced from the two data sets agree to an ac

curacy within the uncertainties of the two measurements. The difference between 

the two data at altitudes below 140 km provides an in situ measurement of the 

ionospheric current density. It was shown that a maximum current density of 

5 x 1 0-6 A/m2 was observed at an altitude of 1 1 0 km in the westward electrojet. 

More recently, high-resolution (,._,1 0 km) measurements of the ionospheric 

electric fields have been made possible at the Chatanika incoherent scatter radar 

(RINo et al., 1 977 ) .  Fig. 4 1  shows height-versus-time vector plots in geomagnetic 

coordinates of the deduced current density. Of particular interest is the height 

variation of the current, in both magnitude and direction. During the geomagneti

cally active period from 1 1 30 to 1 600 UT in the morning sector, one can see a 

concentration of the electrojet at the lower altitudes with a tendency of the currents 

to rotate to the southwest at the higher altitudes, particularly near 1 300 and 

1400 UT. 

KAMIDE and BREKKE ( 1977) have made a similar study, in which the intensity 

contours of the ionospheric current density are obtained as functions of altitude 

(from 85 to 1 85 km) and universal time, as shown in Fig. 42. The following 

two points of interest are noted : ( 1) The dashed line indicates the altitude of 

the maximum current density as a function of time. It is seen that the altitude 

dependence of the eastward electrojet was rather stable in the evening sector even 

when it grew in conjunction with substorms. In the midnight and morning sectors, 

however, it became intermittently lower in conjunction with the growth of the 

current that is a signature of the substorm intensification. ( 2)  The current center 

of the eastward electrojet is located at higher altitudes than that of the westward 

electrojet. The average altitude of the maximum current density at the peak time 

of the eastward electrojet is 1 1 9 . 1  km, while that for the westward electro jet is 

101.6 km. 

These results may not be unexpected, if we combine previously observed 

different characteristics associated with the eastward and westward electrojets. 

The eastward electrojet is probably associated with the diffuse aurora caused by 

relatively low energy particles. In that region the Hall and Pedersen conductivities 

seem to change in unison. In the westward electrojet region, however, there are 

large changes in the Hall conductivity with only small increases in the Pedersen 
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conductivity, implying the sporadic precipitation of particles with energies of 
several ke V and above. 

7 .  Field-Aligned Current 

The importance of field-aligned currents -Birkeland currents- in magnetospheric 
and auroral physics was suggested by BIRKELAND ( 1908) and ALFVEN ( 1939) a 
long time ago, but 1t is only in the last decade that their presence has been con
firmed with particle and magnetic field observations acquired from a variety of 
rocket and satellite instruments. A relatively large number of review papers 
(ARNOLDY, 1974; ARMSTRONG, 1974; ANDERSON and VONDRAK, 1975 ; CLOUTIER 
and ANDERSON, 1975; SUGIURA, 1976; RUSSELL, 1977; PoTEMRA, 1977) have 
been published on the observations of the field-aligned currents and their relations 
to auroral display and energetic particle precipitation. The observations of the 
field-aligned currents can be classified into three groups in terms of the regions 
where the measurements are made; rocket observations at ionospheric altitude, low 
altitude ( <3000 km) observat10ns by polar-orbitmg satellites, and observations 
in the magnetosphere. Among these have been the observat10ns in the auroral 
and polar cap regions acqmred with a two-axis magnetometer on board the AZUR 
satelhte (THEILE and PRAETORIUS, 1973) ; the three-axis measurements by the 
IMP 4 and 5 satellites in the magnetota1l (FAIRFIELD, 1973) ; the three-axis mag
netic field measurements on the OG0-5 satellite at altitudes >4 RE (SUGIURA, 
197 5) ; simultaneous measurements of precipitatmg electrons and magnetic fluctua
tions from OGO 4 at altitudes between 412 and 908 km (BERKO, 1973; BERKO 
and HOFFMAN, 1974; BERKO et al , 1975) , and at synchronous altitudes with the 
A TS 1 satellite ( IIJIMA, 197 4) . 

7 .1. Gross lfieJlda�iligned cmirent pattern 
FAIRFIELD ( 1973) and IIJIMA ( 1974) studied mamfestations of the field

aligned currents m the magnetosphere and their gross patterns as functions of local 
tune and substorm activity using magnetometer data of the IMP 4 and 5 and 
ATS 1 satellites, respectively. As BIRKELAND ( 1908) suggested, the westward 
electroJet which is the dominant feature of a polar substorm, can be thought to 
be connected to a pair of the field-aligned currents ongmating m the magnetosphere; 
they are directed toward the earth m the mormng sector and away from the earth 
m the evening sector. When these currents are intensified m harmony with the 
growth of magnetospheric substorms, one would expect an eastward deflect10n of 
the magnetic field in the mornmg sector of the high latitude lobe of the magnetotail 
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and a westward deflection in the evening sector. FAIRFIELD ( 1973) showed that 
this is indeed observed by satellites in the magnetotail during substorms. Fig. 43 
shows an example of such magnetic changes in the evening sector; the upper part 
of this figure is taken from FAIRFIELD's (1973) Fig. 4. It is seen that the large 
negative D perturbation at 0015 UT occurred in association with a substorm 
recorded at Leirvogur. It should be noted, however, that this sudden change in 
the D component did not occur at the onset time of the substorm; it represents 
rather a spatial change. Note that the D change indicates the encounter of the 
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F1g. 43. Magnetlc field and energetic electron fiux observatwns in the magnetotml during 
substorms. The H component magnetlc record from the midnight auroral zone 
station 1s also shown. Note that a large defiectwn of the magnetic vector occurs 
at the moment when the satellite 1s submerged in the expanding plasma sheet 
(after FAIRFIELD, 1973; and courtesy of MENG). 
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satellite with the expandmg plasma sheet boundary. Indeed, the simultaneous 
energetic electron data ( the bottom of the figure) show a considerable increase 
at the time of the magnetic deflection ( MENG, 1977, personal communication; 
see also AKASOFU, 1977). These observations may indicate that the correspondmg 
magnetic deflection can be observed only in a limited region near the plasma sheet 
boundary, not in the entire region of the magnetotail. Implications of it are now 
under study by the author. Fig. 44 shows the locations of the D events observed 
by the satellite projected to the earth surface along with the statistical auroral oval 
(FAIRFIELD, 1973). It is noticeable that the directions of the mferred field-aligned 
currents are systematically separated by different local tune sectors with respect 
to prenudmght hour. lIJIMA ( 1974) reached the similar configuration of the gross 
pattern of the field-aligned currents in the mghtside magnetosphere. 
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o Cu rrent out of Ionosphere 

a Cu rrent into Ionosphere 

Fzg . 44 Locatwns of field-alzgned current events, which are most frequently seen 
near mzdnzght and near the northern boundary of the auro,al oval 
(dashed lme) (after FAIRFIELD, 1973) 

BERKO et al. ( 197 5) compared statistically the regions where high fluxes of 
field-aligned 2. 3 keV prec1p1tations were observed (from B ERKO, 1973), regions 
where the OGO 4 magnetometer recorded fluctuations ( BURTON et al , 1969) and 
region where ZMUDA et al ( 1 970) observed large transverse magnetic disturbances. 
Fig 45 (BERKO et al , 1 97 5) mdicates that all these regions share the spatial 
feature of an oval-shaped auroral belt in which the lower boundary is located at 
higher latitudes during the dayside hours than during the near-midnight hours It 
was noted that upward field-aligned currents in late evening hours were detected 
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Fig. 45. Comparison of regwns where field-aligned 2. 3 keV electron precip1tatwn was ob
served by OGO 4 (BERKO, 1973) with the regwns where OGO 4 search coil mag
netometer fiuctuations were observed (BURTON et al. , 1969), and where transverse 
magnetic disturbances were observed by ZMUDA et al. , (1970) (after BERKO et al. , 
1975) . 

in the region of high field-aligned particle precipitation occurrence, and that most 
of the current in this region was carried by particles with energies greater than 
0. 7 ke V. Simultaneous measurements of low-energy electrons and magnetic fluctu
ations from the low-altitude polar-orbiting satellite by BERKO et al. ( 197 5) indi
cate that dayside field-aligned currents consist primarily of electrons with energies 
of less than 1 keV. BERKO and HOFFMAN ( 1974) examined the dependence of 
field-aligned current occurrence on season and altitude by using electron precipi
tation data from more than 7500 orbits of OGO 4, and found that the highest 
probability occurs when the measurements were made at altitudes near 800 km 
to 900 km during the winter season. 

THEILE and PRAETORIUS ( 1973) described the results of an analysis of two 
component magnetometer data on board the AZUR satellite, which is in polar 
orbit at 400 to 3000 km altitudes. It was shown that the regions of transverse 
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magnetic perturbations coincide with the regions of measured emission of 3914 A 
radiation, presumably excited by precipitating auroral electrons. 

An extensive survey of magnetic fields has most recently been carried out 
by McPHERRON and BARFIELD ( 1978) with instruments on board the ATS 6 
satellite. It was statistically shown that the above configuration of the field-aligned 
currents exists permanently and enhances in accordance with geomagnetic activity. 
This means that the main part of the field-aligned currents 1s generally located 
outside the synchronous distance. They have also pointed out that m interpretmg 
the magnetic signature of the field-aligned currents at the synchronous orbit, it is 
necessary to take into account the difference between the magnetic equator ( where 
no field-aligned currents signature can be expected) and geographic equator (where 
a synchronous satellite is located). 

7.2. TRIAD satellite observations 
The TRIAD satellite, launched into a nearly circular polar orbit at 800 km 

altitude in November 1972, is the first satellite that carnes a tri-axial, high-resolu
tion magnetometer, allowing us to determine the current flow directions, spatial 
distnbution, and intensities of field-aligned currents at all magnetic local times. 
The characteristics of the TRIAD magnetometer experiment have been described 
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00 

Fzg 46 Dzurnal fiow pattern of field-alzgned currents along the auroral oval ob
served by the TRIAD satellzte. A ,  both types of current patterns found 
zn thzs region B, irregular regzon (after ZMUDA and ARUSTRONG, 1974b). 
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in detail by ARMSTRONG and ZMUDA ( 1973 ) ,  along with sample magnetometer 

records. ARMSTRONG ( 197 4) noted that in most cases, the total magnetic pertur
bation vector at auroral latitudes is transverse to the main field to within experi
mental sensitivity, confirming the earlier suggestion that the magnetic perturbations 
result from field-aligned currents. 

According to ZMUDA and ARMSTRONG (1974a) ,  in the evening sector (1400 

ML T through dusk to 2300 ML T) the magnetic field perturbation is eastward, 

indicating a current flow away from the earth at the poleward part and a flow 
toward the earth at the equatorward part of the disturbance region. The current 
direction is reversed in the morning sector ( 2400 ML T through dawn to 1000 
MLT) . Either set can appear in the transition period, 2300-2400 MLT. From 
1000 through noon to 1400 ML T, the magnetic variations are still transverse but 
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Fig. 47. Typical examples of the magneflc field perturbatwns observed by TRIAD; the 
mvanant latitude is shown at the bottom. The dashed Imes are extrapolatwn 
from both the poleward and equatorward portwns of the traces. The arrows a 
and /3 on the top trace indicate the poleward and equatorward edges of the per
turbatwn region. The last trace is one of the examples studied by ZMUDA and 
ARMSTRONG (1974b) m which the dashed lme shows their base line (after 
YASUHARA et al. , 1975) 
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are relatively irregular. The dmrnal flow pattern is schematically shown in Fig. 46, 
which is reproduced from Fig. 9 of ZMUDA and ARMSTRONG ( 1974b) . 

Such paired field-aligned currents of oppositely directed flow have been further 
exammed by the same authors. It was shown that the current densities of the 
two oppositely-directed field-aligned currents are essentially equal (ZMUDA and 
ARMSTRONG,  1974b) , considering a lack of shift m base lme level of the east-west 
component of the magnetic perturbation in passing through the current flow 
region. However, YASUHARA et al. ( 1975) have claimed that cases of the equality 
of the oppositely directed current intensities does not exist more often than cases 
of the inequality do. They have shown several 'typical' examples of the magnetic 
field perturbations observed by TRIAD (see Fig. 47) , in which the eastward 
deviation does not recover fully at the end of the data; namely, the trace does not 
merge with the extrapolated line from the poleward side. This tendency can be 
explamed by supposing that the intensities of the inflow and the outflow currents 
are not equal. Unfortunately, the opportumty had not occurred to discuss this 
'basic' difference between conclusions by ZMUDA and ARMSTRONG ( 197 4b) and 
YASUHARA et al ( 1975) before tragic deaths of ZMUDA and ARMSTRONG m 1974, 
in spite of the fact that the study of the configuration of the field-aligned currents 
began as a jomt project by alJ of them. 

