南極ロケットによるオーロラ帯降下電子の観測

奥谷晶子* · 和田雅美* · 竹内 一* · 小玉正弘* · 今井 喬*

Observations of Auroral-Zone Precipitating Electrons by the Antarctic Rockets

Shoko OKUTANI*, Masami WADA[‡], Hajime TAKEUCHI[‡], Masahiro KodaMa^{*} and Takashi IMAI^{*}

Abstract: During one year from January 1976, five sounding rockets carrying the electron detector were launched from Syowa Station, Antarctica. One of them was made on a geomagnetically quiet time, while the others all encountered a certain degree of auroral disturbance. The rocket-borne detector consists of both proportional and plastic scintillation counters