Fig. 48 shows the relationship between the upward and inward field-aligned 
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currents in the evening sector, together with three lines giving the ratio between 
these currents. Although the ratio varies considerably, most points lie between 
the two lines 1.0 and 0.2 indicative of the upward current being generally greater 
than the downward current. YASUHARA et al. ( 1975) and YASUHARA and AKASOFU 
(1977) conducted extensive numerical calculations to examine how the observed 
distribution and intensity of the field-aligned currents are related to ionospheric 
currents and electric fields for specific models of the ionospheric conductivities. 
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Fig 49. Spatial dzstrzbutwn and fiow dzrectwns of large-scale field-alzgned currents deter
mined from data obtained on 493 TRAID passes durzng weakly disturbed condi
tions (after ]JJIMA and POTEMRA , 1976b). 
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By means of the OGO 5 magnetometer data, SUGIURA ( 197 5) has found the 
existence of the paired field-aligned currents in the magnetosphere. In the nightside 
magnetosphere, the polar cap boundary was identified by a sudden transition from 
a dipolar field to a more tail-like configuration, at which a field-aligned current layer 
exists. 

There have been well documented definitive studies earned out by SuGIURA 

and POTEMRA ( 197 6) and lIJIMA and PoTEMRA ( 197 6a, b) using bulk data from 
the TRIAD satellite. Fig. 49 shows a summary of the average distribution m 
'MLT and mvariant latitude' coordinates of the large-scale field-aligned currents 
determined from TRIAD magnetometer data obtained on 493 passes during weakly 
disturbed conditions (IIJIMA and PoTEMRA, 197 6b) . As summarized by PoTEMRA 

( 1977) , the pnncipal features include the following : ( 1) Field-aligned currents 
are concentrated in two major areas which encircle the geomagnetic pole, regions 
1 and 2. The region 1 field-aligned currents flow into the ionosphere in the 
morning sector and away from the ionosphere in the evening sector, whereas the 
region 2 currents flow in the opposite direction at any given local time. ( 2) The 
areas of maximum current density in region 1 are approximately coincident with 
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Fig 50. Relations/up between field-aligned current dens1t1es and the general level of geo
magnetic act1v1ty zn the forenoon and afternoon sectors (after [IJIMA and POTEMRA, 
1976a). 
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the location of the foci of the S/ current system; see Fig. 49. ( 3 )  The currents 

in region 1 are statistically larger than the currents in region 2 at all local times, 

indicating an unbalanced or 'net' current flow on one side of the two regions. 

( 4)  The region 1 currents appear to persist even during very low geomagnetic 

activity with a value of current density � 0.6 x 10-6 A/m2 for K
P

=O;  see Fig. 50. 

( 5 )  A region of field-aligned currents has been discovered in the dayside between 

1000 and 1400 MLT and poleward of region 1 between ,_,73 ° and 8 1  ° invariant 

latitude . These 'cusp' field-aligned currents ( called the region 3 currents) flow 

away from the ionosphere in the pre-noon sector and into the ionosphere in the 

post-noon sector. 

Fig. 5 1  shows the local time dependence of the field-aligned current intensities 

after IIJIMA and PoTEMRA ( 1 976a ) . It should be noted, however, that since all 

the TRIAD data were acquired only at College, Alaska on a real time basis to 

construct Fig. 5 1  and thus a particular local time when the satellite passes near 
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College is given by a particular season, the obtained local time variations of the 
field-aligned current intensity include the seasonal effects (if any) as well . 

7 .3. ISi§ 2 satellite observatioll1l.s 

Simultaneous particle and magnetic field measurements made on the ISIS 2 
satellite have been reported by BURROWS et al. (1976) , KLUMPAR et al. (1976) 

and McDIARMID et al. (1977 ). The ISIS 2 satellite is in a nearly circular polar 

orbit at an altitude of approximately 1400 km. The energetic particle experiment 

72 /69/ 1 3  
Fzg 52. Example of a dawn-dusk pass in which field-aligned current directions are shown 

by arrows. Electron fiuxes at five different energies are also shown. The ave
rage electron energy zn keV zs shown at the bottom on a lznear scale (after 
MCDIARMID et al , 1977) 
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on board includes an electrostatic analyzer measuring particle fluxes in the energy 
range from 0.15 keV to 10 keV in 8 channels and a Geiger counter with an electron 
energy threshold of 22 keV (VENKATARANGAN et al. ,  1975). All of these detectors 
have narrowly collimated field of view and look in a direction perpendicular to 
the spin axis whose direction can be changed. The satellite instrumentation also 
includes an orthogonally mounted system of flux-gate magnetometers, two of which 
have their axes aligned in the direction of the spin axis. 

KLUMPAR et al. (1976) presented sample data of simultaneous magnetic field 
signatures of field-aligned currents and comprehensive charged particle measure
ment, and found that in the post-midnight sector, the equatorward region of upward 
field-aligned current flow is coincident with the region of nearly isotropic precipi
tation of kilovolt electrons. They also noted that the poleward region of downward
directed current flow is often associated with fluxes of low energy electrons, some 
having pitch angles near 180° with sufficient upward flux to account for the current 
density obtained from the simultaneously observed magnetic field perturbation. 

About 300 satellite passes in local time intervals of 6 hours centered on the 
dawn and dusk meridians were examined by MCDIARMID et al. (1977). Fig. 52 
shows a dawn-dusk pass in which magnetic field perturbations corresponding to 
the typical field-aligned current pattern are observed. The field perturbation shown 
in the upper panel of the figure was obtained as the observed field minus a model 
field (IGRF 1965.0 model). As indicated by arrows, the field perturbation can 
be modeled by two oppositely-directed field-aligned current sheets in both the 
morning and the evening sectors. In this example the currents are not again 
balanced; instead, a net current flows into the ionosphere on the morning side 
and out of the ionosphere on the evening side, in agreement with the results of 
YASUHARA et al. (1975) and lIJIMA and POTEMRA (1976a). In comparing the 
field and particle measurements it is evident that the high-latitude upward current 
in the evening sector coincides with the high-latitude part of the plasma sheet, 
called the boundary plasma sheet (BPS) by WINNINGHAM et al. (1975). It is 
characterized by highly structured particle fluxes and is the region in which inverted 
V's and discrete auroras are observed. 

MCDIARMID et al. ( 1978) have most recently shown similar examples, but 
in these cases, with a more reliable method of determining the base line for the 
magnetic field. Fig. 53a shows an example in which the parts of the ilB plot at 
low latitudes on both sides of the pole are flat, indicating the agreement between 
the shapes of the measured and calculated fields in these regions. The arrows 
indicate the high and low latitude extent of the negative perturbation on both the 
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Fig. 53a . Example of a dusk-dawn pass showing one component of the magnetic field per
turbation L1B and electron intensity profiles for a number of different energies 
(after MCDIARMID et al , 1978). 

dawn and dusk sides of the pole as well as the low latitude edge of the positive 
perturbation. The dashed vertical lines indicate the high latitude edge of the plasma 
sheet determined from the latitude where the 1 . 3 keV electron channel reaches its 
background level It is seen that the plasma sheet extends poleward of the location 
where the magnetic perturbation changes its sign . 

MCDIARMID et al ( 1 977) also found that in a few percent of the morning 
side passes, the current pattern is reversed; that is, the high-latitude current is 
upward, and the low-latitude part downward Fig 53b shows an example of these 
along with the corresponding charged particle measurements . It was noted that 
these perturbations are observed only at times when the interplanetary magnetic 
field has a strong northward component, and they are found at bt1tudes above 
those usually associated with field-aligned currents. 

'i .4. Projection of the field-aligned current region into the magnetosphere 
It may be possible to discuss magnetospheric processes by proJecting the 

region of the observed l arge-scale field-aligned current onto the equatorial pl ane 
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of the magnetosphere. BosTROM ( 197 5) demonstrated that assuming only the 
pressure gradient being associated with the observed field-aligned currents, the direc
tion of pressure gradients can be obtained in the equatorial plane of the magneto
sphere. The required gradient in the magnetosphere for the observed field-aligned 
current distribution was obtained. RosTOKER and BosTROM ( 1976) stressed the 
importance of the inertia of plasma motion capable of driving the large-scale field
aligned currents of 'balanced' upward and downward component. 

Using the spatial distribution and flow direction pattern of the field-aligned 
currents determined by IIJIMA and POTEMRA (1976a) , POTEMRA (1977) has 
attempted to map these current regions to the equatorial plane along field lines of 
magnetic field model of MEAD and FAIRFIELD (1975) and FAIRFIELD and MEAD 

(1975) for conditions corresponding to quiet and disturbed conditions. In Fig. 54, 
the regions of the large-scale field-aligned currents are indicated along with the 
boundary of the inner edge of the plasma sheet. It is noticed that the boundary 
between the flow direction of the field-aligned currents on the dusk side statistically 
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Fig. 54 . The pro1ectwn of the regwns of large-scale field-aligned cu, rents onto tlze equa-
torial plane (after POTEMRA, 1977) 

coincides with the earthward edge of the plasma sheet. POTEMRA ( 1977) em
phasized that on the dusk side the field-aligned currents flow away from the 
ionosphere maps to the region within the plasma sheet The flow of electrons from 
the plasma sheet to the auroral region can adquately account for the flow pattern 
of these currents. On the other hand, field-aligned current flow mto the auroral 
ionosphere on the dusk side maps to a region to the earthward side of the plasma 
sheet boundary, where no electrons are available for transport to the auroral 
region. Thus it may well be that upgoing low-energy electrons from the ionosphere 
carry the downward field-aligned current in the equatorward half of the evening 
auroral belt. 

SuGIURA ( 197 5 )  suggested that the region 1 currents are associated with 
the distant boundaries of the plasma sheet, while the region 2 currents should 
close via the equatonal (rmg) currents in the magnetosphere. 

7 .5. Field-aligned currents as divergence of irnrmspherk currents 

As discussed by ANDERSON and VONDRAK ( 1975 ) ,  there are three possible 
methods for current detection in the ionosphere and magnetosphere · ( 1) count 
charge carriers, ( 2 )  measure curl B, and ( 3 )  measure E and a ; where B is the 
magnetic mduct10n, E is the electric field, and a is the electnc conductivity. Thus 
far, only techniques ( 1 )  and (2)  have been descnbed, while ( 3 )  has been used 
to examine honzontal (perpendicular to B) currents in the ionosphere (BREKKE 
et al , 197 4 ) .  The Chatanika incoherent scatter radar is ideal for the purpose of 
deducmg 10nosphenc current densities by means of ( 3 ) . DE LA BEAUJARDIERE 
et al. ( 1977) have attempted a techmque of the one-dimensional divergence to 
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estimate the field-aligned current density in the vicinity of an east-west aligned 

auroral arc which moved in the north-south direction, so that even one point 

measurement could see the spatial variation. 

In the work of KAMIDE and HORWITZ ( 1 978 ) ,  an attempt has been made to 

describe a technique for deducing field-aligned current densities from ground-based 

measurements of the horizontal ionospheric currents at two or more latitudes using 

the Chatanika incoherent scatter radar. By computing a one-dimensional divergence 

of the current in a suitable coordinate system, an estimate of the field-aligned 

current density is obtained. In addition, a direct comparison was made between 

the Chatanika radar estimates and those from simultaneous TRIAD satellite passes 

over Chatanika. Fig. 55a shows the ionospheric current at three invariant latitudes, 

in which the following points of interest are noted : First, the horizontal current is 

generally northeastward in the evening sector, and southwestward in the morning 

sector. The eastward and westward auroral electrojets in evening and morning 

hours thus have respectively northward and southward components as well. Second, 

the transitions from the evening to morning features in the north-south and east

west components do not necessarily occur at the same time. In the region wher e 

the east-west component changes its sign (e.g., at the Harang discontinuity ) ,  an 

intense northward current prevails at all three latitudes. This predominance is 

caused by the westward electric field and the Hall conductivity ( see the data of 

HORWITZ et al. , 1 978a) . Third, the main features of the currents at the three 

latitudes are generally similar, but sizable latitudinal variations can be seen on 

several occasions. For example, at about 0635 UT, the eastward current com

ponent was about 2 A/m at A=66. 1 °, but was only 1 A/m over Chatanika, and 

0.5 Alm at A=64.2 ° . 

The currents in Fig. 55a were used by KAMIDE and HORWITZ ( 1 978 )  to 

estimate the field-aligned current densities by assuming that current variations 

along the auroral oval are negligible. The alignment angle a with respect to the 

latitude circle was obtained by averaging a from the Q=O through Q=7 ovals 

given by FELDSTEIN and ST ARKOV ( 1 967 ).  The average field-aligned current 

densities between A=64.9 ° and 66. 1 ° and between 64 2° and 64 9 ° are shown in 

Fig. 55b Also shown are the current densities computed under an alternative 

assumption, that 11 1 results entirely from a divergence of the Pedersen current 

( =div CS pE)) . The general agreement between the two estimates points up the 

fact that the electric field usually points perpendicular to the auroral oval and that 

most of the 111 obtained !n this way is due to divergence of the Pedersen current. 

The salient features are : ( 1 )  The magnitudes of the field-aligned current 
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densities, 10-a- 1 0-5 A/m2, are comparable to those observed with other techniques, 

such as rocket and satellite detectors. (2) The currents tend to be directed upward 

in the morning sector in a latitudinal range near Chatanika .  Equatorward of 

Chatanika, the currents are directed generally downward in the evening sector. 

This sense corresponds to the equatorward half of the field-aligned current system 

constructed on the basis of TRIAD data (ZMUDA and ARMSTRONG, 1974b) , 

which is expected to be present at these latitudes under moderately disturbed 

conditions (see Fig. 2 of IIJIMA and PoTEMRA, 1 976a) . The currents were highly 

irregular in the midnight sector (0900-1 300 UT) perhaps due to real fluctuations 

as well as to more complicated current structure invalidating the procedure used 

to complete the field-aligned currents. ( 3 )  Intensifications of the field-aligned 

currents appear to be associated with substorm activity as observed in high-latitude 

ground magnetic disturbances in the midnight sector (not shown here ) .  ( 4)  During 

periods of very large disturbances, the poleward half of the field-aligned sheet 

current system expands equatorward to the vicinity of the radar. 

7 .6. Field-aligned currents and auroras 

It is one of the important problems of auroral physics how the field-aligned 

currents are related to different auroral features. This has a crucial importance 

for understanding some of the dominant physical processes occurring in the upper 

atmosphere in association with precipitating and upgoing particles, and relates 

closely to the questions of 'what are the main charge carriers responsible for the 

field-aligned currents?' and 'where do these particles originate?' 

7 .6. 1 .  Large-scale field-aligned currents 

ARMSTRONG et al. ( 1 975 ) examined the spatial relationship between field

aligned currents and auroras for a few TRIAD satellite passes, and found that the 

poleward discrete arc marks the northernmost boundary of the field-aligned current 

region. It was also found that all the visible arcs lie within the latitudinal region 

occupied by the field-aligned current flows. KAMIDE and AKASOFU ( 1 976a) ex

amined a number of such simultaneous satellite and ground-based observations, 

with special reference to discrete and diffuse auroras. Fig. 56 shows, from left to 

right, the TRIAD magnetometer data in the standard format ( ARMSTRONG and 

ZMUDA, 1973 ) ,  the satellite trajectory at a 1 10 km level and the distribution of au

roras over Alaska, and the all-sky camera photographs taken from the four Alaska 

meridian chain sites at 063 1 UT on March 7, 1 973. The direction of the three 

sensors, A, B, and Z, is indicated at the top of the middle diagram. 

The satellite passed over Alaska around the maximum epoch of a weak 
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Fzg 56. TRIA D magnetometer data zn the A ,  B and Z coordznates , the satellite pass over 
Alaska together wzth the locatwns of auroral arcs , and the all-sky camera photo
graphs taken from a chain of four Alaska merzdzan observatorzes Less brzght 
arcs are shown by dashed lznes (after KAMIDE and AKASOFU, 1976a) 

substorm (AL=-282 nT). Note that the increase ( or decrease) of the magnetic 
perturbation in the A sensor is produced by a downward ( or upward) field-aligned 
current It is seen that the east-west magnetic deviation does not recover fully 
after crossing the auroral oval. This can be explamed by the unequal intensities 
of the upward and downward field-aligned currents ; the upward current was more 
intense than the downward current in this case. 

It can be seen from the all-sky photographs that a weak surge was passing 
a little north of Inuv1k at that time and that the satellite passed over 1t between 
0630 and 063 1 UT. Both Fort Yukon and College had a very clear sky at that 
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of the discrete arc crossing, and the superposed H component magnetic records 
from nine auroral zone observatwns (after KAM/DE and A KASOFU, 1976a). 

time, but it was difficult to determine the distribution of the diffuse aurora. It was 
only at about 0645 UT that the diffuse aurora was clearly seen in the northern 
sky of Fort Yukon. In Fig 56 we show the location of the auroral arcs determined 

from the all-sky camera data, assuming the height of the auroras to be 1 1 0 km, 
together with the TRIAD trajectory. The three northern arcs were directly crossed 
by the satellite, but the two faint southern arcs did not appear to be crossed by 
the satellite ; locations of the southern arcs were thus extrapolated along constant 
L curves to the satellite trajectory. Their locations are also indicated in the TRIAD 
record. It is noted that the poleward arc marks the northernmost boundary of 
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the field-aligned current region and that all other arcs are confined withm the 
latitudinal region of the upward field-aligned current ( A=73 . 1  ° -69 8°) .  

In Fig. 57 we combine the TRIAD magnetometer (A sensor) data together 
with the locations of the arc crossing. On the nght-hand side the superposed H 
component magnetic records from nme auroral zone stations are shown to indicate 
magnetic activity dunng a few hours before and after the passage time, which is 
marked by a vertical hne. Most of the data were taken durmg evening hours m 
MLT, but the corresponding magnetic conditions (expressed by the KP index) 
are qmte different. There is a s1gmficant latltudmal expansion of the field-aligned 
current region as magnetic activity increases 

With this gross feature in mmd the figure shows that ( 1) discrete arcs are, 
in general, confined within the region of the upward field-aligned current and 
(2) no discrete arcs are seen m the region of the downward field-aligned current 
except for one arc in the last example ( 0612 UT on March 21, 1973) which was 
very famt. Although the all-sky camera photographs available for some of the 
present data sets were not conclusive m 1dent1fymg the diffuse aurora, it appears 
that the region of the donward field-aligned current corresponds to the region of 
the diffuse aurora. These conclusions are a little more specific than ARMSTRONG 
et al. 's ( 1975) conclusion m that they found that visible auroras are located within 
the latitudinal regime of the field-aligned currents. 

However, it is difficult m those study using the all-sky camera data to associate 
individual arcs with the irregular features of the TRIAD magnetic perturbations, 
which presumably indicate concentrated upward and downward currents within 
the large-scale upward field-aligned current reg10n 

Most recently, KAMIDE and RosTOKER ( 1977) have made an extensive study 
of the spatial relationship of the field-aligned currents to the distnbution of nightside 
auroras on the basis of nearly simultaneous sets of the TRIAD magnetometer data 
and auroral imagery and information on precip1tatmg electrons in the energy range 
between 200 eV and 20 keV obtamed from the DMSP satellites. In Figs. 58 and 
59, we show such compansons for mornmg and evenmg sectors, respectively. The 
distnbutlon of vectors of ground magnetic perturbations at the DMSP passage time 
is also given. It is noticed in Fig 5 8 that optical auroras appear to be confined 
to the region of the field-aligned currents as defined by the TRIAD data KAMIDE 
and RosTOKER ( 1977) noted that the downward current flow m the morning sector 
occurs m a region of auroral luminosity generated by precipitating electrons, but 
the strength of the downward current and the auroral mtens1ty are anticorrelated 
On the other hand, the region of the upward field-aligned current coincides well 
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with the region of the visible aurora in the equatorward half of the morning 
auroral belt. 

An evening example of the DMSP imagery and the corresponding distribut10n 
of the field-aligned currents is shown in Fig. 59, in which both a bright westward 
traveling aurora near 2000 MLT with several arcs extending into early evening 
hours and a diffuse aurora are seen. Although the poleward boundary of the 
diffuse aurora merges into the discrete aurora in a complicated fashion, its equator
ward boundary delineates an oval-shaped belt. A strikmg feature is that there are 
several high-latitude smaller-scale field-aligned current regions ( of 100 km lati
tudmal extent or less) which may correspond to the discrete arcs visible in the 
DMSP data. These smaller-scale current features do not always seem to comcide 
with a discrete arc. This was interpreted by KAMIDE and RosTOKER ( 1977) as 
being attributable to the north-south motion of the discrete arc ( or the relatively 
short lifetime of any discrete arc) and the time separation between the DMSP 
and TRIAD passes. The weak downward field-aligned current with density of less 
than 1 X 10-6 A/m2 is collocated with the diffuse aurora and the eastward electroJet. 

F1g. 60 shows the differential electron fluxes for three selected energies along 
the DMSP trajectory. The northernmost arc corresponds to the sharp rise of the 
electron flux from the background level in the polar cap at all energy channels, 
for example, an increase by a factor of about 10 in the 0.2- and 8.0-keV channels. 
Such a good correlation cannot be found for other auroral arcs. In particular, 
there are no visible auroral arcs apparent for the enhancement in 0.2-keV electrons 
which peaked at about 72.4 ° and 71 0 ° corrected geomagnetic latitude ( almost 
identical to the invanant latitude in this sector) . It is found, however, that each 
auroral are comcides well with an increase in the energy flux more than 10° 

erg/ cm2 
• s · sr, indicated by the dashed line in Fig. 60. 

The differential energy spectra for the discrete arcs (not shown here) are 
typical in that inside the arcs, a distinct spectral peak about 108- 10° el/ cm · s · sr · 
keV can be seen near 1-8 keV which is superposed on a softer spectrum (cf, 

MENG, 1976). 
The diffuse aurora is also characterized by the electron precipitation It is 

seen that the equatorward boundary of the diffuse aurora can be determined by 
that of the 8-ke V electron precipitation, in agreement with the result by MENG 

( 1 97 6) . The energy flux of the precipitating electrons in the diffuse aurora is 
about 1 order of magnitude lower than that for the discrete aurora. 

The latitudinal profile of the electron number flux is shown at the bottom. 
On the right-hand side of the figure the scale of the estimated current density is 
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given. In comparing the field-aligned current densities inferred from the TRIAD 
magnetic perturbation it may be said that the upward field-aligned currents in the 
region of the discrete auroral arcs can be explained by the precipitatmg electrons. 

Two other points seem worthwhile to be noted. 
1 ) Before the satellite encountered the sudden increase in the electron 

precipitation corresponding to the northernmost arc, a sharp decrease in the electron 
flux, especially at low energies (0.2 and 1 .3  keV) , was observed An intense 
downward current was also detected by the TRIAD satellite in this region, and 
this current may be carried by upward flowing thermal electrons escaping from 
the ionosphere. 

2) Although considerable upward field-aligned currents are carried by the 
precipitating electrons in the diffuse aurora region, a net downward field-aligned 
current is actually flowing in that latitudinal regime, indicating that upgoing 
ionospheric electrons may well be carrying the downward current (similar to the 
conclusions for the downward current flowing in the poleward portion of the 
morning sector auroral oval) . It is interesting to note that recent sounding rockets 
and polar-orbiting satellites observed upward flowing fluxes of particles in the 
auroral latitudes (WHALEN et al. , 1978 ; GHIELMETTI et al . ,  1978) . 
7 .6  2 Small-scale field-aligned currents 

We note that a great deal of work has been carried out over the last few 
years using rocket-borne particle and magnetic field detectors to estimate small
scale ( < 100 km) field-aligned currents in and near auroral forms ( e g , CAHILL 
et al. , 1974; KINTNER et al. ,  1974) . Some of the studies have been already re
viewed by ARNOLDY ( 1 97 4) and ANDERSON and VONDRAK ( 1 97 5) , and so only 
the main results which relate closely to the gross field-aligned currents and auroras 
are noted in this paper. Measurements of field-aligned currents by sounding rockets 
have several advantages over the measurements by polar-orbiting satellites, in 
spite of the shorter range that rockets can traverse as compared with satellites 
Rocket observations can give the finest spatial detail concerning the particle pre
cipitation and the magnetic field configuration in association with selected auroral 
forms. 

ARNOLDY and CHOY ( 1973) discussed the role of low-energy electrons 
measured on rocket flights into breakup auroras . It was found that the net flux 
of these soft electrons was upward on the poleward side of the visible aurora, 
which coincides with the narrow sheet of downstreaming electrons. The authors 
suggested that the upgoing electrons are the main carriers of net downward field
aligned current that is the return of the upward current carried by more energetic 
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electrons to the south. 
Field-aligned fluxes have also been measured by BRYANT et al. (1973 ) ,  

MAEHLUM and MoESTUE (1974) , and BosQUED et al. (1974) , who reported a 

region of energetic and intense electron flux over auroral arcs. 

Several sounding rockets over relatively stable auroral arcs were launched by 

the group at the Rice University, as summarized by ANDERSON and VoNDRAK 

(1975) and ANDERSON and CLOUTIER (1975). These transmitted complete particle 

flux and simultaneous magnetic data. It was found that there are oppositely directed 

field-aligned current sheets associated with a bright auroral arc, in which the total 

number flux jumped abruptly and the energy of maximum flux rose to approxi

mately 10 keV as the pitch angle distribution became more field-aligned at all 

energies (PAZICH and ANDERSON, 1975; SPIGER and ANDERSON, 1975; CASSERLY 

and CLOUTIER, 1975). Interpretation of the magnetic perturbations requires both 

vertical (field-aligned ) and horizontal ionosphere currents. A total upward current 

coincided with the main arc and the region of intense electron precipitation, the 

measured electrons (0.5-20 keV) carrying a significant portion (15% to 50% )  
of the total upward current. The equal downward 'return' current was found to 

the south from the magnetic field data, although a net downward electron flux 
was measured in this region. Thus, the energy of the current carriers must be 

less than the lowest energy detectable by their instruments (0.5 keV) .  

SESIANO and CLOUTIER ( 197 6) and CASSERLY ( 1977) found evidence for 

multiple pairs of anti-parallel current sheets associated with complicated discrete 
auroral systems. Sheet thickness ranged from 20 to 60 km. 

Based on rocket measurements, models of the field-aligned currents near 

an auroral arc system have been put forward (VONDRAK, 1975; BURCH et al. , 

1976; CARLSON and KELLEY, 1977). Fig. 61 shows two models constructed by 

VONDRAK (1975) and CARLSON and KELLEY (1977) in which the field-aligned 

currents are driven by the divergence of the horizontal currents arising from electric 

field gradients. These models differ from previous models by ATKINSON ( 1970 ) 

who considered the field-aligned currents to be driven by variations in the horizontal 
currents arising from conductivity gradients. The model of VONDRAK ( 197 5)  is 
able to explain the rocket observations in which vertical currents were found 

adjacent to an auroral arc in a region where no conductivity gradients were ex
pected to be present. 

7.6.3. Field-aligned currents and radar auroras 

TSUNODA et al. (1976a) examined the spatial relationship of the evening 
radar aurora to the field-aligned currents by utilizing data collected with a 398-MHz 
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Fzg. 61. (a) Model of an auroral arc system of north-south extent W and znfimte 

east-west (y) extent proposed by VONDRAK (1975) , and (b) model of cur
rent and field zn an auroral arc suggested by CARLSON and KELLEY (1977). 

radar located at Homer, Alaska, and with the TRIAD satellite. Fig. 62 represents 
an extensive analysis in which the distributions of the radar aurora and the visual 
aurora are shown together with the two transverse components of the magnetic 
perturbation at an 800 km altitude. It is clear that the poleward boundary of the 
radar diffuse band is coincident with the location of maximum perturbation of 
the TRIAD record, namely the boundary between the upward and downward 
field-aligned currents. It was noted that while the latitudinal extents of the radar 
echo and current regions are related, the downward current density is not neces
sarily proportional to the auroral echo strength; the TRIAD magnetometer data 
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Fig. 62. Spatzal relatzonships among the radar aurora, vzsual aurora, and field-alzgned cur
rents (after TSUNODA et al. , 1976a). 

contain oscillatory structure within the downward current region that does not 

appear to correspond to the auroral echo intensity. It was thus suggested by the 

authors that the downward field-aligned currents must be carried by precipitating 

protons and/or upward-moving low-energy electrons. 

7. 7. Field-aligned currents and the auroral electro jets 
There had been no direct observation which indicates the link between the 

field-aligned currents and the auroral electrojets. Several 'equivalent' three-dimen

sional current systems had been inferred based primarily on magnetic observations 

made on the earth's surface, in which there is an inflow of current into the morning 
half of the auroral oval and an outflow from the evening half of the oval and 
these are connected through the westward electrojet. However, as described m 
the previous sections, recent satellite measurements indicated the existence of 
both upward and downward flows at all local times. Thus, the earlier current 
patterns must be revised considerably by taking into account the recent new find
ings of the configuration of the field-aligned currents which exhibits distortions 
during substorms, particularly in the region of the Harang discontinuity. 
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Fig 63. Schematic picture of the field-aligned current configurallon in the substorm-dis
turbed evening sector inferred from the TRIAD data. The E field configuratwn 
zs inferred from the dzrecllon of the auroral electro1et fiow (after ROSTOKER et 
al. , 1975) . 

RosTOKER et al. ( 197 5) examined the simultaneous magnetometer data from 
the TRIAD satellite and ground-based meridian chains of observatories. It was 
shown by the use of modeling techniques employed by K1sABETH and RosTOKER 

( 1973) that a region of intense upward field-aligned current encompasses the 
boundary between the eastward and westward electrojets . They noted that there 
is a downward current flow both to the north and the south of the boundary 
between the two electroJets, z e , the Harang discontinuity Fig. 63 shows the 
schematic picture of the field-aligned current configuration in the substorm-d1sturbed 
evening sector, mferred by RosTOKER et al. ( 1975). This configuration is inter
preted in terms of the transition in electric field polarity at the boundary between 
the auroral belt and the polar cap, as reported by CAUFFMAN and CORNETT ( 197 1)  
and BURCH e t  al. ( 1 977) 

lIJIMA and PoTEMRA ( 1978) have shown that dunng periods when the west
ward electrojet has intruded deeply into the evening sector, the TRIAD magneto
meter data exhibit complicated and fine-structured variations indicating the presence 
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Fig. 64. Relatwnship between the field-aligned currents and the auroral electrojets. Note 
that the boundary of the upward and downward currents coincides approximately 
with the boundary of the regwn of positive and negative geomagnetic 11H (after 
KAMIDE and AKASOFU, 1976b). 

of complex field-aligned currents in the Harang discontinuity region. Nevertheless, 
the large-scale current configuration essentially consists of an upward field-aligned 
current surrounded on the north and south by downward currents, which is a 
simple superposition of morning-type and evening-type field-aligned current systems. 

However, as pointed out by KAMIDE ( 1 978) ,  the loci defined by various 
methods (such as reversals of the electric field direction, currents, and ground 
magnetic perturbations) as the Harang discontinuity may not be coincident, in 
particular, when we note recent findings of the electric field which does not show 
an abrupt change in the north-south component but shows a gradual rotation in 
the finite region. KAMIDE and AKASOFU ( 197 6b) have shown examples of the 
TRIAD magnetometer data and the simultaneous ground magnetic data from a 
meridian in which there can be seen no field-aligned current in the Harang discon-
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tinmty, i.e., the boundary between the eastward and westward electrojets. Fig. 64 
shows the TRIAD data and the latitudinal profile of the ground H and Z pertur
bations, together with the locations of auroral arcs. Although ground-based ob
servations of the magnetic vector distribution alone cannot provide uniquely the 
latitudinal position of the eastward and westward electrojets, we can mfer the 
location of the center of each electrojet and the two-electroJet boundary with a 
reasonable accuracy ( < 1 ° m latitude) by knowmg the latitudmal profile of both 
the H and Z components (OLDENBURG, 1976, 1978) . It is noticed in Fig 64 
that the boundary between the upward and downward field-aligned currents com
cides well with the boundary between the westward and eastward electroJets, which 
is inferred from the location of ilH=O and iJZ=minimum. It might be claimed 
that the electrojet pattern changes dunng the penod when the TRIAD satellite 
traversed latitudinally over the electroJets. However, KAM IDE and AKASOFU 
( 1976b) checked the latitude profile minute by minute and found that the electro
jet boundary did not shift significantly In Fig 65, we show the equivalent over
head current vectors at four observatories along the meridian for the total of 35 
TRIAD passes m the evening sector Also shown in the figure is the location of 
the boundary between the upward and downward field-aligned currents ;  on the 
poleward side of this boundary the upward current prevails, whereas the donward 
current prevails on the equatorward side It 1s seen that the westward and eastward 
currents are fairly well separated by the field-aligned current boundary, indicatmg 
that the Harang discontinuity, identified by the lme separating the negative and 
positive H perturbations on the earth's surface, corresponds to a region in which 
no field-aligned current 1s present. This finding suggests a connection of the field
aligned currents with the auroral electrojets m the evenmg sector, which 1s qmte 
different from what had been suggested in the earlier studies based on the ground 
magnetic observations alone. KAMIDE and FUKUSHIMA ( 1972) , and CROOKER 
and McPHERRON ( 1 972) have put forward a model current system in which there 
is an upward field-aligned current at the eastern end of the eastward electroJet. 
The KAMIDE and AKASOFU's ( 1976b) current configuration includes rather the 
downward field-aligned current m the entire eastward electrojet region. 

KAMIDE et al. ( 1976c) made a similar examination for the mornmg sector 
and found that during substorm peuods, both the downward and the upward field
ahgned currents generally occur ms1de the westward electroJet region It was sug
gested, however, that the observed inequality of the mtensit1es of the upward 
and downward currents implies that their closure m the ionosphere cannot be 
completed in the same mendian in the mornmg sector and must have a large 
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westward component, that is the westward electrojet. In other words, the 'westward 

electrojet' in the morning sector should actually flow in the 'southwestward' direction. 

7 .8. Field-aligned currents in the cusp and polar cap 

The large-scale characteristics of :field-aligned currents in the dayside high

latitude region determined from magnetometer data from 200 passes of TRIAD 

was presented by IIJIMA and PoTEMRA ( 197 6b). It was found that these high-

Co) 

(b )  

Fig. 65. (a) Observed boundary between the upward and downward field-aligned 
currents m the evening sector for 35 TRIAD satellite passes and (b) 
distribution of the equivalent ionospheric current vectors m the horizontal 
plane with reference to the location of the boundary of the upward and 
downward field-aligned currents (after KAMIDE and A KASOFU, 1976b) 
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Fig 66. Schematic diagram illustrating the fiow directions of the cusp reg10n 
field-aligned currents (after /JJJMA and POTEMRA , 1976b). 

latitude field-aligned currents are most often observed in the dayside sector be
tween 0930 and 1430 MLT and are distnbuted between 78 ° and 80° invariant 
latitudes. They generally flow away from the forenoon ionosphere and into the 
afternoon ionosphere, being opposite to the permanent region 1 currents. Fig. 49 
shows a summary of the distnbution and flow directions of field-aligned currents 
(IIJIMA and PoTEMRA, 1976b) . It was also found that the intensity of these 
field-aligned currents increases as the interplanetary magnetic field increases in 
the southward direction, indicatmg that they may play an important role m the 
coupling between the mterplanetary medium and the magnetosphere. 

1IJIMA and PoTEMRA ( 197 6b) presented a diagram ( shown in Fig. 66) 
illustrating the flow directions of the cusp field-aligned currents and their possible 
relation to the Chapman-Ferraro magnetospheric surface current. Note that the 
d1rections of the cusp field-aligned currents shown m this diagram are opposite 
to those hypothesized by RussELL et al ( 1 97 4) to explain the 'erosion' of the 
magnetopause observed by their OGO 5 magnetometer. 

Observations of the field-aligned currents near local magnetic noon have 
most recently been compared to the simultaneous ground magnetic observat10ns 
which were made at the IMS meridian cham of observatories along the west coast 
of Greenland (WILHELM et al , 1 978) .  They have reached a somewhat different 
conclusion as to the direct10ns of the cusp field-aligned currents which are controlled 
by the azimuthal component By of the interplanetary magnetic field. Fig. 67 shows 
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(FRIIS-CHRISTENSEN and WILHJELM, 1975) was common for all passes (after 
WILHJELM et al. ,  1978). 
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TRIAD magnetometer data in the approximately east-west component which are 
grouped into four categories m terms of the By values (positive or negative) and 
local time sectors (forenoon or afternoon) . It is seen that for By>O the directions 
of the cusp field-aligned currents are downward in the forenoon sector and upward 
in the afternoon sector, whereas the directions are reversed when By<O, indicatmg 
that the current configuration presented by IIJIMA and POTEMRA ( 197 6b) expresses 
only the cases corresponding to the negative By. This pomt needs further clanfi
catlon 

WILHJELM et al ( 1978) have also shown that the directions of the ionospheric 
currents inferred from the mendian magnetic observations depend upon the direc
tions of the two field-aligned currents controlled by the mterplanetary By values, 
in the sense consistent with the assumption that the ionospheric currents are the 
Hall currents associated with the field-ahgned currents. 

Structured field-aligned currents were detected in the dayside cusp region by 
FREDRICKS et al. ( 1973) and LEDLEY and FARTHING ( 1974) . LEDLEY and FAR
THING ( 1974) made vector magnetic field measurements by a sounding rocket 
fbght and found structured field-aligned currents havmg a characteristic horizontal 
scale size of about 1 km. 

Field-aligned currents in the polar cap have been exammed in detail by 
SAFLEKos et al. ( 1 978) ,  who referred to the magnetometer expenment on board 
the TRIAD satellite. In contrast to the magnetic vanations associated with the 
large-scale field-aligned currents withm the auroral oval, the magnetometer data 
in the polar cap indicate variations smaller in amplitude and over smaller latitude 
ranges It was found that such small-scale magnetic disturbances occur most 
frequently m the mornmg sector between 0300 and 0900 MLT, dunng a wide 
range of geomagnetic activity as seen m the KP index. SAFLEKOS et al. ( 1978) 
also noted the occurrence frequency of the polar cap field-aligned currents, bemg 
correlated with the azimuthal direction of the interplanetary magnetic field; they 
are observed in the northern polar cap twice as often durmg periods when the 
IMF is directed away from the sun than when directed toward the sun. 

McDIARMID et al. ( 1978) have utilized the ISIS 2 magnetometer data m the 
dawn-dusk sectors of the polar cap. It was shown by them that the magmtude 
of the magnetic perturbations m the polar cap is correlated with both the Z and 
Y components of the mterplanetary magnetic field. The perturbations are larger 
on the morning than the afternoon side when B

Y 
is positive, and vice versa when 

By 1s negative. Fig. 68 shows such relationships, m which an asymmetry parame
ter is defined as the ratio of the difference to the sum of the dawn and dusk polar 
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cap perturbations ; this is reproduced from their Fig. 5. The dawn and dusk 

perturbations are measured just poleward of the plasma sheet boundary determined 

from the simultaneous particle measurements. In spite of the poor statistics 

(namely, only eight passes are available for this comparison) ,  it is clearly indi
cated that positive values of IMF By correspond to enhanced perturbations on 

the mormng side of the polar cap, while negative B11 values correspond to enhanced 
perturbations on the evening side. Such a dependence is presumably related to 

the similar dependence of polar cap electric fields observed by HEPPNER ( 1972b) 

and MOZER et al .  (197 4) , to the By dependence of low-energy electron precipi
tations observed by MENG et al. ( 1977) , and to the magnetic variations in the 

polar cap dependent on the By sign shown by FRIIS-CHRISTENSEN and WILHJELM 

(1975). 

8. Ground Magnetic Observations 

Magnetic perturbations observed on the earth's surface anse mainly from 
the ionospheric and field-aligned currents (KrsABETH and RosTOKER, 1977) , as 

well as the induced current flowing within the earth. Although it is in prmciple 

impossible to separate the effects of these different current sources only from 
magnetic measurements made on the ground, it is important to clarify the global 

and local patterns of the ground magnetic perturbations when they are compared 
with other direct observations of the electric fields, and currents in the ionosphere 

and the magnetosphere (FUKUSHIMA and KAMIDE, 1973 ) .  In this section, we sum 
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up, for several relevant topics, recent progress in studies which are pnmarily based 
on ground magnetic data. 

8.1. Potential contours for ground magnetic perturvations: Equivalent ionospheric 

current representation 

Isomtensity contour lines of magnetic potential for the ground magnetic per
turbations can be regarded as streamlines of the equivalent ionospheric currents. 
The potential distribution for the ground magnetic perturbations observed at a 
worldwide set of observatories can theoretically be obtamed by several methods. 
However, all these methods require a considerable amount of numencal calcu
lations, so that it has been obtained mostly for the mean Sq field, whose pattern 
is less complicated than that of the substorm field (SUZUKI, 1978). In spite of 
the unrealistic assumption that the currents, including the auroral electrojets, lie 
m a plane sheet of uniform intensity with infinite width and length, the method 
of the eqmvalent overhead current approximation has conventionally and most 
widely been used in producing 'hand-drawn' contour maps of the ionospheric current 
lines ( isopotenhal contours for the magnetic perturbation) and has been fairly 
successful in obtaming a gross pattern of the substorm current system (NAGATA 
and FUKUSHIMA, 1971). Note that it is sometimes extremely difficult to produce 
two-dimensional divergence-free streamlines, especially in high latitudes, owmg to 
an madequate distribution of the ground observatories. 

Following BosTROM ( 1971) who designed a comprehensive computer program 
for obtainmg isopotential contours during polar magnetic substorms on the basis 
of magnetic data from 36 high-latitude observatories, KAMIDE et al. ( 1976d) have 
developed a new method of computer mapping of the potential contours givmg us 
the opportumty to produce the equivalent ionospheric current system in any desired 
length of period with a fine time resolution. They have ascnbed the process in 
obtaining the world potential to solving the two-dimensional Poisson equation in 
which the two-dimensional divergence of the ground magnetic perturbation is repre
sented as the 'forcing' term. The obtained plot represents the extent of geomagnetic 
activity better than do geomagnetic activity indices. From the plot we can recognize 
both the global pattern and the intensity of the world magnetic perturbations. 
Since the computer method can plot the isopotential contour lines under a consistent 
assumption without any sub1ective pre1udices, we can discuss several modes of 
the eqmvalent 10nosphenc current systems which have already been proposed by 
means of hand-drawn current patterns, and examine how the pattern changes 
progressively before, dunng, and after polar substorms. KAMIDE et al. ( 197 6e) 
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have made a movie film, each frame of which expresses the isopotential contours 
obtained from all the available magnetic records. Fig. 69 shows several frames 
of the movie for November 8, 1969, together with A E  mdex variations. Although 
we must be careful in interpreting low-latitude and polar cap current lines as an 
indication of ionospheric currents (KAMIDE and MATSUSHITA, 197 8b) ,  most of 
the eastward and the westward auroral electrojets can be regarded as the real 
ionospheric currents (BREKKE et al. ,  1974; KAMIDE and BREKKE, 1 975) .  Thus, 
the equipotential contour maps are of great use in studying spatial and time changes 
of the auroral electrojets. 

8.2. Distribution of world magnetic disturbances 
Once we understand the origins of the ground magnetic perturbations in terms 

of various source currents, the ground observations have a great advantage in 
comparing with satellite observations since the magnetic field can be monitored 
at a large number of fixed points on a continuous basis. 

From the observed magnetic perturbations at various auroral zone observa
tories, the A E indices can be derived, providmg better measures of the effects of 
the auroral electrojets than any other geomagnetic activity indices. It is for this 
reason that the National Geophysical and Solar-Terrestrial Data Center of National 
Oceanic and Atmospheric Administration is undertaking a program of the compila
tion of the AE indices to provide the scientific community with a record of the 
electroJet activity (e g., ALLEN, 1972 ) .  Using the published values, some statistical 
characteristics have been discussed. 

ALLEN and KR OEHL ( 1 97 5)  noted systematic patterns in the times of most 
frequent observation of extreme H component deviations by each observatory. 
Figs. 70a and b show the frequency distribution of, respectively, hourly A L  and 
A V  contribution by each observatory over universal time ; UT times of geomagnetic 
midnight are also mdicated It is seen that on the average, AL is most often derived 
from records of observatories located about 3 1 / 4 hours past local geomagnetic 
midnight and A V  is most often derived from observatories located 6 1 /2 hours 
before midnight. ALLEN and KR OEHL ( 197 5)  also found secondary peaks near 
1 100 ML T which cannot be attributable to the ionospheric current patterns associ
ated with substorms. In view of the fact that the substorm activity is most intense 
in the midnight sector, as seen in such dramatic auroral displays as the westward 
travelmg surge and torch aurora, the above finding of the average AL peak located 
near 0300 MLT needs further clarification of whether or not it does really mean 
that the 'substorm' westward electrojet is most intense in the morning sector, not 
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near midnight. 
PERREAULT ( 1974), KAMIDE (1974) , KANE ( 1974), Su and KONRAD! ( 1974) 

and PERREAULT and AKASOFU ( 1978) have used the AE values and mid-latitude 
disturbances to correlate with several parameters of the interplanetary magnetic 
field (IMF) . KOKUBUN ( 1972) and PATEL and DESAI ( 1973) reached a con
clusion that the main phase of large magnetic storms is imtiated by the southward 
turning of the IMF. CAAN et al. ( 1977) have shown that the amplitude of auroral
zone negative excursions is given as a function of the southward interplanetary 
magnetic field flux preceding the onsets of individual substorms. MENG et al. ( 1973) 
showed that although the highest correlation between the southward IMF and the 
AE index is obtained if the IMF leads AE by on average 30-60 min, this time lag 
is divergent considerably from one to another event. MURAYAMA and HAKAMADA 
( 1975) made an extensive effort to find possible effects of solar wind parameters 
( the azimuthal component as well as the north-south component of the IMF, 
and solar wind velocity) on the enhancement of the AE indices. RussELL et al. 
( 1 97 4) found that the southward IMF had to exceed an apparent threshold level 
in order to trigger a storm main phase. BURTON et al. ( 1975a, b) showed that 
it 1s possible to predict storm activity solely from a knowledge of the velocity and 
density of the solar wind and the southward component of the IMF. Most recently, 
I YEM ORI et al. ( 1978) have applied the Wiener's 'prediction' theory to reproduce 
reasonably well geomagnetic activity indices AE and Dst , indicating that the mag
netosphere can be regarded as a 'linear' system against the solar wind as an input 
Polar cap magnetic disturbances in association with the IMF signatures have been 
reviewed by FELDSTEIN ( 197 6) and MISHIN ( 1977) . RosTOKER et al. ( 197 4) 
showed that the distribution of the equivalent current vectors during extremely 
quiet times consists essentially of the S/ type pattern . 

IIJIMA ( 1973) indicated that on a disturbed day when the global geomagnetic 
activity is high but fairly steady, the substorm current system appears as an in
tensification of the DP 2 current system. This feature can be seen in Fig. 71 
where the current distribution resembled the twin-vortex S/ current. TROSHICHEV 
et al. ( 1974) found that two basic current systems of substorm type and DP 2 
type appear alternatively on a disturbed day. GIZLER et al. ( 1976) suggested 
using polar cap magnetic variations that DP 2 disturbances are associated with 
pure ionospheric currents, while substorm current system stems from a three
dimensional current loop. 

Polar cap magnetic variations undergo a considerable modulation of the inter
planetary magnetic field even when no substorm is in progress ;  see review articles 
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Fig 72. Equzvalent cw rent vectors with arrow directions reversed to zndzcate the dzrectwn 

of cross polar cap convective fiow Part (a) pertazns to southward IMF and 
part (b) to northward IMF. Note the remarkable reversal of convecti ve fiow 
from (a) to (b) zn the dayszde cleft region (after MAEZAWA, 1976). 
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by BURCH (1974) and NISHIDA (1975). A correlation of the eastward IMF and 
of sector structure ( 'away' or 'toward') with the polar cap magnetic field has been 
studied extensively by SVALGAAD (1973), CAMBELL and MATSUSHITA (1973), 
LANGEL (1973, 1974a, b), MATSUSHITA et al. (1973), BERTHELIER and CUERIN 
(1973), BERTHELIER et al. (1974), and SvALGAAD (1975); see also a review paper 
by MATSUSHITA (1978). To explain this correlation, in addition to the S/ current 
system, circular currents around the north and south poles were suggested by 
SvALGAAD (1973). MATSUSHITA et al. (1973) have shown that the S/ current 
pattern shifts toward the afternoon ( early morning) side of the polar cap for the 
toward (away) sector structure. LANGEL (1974c, 1975) also examined the total 
magnetic field measured at the polar-orbiting satellites, OGO 2, 4 and 6, in relation 
to the interplanetary sector structure. MAEZAWA (1976) conducted a regression 
analysis of the polar cap field. Fig. 72 shows the effects of the northward and 
southward IMF conditions on the polar cap disturbances, shown as convection 
diagrams. The outstanding feature is the reversal in the direction of the convection 
flow between + B z and -B z occurring near the region of the noon polar cleft. 
A similar feature has been reported by KuzNETsov and TROSHICHEV (1977). 
FRIIS-CHRISTENSEN and WILHJELM (1975) have pointed out that there is a 
marked reduction in the polar disturbances relating to the By component of the 
IMF from summer to winter compared to the similar behavior of the B z related 
disturbances. This indicates that By and Bz have separate roles in producing the 
polar cap variations (KAWASAKI et al., 1973). 

8.3. Latitudinal profile of auroral electrojets 

Quantitative modeling of ionospheric and magnetospheric currents to estimate 
the distribution of the auroral electrojets using meridian line magnetometer data 
has been discussed by OLDENBURG (1976, 1978). See also NOPPER and HERMANCE 
( 1974) and HORNING et al. ( 1974) for a similar treatment of modeling of 
current systems. The structure of a sequence of substorms has determined and 
compared with other ground-based and satellite data of auroras and particle vari
ations (RosTOKER and KISABETH, 1973; RosTOKER and HRON, 1975; RosTOKER 
et al., 1975, 1976; KISABETH and RosTOKER, 1973, 1974; WALLIS et al., 1976; 
MCDIARMID and HARRIS, 197 6). CHEN and RosTOKER ( 197 4) have shown that 
the region of the Harang discontinuity is identifiable in the latitudinal profile of 
the D component perturbations. OLSON and RosTOKER (1975, 1977) have found 
that the maximum amplitude of Pi2 pulsations occurs in general at the center of 
the substorm auroral electro jet. HUGHES and RosTOKER ( 1977) have demon-
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Fig. 75. Locatwns of the center of westward electro1et and its half-widths and the total 
intensity (after KAM/DE and A KA SOFU, 1974) . 

strated that although effects of both ionospheric and field-aligned currents are in
volved in the ground magnetic perturbations, it is possible to find the ground-based 
signatures of the net field-aligned current flow using the latitudinal profile of the 
ground magnetic perturbations. Fig. 73 shows an example of such profiles taken 
near local magnetic dawn in which a clear level shift appears in the D component 
profile. The level shift, or step, exhibits the ground-based magnetic signature of 
the net field-aligned current flowing into the ionosphere. HUGHES and RosTOKER 
( 1977) have shown, using this technique, the diurnal variation of the net field
aligned currents. Fig. 7 4 is the histogram showing the distribution of the net field
ahgned current as a function of universal time, along with approximate magnetic 
local time. It was noted that there is a remarkable similarity between the behavior 
of the field-aligned current flow as inferred from this diagram and the diurnal 
variation of the average electric field observed at auroral zone latitudes by MozER 
and LUCHT (1974) . Most recently, WINNINGHAM et al. (1978) and ROSTOKER 
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et al. ( 197 8) have orgamzed the ISIS 2 particle data m the framework of the 
latitudmal profile of the auroral electrojets It was found that precipitatmg energetic 
electrons are embeded withm the poleward portion of the evenmg eastward electro
jet. 

KAMIDE and AKASOFU ( 1974) and AKASOFU and KAMIDE ( 1976) examined 
the total current of the auroral electroJet across the Alaska meridian as a funct10ns 
of the interplanetary magnetic field for the maximum epoch of a number of sub
storms. Fig. 7 5 shows the relationship between the total current intensity and the 
central locations of the westward electrojet; different symbols are used to designate 
different IMF conditions. It is seen that the total current, location and width of 
the substorm electro Jet are all related to the B z component of the IMF. That is, 
for a larger negative B z value, the total current and the latitudinal width are larger, 
and the center 1s located at a lower latitude, compared with the correspondmg 
quantities for a positive Bz value. It 1s expected that the spatial and temporal 
changes of the auroral electroJets must be unveiled to a significant degree by the 
IMS meridian chams of magnetic observatories, now bemg successively operatmg 
at Alaska, Canada, Scandmavia, and Siberia. 

As a contribution to the IMS, the University of Munster has mstalled a two-
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dimensional aray of 32 magnetometers in Northern Scandinavia constituting several 
meridian chains. As described in Section 4, the Max-Planck Institut flir Aeronomie 
at Lindau is operating the STARE consiting of two backscatter radars which are 
sensitive to auroral irregularities occurring within the auroral electrojets. Fig. 7 6, 
reproduced from Fig. 3 of BAUMJOHANN et al. ( 1978), shows several comparisons 
of the magnetic and radar data during a moderately disturbed period. The middle 
set of curves in this figure illustrates a comparison of the latitudinal location of the 
maximum magnetic disturbance and the maximum backscatter amplitude as a 
function of time, which are represented by the crosses and circles, respectively. 
It is indicated that the maxima of the auroral electrojet and radar backscatter 
amplitude are at virtually the same latitudes, except for the interval 1840-1945 UT 
when the electrojet appears to be located well north of the Scandinavian network. 

8.4. Substorm timing and complicated substorm development 

There is no doubt that the magnetospheric substorm has been one of the most 
intensively studied geomagnetic phenomena. As noted by VASYLIUNAS and WOLF 
(1973), AKASOFU and KAN (1973), McPHERRON (1974), and VASYLIUNAS (1976), 
there are at present several areas of controversy on some important aspects of 
substorm phenomena (HIRSHBERG and HOLZER, 1975; FEYNMAN, 1976). One 
cause of the controversy is the multiplicity of methods used to define substorm 
onset. This substorm timing is important for the establishment of cause-and-effect 
relationships among the various phenomena occurring durmg substorms (Mc
PHERRON et al., 1973b; RUSSELL and McPHERRON, 1973 ; KOKUBUN and IIJIMA, 
1975; PYTTE et al. , 1976, 1978a, b; AKASOFU, 1977). As discussed by CAAN et al. 

( 1973), inadequate intercalibration among the different techniques of onset de
termination exacerbates this controversy problem. The ground-based substorm 
signatures most frequently used include the brightening and poleward expansion of 
auroral bulge (AKASOFU, 1974), negative magnetic excursions in the auroral zone 
(KOKUBUN et al. , 1977), positive magnetic bays at mid-latitudes (CLAVER and 
McPHERRON, 1974a, b ;  CAAN et al. , 1975), and Pi2 magnetic pulsations at auroral 
latitudes (SAITO, 1974; KAMIDE et al . ,  1974) and at mid-latitudes (SAKURAI and 
SAITO, 1976; SAITO et al., 1976a, b). It seems likely that some of these signatures 
may only be associated with specific subclasses of all substorm events (KAMIDE 
and MATSUSHITA, 1978a). An important point we have to realize 1s that any 
results obtained from a particular subclass of observations may be valid only within 
the assumptions employed in choosing that data set. It is interesting to note in 
this connection that SAITO et al. (197 6b) have recently contended that the most 
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practical and best method to 1dent1fy the substorm onset 1s to use mid-latitude PI2, 
giving the identical time frame as determined by the original tool for definmg the 
onset, the auroral breakup. 

Since the first morphological description of the polar magnetic and auroral 
substorms by AKASOFU ( 1964, 1968) , the significant improvement of a denser 
network of ground observatories and the availability of satellite records have made 
it possible to detail several substorm features in a more complicated way (V OROBIEV 
and REZHENOV, 1973 ; HONES et al. ,  1973 , NISHIDA and HONES, 1974; KISABETH 
and RosTOKER, 1 974; KAWASAKI et al., 1974; JOHNSTONE et al . ,  1974; KAMIDE 
et al . ,  1975 ; NISHIDA and NAGAYAMA, 1975 ; KAMIDE and MclLWAIN, 1975 ; LUI 
et al. ,  1976 ; KAMIDE et al . ,  1977; PYTTE et al. , 1978a) . Some of complex features 
associated with substorm development have been represented by a series of discrete 
step-like development of the substorm-disturbed region (WIENS and RosTOKER, 

1975) , and multiple onsets of substorm current system (PYTTE et al. , 1976b, c) . 
It was argued that substorm activity expands westward at mtervals of 10-20 
mmutes, causing a sequence of auroral electrojet and surge mtens1ficat1ons that 
occur progressively farther and farther west. 

9 .  Concluding Remarks 

Interest m understanding the high-latitude electromagnetic phenomena has 
1ecently increased to a s1gmficant degree . This 1s primarily because of the recent 
availability of new techniques for measurmg many physical quantities in the polar 
ionosphere, as well as of a growmg realization that this region plays a prmcipal role 
in large-scale magnetospheric processes This review paper was begun for the 
purpose of synthesizmg the recent progress in studies of the electric fields and 
currents m the polar ionosphere made during the period 1973-present, and, hope
fully, of combining the various complicated findings into a consistent view Some 
agreeable mterpretahons have been found in a variety of observational evidence, 
but there are still many areas which are not satisfactorily settled in terms of basic 
physical concepts, or which hold a considerable controversy. One of the difficulties 
in deducing the possible causes that can consistently explain the observed charac
teristics hes in the fact that all the natural phenomena occurring in this region are 
controlled by many unknown conditions; we cannot repeat the same experiment 
again and again under the constant conditions. We, thus, may often fail to find 
an crucial parameter which influences the whole system of the ionosphere and 
magnetosphere. Nevertheless, it may be useful to summarize the present status of 
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what we have learned m the new findmgs and what we need to clarify in the future. 

We think that the most important points are as follows : 

9.1. Substorm current systems 

Perhaps, one of the most fruitful efforts during the last few years is an attempt 

to construct a possible configurat10n of the three-dimensional current system for 

the magnetospheric substorm by integrating the findmgs of the ground-based and 

rocket-satellite observations of the electric fields and currents in the polar iono
sphere obtained during the last several years. Vanous three-dimensional current 

systems associated with the magnetospheric substorm have been proposed in the 

past. Several theoretical studies have also been carried out on the relationship 
between the field-aligned currents and the ionospheric electric fields, and of their 
magnetic effects ( e.g., FUKUSHIMA, 1971, 1974, 1975, 1976; KAWASAKI and 

FUKUSHIMA, 1974 ; SATO, 1974, 1976) . There are two possible current configu

rations, as pointed out by BosTROM ( 1964) ,  Type I and Type II, as schematically 

illustrated in Fig. 77 .  Type I was originally proposed by BIRKELAND ( 1908 ) and 

includes an inflow of currents mto the morning half of the auroral oval and an 

outflow from the evening oval . Those field-aligned currents are connected through 

the westward electrojet. More recently, several three-dimensional current systems 

for the polar magnetic substorm have been inferred on the basis of the distribution 

Type I 

s 

TypelI 

Fig. 77. Two ; possible configuratwns of field-allgned currents as pointed out by 
BOSTROM (1964). 
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Fzg. 78. Model of field-aligned current systems C fa-1 and C fa-2, wl11ch fiow zn the 
polar cap boundary layer, and on th e low-latitude szde of the auroral belt , 
respectively (after SUGIURA, 1975) . 

of magnetic perturbation vectors on the earth's surface. As pointed out by SuGIURA 

( 1 97 5 ) ,  all of them can be classified as Type I, which further can be grouped 

into two categories ; ( 1 )  the system containmg a short-circmt of a part of the 

magnetotail current, and ( 2 )  the system with a closure through the p artial nng 

current Models proposed by AKASOFU ( 1 972)  and McPHERRON et al ( 1 973 ) 

belong to ( 1 ) ,  and those by AKASOFU and MENG ( 1 969 ) ,  MENG and AKASOFU 

( 1 969 ) ,  and BoNNEVIER et al. ( 1970 ) belong to (2 ) .  However, these models deal 

only with the westward electrojet in the dark sector The models put forward 

by KAM IDE and FUKUSHIMA ( 1972 ) and CROOKER and McPHERRON ( 1 972)  m

clude both types of current systems ( 1 )  and ( 2 ) , as well as the eastward electrojet ; 

they suggested that the westward electrojet results from the disruption of the mag

netotail current, whereas the eastward electroJet 1s connected to the partial nng 

current through field-aligned currents RosTOKER ( 1 974a) presented a model m 

which a small-scale ( in the sense of its long1tudmal extent ) field-aligned cur rent 

in the Harang discontinmty 1egion 1s emphasized 

In Type II current system, an east-west electroJet is generated between the 
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Fzg. 79. Model of the connect10n between 10nosphenc and field-allgned currents (after 
YASUHARA et al., 1975). 

feet of the field-aligned currents. ZMUDA and ARMSTRONG ( 197 4b) and PARK 

( 197 5) considered two pairs of such field-aligned currents, one in the morning 
sector and the other (with the reversed current direction) in the evening sector. 

SUGIURA ( 1975) has proposed a qualitative model of the field-aligned current 
configuration in which two current systems (C1a -1 and C1a -2) are connected to 
different regions of the magnetosphere, as shown in Fig. 78. Based on high
altitude observations of magnetic fields by OGO 5, it has been concluded that the 
polar cap boundary can be identified by a sudden transition from a dipolar to a 
more tail-like magnetic configuration, while the magnetic field in the region where 
the lower-latitude field-aligned current layer is situated is essentially meridional, 
indicating that the equatorial current closure of the latter current must be via the 
equatorial ring current. However, it was difficult to discuss how these two current 
systems interact in the ionosphere only from the observations in the magnetotail. 

A numerical calculation of the ionospheric current pattern made by Y ASUHARA 

et al. ( 1975) can be used to check which configuration (Type I or II) of the 
ionospheric closures of the field-aligned currents is consistent with the results of 
the recent field-aligned current observations. They have reached a model current 
system as schematically shown in Fig. 79. It was suggested that the real situation 
appears to be a complicated combination of the Types I and II systems and that 
the relative importance of each of the closures depends chiefly on the ionospheric 
conductivity distribution. It was also discussed that although the closure of the 
currents in the magnetosphere equatorial-plane is essentially azimuthal, the north
south connection can occur in the ionosphere depending on the Pedersen and 
Hall conductivity ratio. 
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Fig 80 Electric field configuratzon zn the magneto tall pro1ected on the c, oss
sectzon a, ea of the magnetotatl (after ROSTOKER and BOSTROM, 1976) 

On the other hand, RosTOKER and BOSTROM ( 1 976) have developed a mecha
nism m wh1ch a meridional closure of the currents in the magnetosphere 1s associ
ated w1th convective motion of plasma in the magnetotail, see also BOSTROM 

( 197 5) . It was demonstrated that the gross field-aligned currents can be driven 
by energy supplied by the braking of this convective motion of the plasma sheet 
particles as they dnft toward the flanks of the magnetosphere RosTOKER and 
BOSTROM ( 197 6) have shown the expectable configuration of the electric field in 
the cross section of the magnetotail, which 1s consistent with our current knowledge 
of the electric field in the ionosphere ( see Section 2) , and with the assumption 
that magnetic field Imes a1 e nearly equipotential . Fig 80 is reproduced from their 
Fig. 4, m which the basic character 1s seen such that away from the center of the 
tail, most of the electric field is directed normal to the neutral sheet, md1catmg 
that toward the flanks of the tail the dominant direction of convective flow 1s 
parallel to the neutral sheet and toward the boundary between the magnetotail 
and magnetosheath. It was also discussed that smce the closure cunents of the 
field-aligned current loops flow in directions opposite to the electnc field, the 
current region in the tail has the character of an electric generator. 

KAMIDE et al. ( 1976b) have reached an empirical model of the three-d1men
s1onal current system for the magnetosphenc substorm which satisfies the recent 
new observations of the electric fields and currents in the ionosphere. In Fig 8 1, 
we show a schematic illustration of their model, in which the shaded area represents 
the region of the westward electrojet, that is the dominant feature of the polar 
substorm. From nearly simultaneous observations of the field-ahgned currents, 
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Fig. 81. (a) Model current system for the magnetosphenc substorm. The dotted area 
represents the reg10n of the westward electro1et and (b) schematic illustrat10n of 
the three-dimensional current model for the magnetospheric substorm (after 
KAM IDE et al. , 1976b ) 

the auroral electrojets, and the auroral distribution, KAMIDE and RosTOKER ( 1977) 
have added the association of this current system with various types of auroras. 
According to their current configuration, the westward electrojet flows approxi
mately along the active westward traveling surge in the evening sector, as well 
as along the entire diffuse aurora in the morning sector. The latitudinal width 
of the westward electrojet is much larger in the morning sector than that in the 
evening sector. The eastward electrojet flows equatorward of the westward electro
jet m the evening sector, namely along the diffuse aurora. There is no significant 
ionospheric return current from the electrojets in the polar cap (HEPPNER et al., 
1 971) and in mid-latitudes. Thus, the electrojet currents must mostly be supplied 
by the field-aligned currents. 

The westward electrojet in Fig 8 1  is fed by the field-aligned currents in the 
way suggested by BIRKELAND in 1908 (shown by thick Imes) , but a significant 
part of the downward field-aligned current (represented by a) in the morning 
sector flows southwestward, and then flows out of the ionosphere as the upward 
currents ( a' and b') . This is in agreement with the observations made by the 
Chatanika radar and the TRIAD satellite. In particular, the radar measurements 
suggest that the westward electrojet has a large southward deflection in the morning 
sector. 

It can be seen that the current pattern is much more complicated in the 
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evenmg sector than in the mormng sector. There are downward field-aligned 
currents ( c' and d') in the area of the eastward electrojet. The intense upward 
currents ( c and d) are connected with the westward electro jet and also with the 
northward 10nosphenc current, which is eventually connected to the mward field
ahgned currents through the eastward electrojet. Thus, the total intensity of the 
upward field-aligned currents is much more mtense than that of the inward currents, 
as observed by the TRIAD satellite (Y ASUHARA et al , 197 5;  IIJIMA and PoTEMRA, 
197 6a) . This current configuration is also in good agreement with the radar ob
servat10ns which show that the northward 10nospheric current prevails in the 
evenmg sector, regardless of the sign of the east-west ionospheric current Some 
previous models suggested the existence of an upward field-aligned current at the 
eastern end of the eastward electrojet (KAMIDE and FUKUSHIMA, 1 972; CROOKER 
and McPHERRON, 1972) , whereas in the present model the downward current is 
associated with the eastward electrojet throughout evenmg hours. This conclusion 
is based on the new results from a detailed comparison of the TRIAD data with 
the correspondmg ground magnetic records. It is seen that the eastward electrojet 
flows northeastward as it approaches the midmght sector and eventually is con
nected to the westward electrojet The general current pattern is also consistent 
with the current configuration reached by HUGHES and RosTOKER ( 1977) . 

9.2. Collocation of m.nrora and current bmmcfaries 
Recent studies of the auroral oval and the current configuration contamed 

within its bounds have yielded the followmg information 
1 ) The convection eastward electroJet is confined withm the diffuse auroral 

oval m the evening sector (WALLIS et al. , 1976) . The equatorward portion of 
the eastward portion of the eastward electrojet is penetrated by downward field
aligned current, while the poleward edge of the eastward electrojet region is 
associated with upward current flow (ARMSTRONG et al. , 197 5) . The region 
poleward of the eastward electrojet is the site of upward field-aligned current 
flow, discrete auroral arcs, and westward ionospheric current flow (KAMIDE and 
AKASOFU, 1 976b) . 

2) The convection westward electrojet is penetrated by downward flowmg 
field-aligned currents in the poleward portion and upward flowing field-aligned 
currents in the equatorward portion (KAMIDE et al , 1976a ; 1IJIMA and PoTEMRA, 
1 978) . 

3) In substorm-disturbed regions in the evening sector the westward electro
iet penetrates toward dusk along the poleward edge of the eastward (steady state) 
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electrojet. Field-aligned currents are downward at the poleward edge of the west

ward electroJet and in the equatorward portion of the eastward electrojet, and are 

upward between these two regions (RosTOKER et al. ,  1975).  

KAMIDE and RosTOKER ( 1977) have indicated that the auroral electrojets 

are more tightly confined to the region of auroral luminosity than was indicated 

by WALLIS (197 6 ) ,  who noted significant auroral luminosity outside of the pre

dicted boundaries of the auroral electrojet. Albedo corrections of the ISIS 2 

photometer data have now made the auroral and electrojet boundaries more coin

cident (see notes added in proof to the work of WALLIS et al., 1976) . In addition, 

it is likely that the auroral luminosity would have to rise above some threshold 
before adequate conductivity to support a significant electrojet current could be 

achieved. The ISIS 2 photometer is capable of sensing luminosity about 0.5-1 kR 

(see BERKEY and KAMIDE, 1976) , while the threshold for DMSP is 2-3 kR. It 

is reasonable to expect that while luminosities below 1 kR are indicative of the 

presence of auroras, they do not imply the existence of significant ionospheric 

electrojet current (KAMIDE et al., 1978 ).  

9.3. Carriers of field-aligned currents 

KAMIDE and RosTOKER (1977) have indicated that significant downward 

current flow may occur in regions of low auroral luminosity, whereas upward 
current flow appears to be related to intense auroral features such as discrete 

arcs. These features are particularly noticeable for the morning sector westward 

electrojet in the course of a substorm. On the basis of these observations it is 
suggested that downward flowing field-aligned current is carried by ionospheric 

electrons moving upward into the magnetosphere, while upward flowing current is 

carried by the precipitating ke V electrons responsible for E region auroral lumi

nosity. The suggestion that downward field-aligned current is carried by upward 
moving low-energy (thermal ) ionospheric electrons is in agreement with the re
sults of ARNOLDY and CHOY ( 1973 ) ,  who observed, by a series of rocket detectors, 

the upward streaming of electrons of energy less than a few hundred e V poleward 

of a main auroral luminosity. KLUMPAR et al. (1976)  also observed low-energy 
electrons having pitch angles near 180 ° and with sufficient flux to account for the 
field-aligned current density measured simultaneously by the ISIS 2 magnetometer. 

In evaluating the ability of energetic electrons to carry enough current to 
account for the observed level of magnetic perturbation we note that KLUMPAR 
et al. (1976)  indicated on the basis of simultaneous magnetic signatures of the 
field-aligned currents and electron measurement (5 eV to 15 keV) that the pre-
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c1pitation of kilovolt electrons can account for the magnitude of the upward field
ahgned current in the equatorward half of the morning auroral belt. This suggestion 
also agrees with those of EVANS et al. ( 1977) and CARLSON and KELLEY ( 1 977) 
in that the precipitating ke V electrons constitute the upward field-aligned current 
w1thm bnght auroral arcs. However, there are two pomts we have to note here. 
First, SuGIURA and POTEMRA ( 1976) claimed that the electron flux given by 
McDIARMID et al. ( 197 5) on the basis of the results from energetic particle de
tector experiment on the ISIS 2 satellite 1s msufficient to carry the field-aligned 
current densities estimated from the TRIAD magnetometer observations However, 
it seems that owmg to the averaging processes m denving the isointens1ty 
contours in magnetic 'latitude-local time' coordmates, the electron flux given by 
Mc DIARMID et al. ( 197 5) might be somewhat smaller than the actual electron 
flux that can often be found in a narrow region in association with structured 
bright auroras. Second, most of the rocket observations of the field-aligned current 
have mdicated that in the vicinity of individual auroral arcs the prec1pitatmg 
electrons with energies between approximately 500 eV and 20 keV can carry a 
sigmficant fraction of the upward field-aligned current ( see review papers by 
ARNOLDY, 1 974 and ANDERSON and VONDRAK, 1975) . However, some rocket 
data (e  g ,  PAZICH and ANDERSON, 1975; SPIGER and ANDERSON, 1975) showed 
that although a total upward current comcides with the m::un arc, the measured 
precipitatmg electrons (0.5-20 keV) carry only a small fract10n ( <15% ) of the 
upward current necessary to produce the simultaneously observed magnetic signa
tures We believe that this apparent discrepancy may be accounted for by takmg 
in�o account the difference either in altitude ( i  e . ,  100-200 km for the rocket 
measurements) or in spatial resolution ( i.e , less than 5 km for rocket observations) 
or both 

The diffuse aurora in evemng hours delmeating the equatorward half of the 
auroral oval is the persistent feature. Compared with the structured discrete aurora 
in the poleward half of the auroral oval, the diffuse aurora IS less structured and 
relatively stable It has been found that the downward field-ahgned current 1s 
co1located with the diffuse aurora. This correspondence is not unexpected, com
birnng all independent past observat10ns that the downward field-aligned current 
flows in the latitudinal regime withm the eastward electrojet (KAMIDE and AKASOFU, 
1976b) , that the diffuse radar aurora is associated with the eastward electroJet 
and IS confined in the region of the downward field-aligned current (TSUNODA et al. ,  

1976a, c) , and that the upward field-aligned current is located in the discrete 
aurora region (ARMSTRONG et al., 1975, KAMIDE and AKASOFU, 1 976a) . 
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Since it is difficult to identify the boundaries of the diffuse aurora in all-sky 

camera records, a direct comparison of the diffuse aurora and the downward field

aligned current has long been desired. However, it is important to note that 

discrete auroral arcs may be immersed in the diffuse aurora and in the region 
of the northward electric field, particularly in the poleward portion of the diffuse 

auroral oval (WALLIS et al. ,  1976; DE LA BEAUJARDIERE et al. ,  1977) . On the 

basis of the results of ARMSTRONG et al. (1975) we would contend that in the 

evening sector, discrete arcs often carry the upward current flow in the poleward 
portion of the eastward electrojet and in the region poleward of the eastward 

electrojet where substorm-associated currents are known to flow. 

Insofar as the current carriers for diffuse auroral region in the evening sector 

are concerned, a plausible candidate both for carrying the downward field-aligrted 

current and for the production of the diffuse aurora might be precipitating positive 

ions . However, there is evidence that although both precipitating electrons and 

protons are observed in the diffuse aurora region, the 5 e V to 15 ke V protons 

carry only 0.1-0.01 of the field-aligned current carried by the electrons over the 
same energy range (WINNINGHAM et al. , 1975; LUI et al. , 1977). Thus the pre

cipitating protons are not suitable for the downward current, and this leads us to 

speculate that upward flowing thermal electrons are the most likely current carriers. 

KLUMPAR (1976) suggested that isotropic keV electrons originating in the plasma 
sheet give rise to the diffuse aurora. MENG (1976) has shown that the energy 
spectrum of the diffuse aurora during quiet periods is characterized by nearly 
constant differential fluxes from 0.2 to about 8 ke V with a sharp cutoff above 

8 ke V and that the energy flux is about 0.1 erg/ cm2 • s ,  sr . The characteristics 
observed by KAMIDE and RosTOKER (1977) are essentially the same as MENG's 

(1976) observation, except that energy density during substorms increases by a 
factor of 5 or more. 

9.4. Current flow associated with different auroral forms 
One obvious uncertainty in the studies of high-latitude current pattern 1s 

the relationship between the smaller-scale current systems observed by the rockets 
near individual auroral forms and the larger-scale current systems detected by 
polar-orbiting satellites . As suggested by ANDERSON and VONDRAK (1975), it is 
necessary to design either rockets or longer-range satellites which can scan the 
entire auroral belt with high data rates supported by optical observations of auroral 
fine structures . 

At present, our knowledge concerning the relat10nship between current flow 
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and different auroral forms may be summarized as follows : In the evening sector 
the westward traveling surge is one of the typical substorm features (MENG et al . ,  

1978), in  which the intense upward field-aligned current i s  present which is 
carried by precipitating keV electrons. The westward extremity of the main body 
of the surge often has bright discrete arcs emanating attached to it which occupy 
the region to the west. Each of these arcs is the site of intense upward current 
flow, and occasionally there will be downward current flow adjacent to the discrete 
arcs where the current 1s carried by upward flowmg thermal electrons of iono
spheric origin. Particular emphasis should be placed on the downward field
aligned current just outside the poleward edge of the discrete aurora (KAMIDE 

and RosTOKER, 1977). The latitudmal width of the downward current region 
ranges from O 1 ° to 1 ° .  Smee the current is associated with no precipitating 
electron flux, the most plausible candidate for the current carrier is upward moving 
ionosphenc electrons. A net streammg out of the ionosphere poleward of auroral 
forms was mdeed observed by rocket detectors (CHOY et al . ,  1971; ARNOLDY 

and CHOY, 1 973). In the morning sector, the upward current in the equatorward 
half of the field-aligned current belt is collocated with bright auroras. It is con
tended that although there is no direct particle observation in this region, precipi
tating electrons are responsible for both the upward current and visible auroras, 
just the same as in the region of the intense upward field-aligned current in the 
evening sector. On the other hand, however, the aurora luminosity has no cor
relation with the intensity of the downward field-aligned current, a result suggesting 
that the current is again carried by ionospheric thermal electrons. 

9.5. FuJimre problems 
The review presented here may suggest that recent observations by means 

of several new techniques made it possible to begin to unfold many complex 
phenomena occurring in the polar ionosphere and to unveil now the cause 
of the ionospheric and magnetospheric processes. However, we are still far from 
providing successful answers to many problems of dynamical processes and there 
even emerge some essential questions in the recent new findings. We list some 
of these questions : 

1) What are the sources of the ionospheric electric fields during both quiet 
and disturbed times? Recent reliable measurements by means of several different 
techniques have revealed the existence of the characteristic diurnal variations of 
the auroral zone electric field. It is directed northward and southward in the 
evening and morning sectors, respectively. The predominance of the westward 
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field in between has also been detected near the midnight sector. These features 
are consistent with the two-cell convection pattern. However, there is no agree
ment in various data sets as to the significance and nature of the small-scale electric 
fields, in particular, in the east-west component associated with complicated auroral 
forms. For a fruitful determination of the electric field behavior in understanding 
the sources of the spatial and temporal structure of the electric fields in auroral 
latitudes, it may be necessary to make a comparison of the electric field with other 
ionospheric quantities, such as the electron density, field-aligned currents, and 
ionospheric conductivities, as well as the magnetic field and auroral distribution. 
Some results of the study along this direction have been reported by DE LA 

B EAUJARDIERE et al. (1977). 
2) What are the roles of magnetospheric convection and field-aligned cur

rents in the course of a magnetospheric substorm? If one assumes that auroral
zone magnetic field lines are electrical equipotential, one can use the observed 
electric field topology to study the large-scale convective motion in the magneto
sphere. There is no doubt that various ionospheric and magnetospheric phenomena 
depend upon how the magnetospheric plasma convection varies during magneto
spheric substorms. In the midnight sector, the westward electric field drives the 
magnetotail plasma inward toward the earth; this motion in the ring current and 
plasma sheet regions appears to be closely related to a drastic change of the 
magnetospheric configuration observed during substorms. Thus, by examining the 
electric field variations throughout a substorm, it may be possible to deduce the 
roles of the convection that is the major process in the magnetosphere. The field
aligned currents that connect the ionospheric and magnetospheric currents play 
also a dominant role. It may be needed to combine recent observations of the 
distribution and substorm changes of the large-scale electric field configuration, 
field-aligned currents and ionospheric conductivities in order to interpret observed 
complicated processes and expectable phenomena in terms of theoretical con
sequences of particle distribution resulting from the electric potential distribution 
in the magnetosphere. It is interesting to note that RICHMOND (1976) has recently 
suggested that the electric field source at middle and low latitudes on quiet days 
is primarily of ionospheric dynamo origin. 

3) Where do auroral particles originate and what processes accelerate these 
particles? Although there seems a general agreement on the energy distribution 
of precipitating auroral particles for the discrete aurora in that plasma sheet 
electrons are accelerated along the auroral zone field lines, it is unclear in which 
part of the plasma sheet (near inner edge, central part, or high-latitude boundary?) 
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these particles origmate and what acceleration mechamsm is effective to produce 
the abrupt increase in population of the auroral particles at the onset of a substorm. 
It is also important to examme how the magnetic energy is converted to the 
substorm energy dissipated m the polar ionosphere It remains to be answered 
how the tail current disruption occurs, that results in a large induced electnc field 
(KAN and AKASOFU, 1978). 

4) What is the auroral oval? The 'classical' auroral oval ( or belt), which 
is defined as the locus of high frequency of visible auroral appearance (FELDSTEIN, 
1 966), has been used extensively to order geophysical data. EATHER ( 1 973) 
has pointed out several pitfalls in this usage in that the most relevant 'coordinate' 
is the mstantaneous region of both visual and subvisual auroral em1ss1ons . Most 
recently, HOLZWORTH and MENG ( 1 975), and MENG et al. ( 1977) have shown 
that the mstantaneous auroral d1stribut1on during quiet periods 1s more similar in 
shape to a 'auroral circle' rather than 1s expected from the term 'auroral oval' . 
The dynamical response of the 'instantaneous' auroral oval defined by the global 
auroral and electron distribution to the interplanetary magnetic field and substorm 
activity has been 'statistically' examined by LUI et al ( 1975), HOLZWORTH and 
MENG ( 1975), and KAMIDE and WINNINGHAM ( 1 977). One must make a senous 
effort to examine the physical meaning of the auroral oval, and the relationship 
of the auroral oval with the iniection boundary in the magnetotail (MclLWAIN, 
1 974) 

5) What is the Harang discontinmty? There is confusion as to the spatial 
structure of the Harang discontinuity (KAMIDE, 1 978). Although MAYNARD 
( 1 97 4b) has mdicated from a study of satellite electric field data that the Harang 
discontmmty has a fimte thickness, 1t is important to determine how fine structure 
within the Harang discontinuity 'region' relates the ionospheric processes in con
Jtmction with the growth of a substorm (J. FosTER, 1978, personal communication). 
At present even the charactenstic features of particle precipitation, optical auroras 
and field-aligned currents are unclear 

6) How are field-aligned currents related to the auroral distribution during 
extremely quiet times? As descnbed m the previous sections, recent works have 
revealed the existence of two belts expressing latitudmally separated features of 
auroras and field-aligned currents The two regions of auroras ( diffuse and dis
crete) coincide generally with the two regions of the field-aligned currents ( upward 
and downward) m the dark sector. However, there arises apparently one puzzling 
problem when quiet-time features are considered Auroral observations have shown 
that the diffuse auroral precipitation on the equatorward side of the nightime 



No. 63. 1979) Review of Electric Fields and Currents in the Ionosphere 195 

(21-03 MLT) auroral oval is a persistent feature (WINNINGHAM et al. , 1975) ,  
although the precipitation belt tends to shift poleward (up to 70° invanant latitude) 
during very quiet times (KAMIDE and WINNINGHAM, 1977) . On the other hand, 
only the poleward portion of the field-aligned current ( downward and upward in 
the morning and evening sectors, respectively ) remains during extremely quiet 
periods as shown by lIJIMA and POTEMRA (1976a) ,  who have then suggested that 
the S/ current should be supplied by that field-aligned current system. 

A remark is given here on the use of ground magnetic records in inferring 
the source currents. A number of 'equivalent' ionospheric current systems have 
hitherto been put forward to explain the particular types of magnetic perturbations 
observed on the earth's surface. The question arises then whether these proposed 
equivalent current patterns represent a real flow of the ionospheric currents or 
they are just a convenient expression of ground magnetic field potential caused 
by other currents, such as field-aligned and ring currents in more distant magneto
sphere (FUKUSHIMA and KAMIDE, 1973a, b) . The Chatanika radar observations 
of the ionospheric electric fields and conductivities have made it possible to con
clude that the H component magnetic perturbations in the auroral latitudes are 
produced primanly by the ionospheric east-west current (BREKKE et al. , 1974; 
KAMIDE and BREKKE, 1975) .  However, there are two opposite suggestions con
cerning the origin of the D component perturbations : KISABETH and RosTOKER 
( 1973) have indicated that the positive D changes near the westward traveling 
surge are caused by the southward ionospheric current, whereas KAMIDE et al. 

(1976a) have suggested that these changes are ascnbable mamly to an upward 
field-aligned current flowing mto the bright auroral area. As to the ground magnetic 
disturbances in the polar cap, HEPPNER et al. (1971) concluded that the com
parison between vectors of observed electric fields and the ground magnetic pertur
bations argues against attributing the polar cap magnetic disturbances to the 
ionospheric currents for any combinations of the assumed Pedersen and Hall con
ductiv1t1es. Based on the barium release experiments, MIKKELSON et al. (1975) 
have reached the similar conclusion. 

Recently, however, PRIMDAHL and SPANGSLEV (1977) have shown the results 
of rockets measurements of electric and magnetic fields in the sunlit part of the 
polar cap in which it was suggested that the ionospheric Hall current strength 
and the ground-based magnetic perturbations fitted well together. To resolve this 
apparent paradox, it is important to examine both experimentally and theoretically 
what conditions are required to reproduce the observed characteristics of the polar 
cap magnetic disturbances, and, at the same time, great caution must be employed 
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in interpretmg the polar cap magnetic disturbances as an mdication of changes 
in the dawn-dusk electnc field without paymg much attention to the possible 
magnetic effects of the field-aligned currents. It Is also urgently needed to make 
an effort to combine the observed non-umform distnbutions of the electnc field 
(HEPPNER, 1973) ,  low-energy electron precip1tat10n (MENG et al. , 1977) , mag
netic field disturbances (SVALGAARD, 1973 ; FRIIS-CHRISTENSEN and WILHJ ELM, 
197 5) , and the recent theoretical calculat10ns includmg day-mght conductivity 
gradients (ATKINSON and HUTCHISON, 1978 ; KAMIDE and MATSUSHITA, 1978b) . 
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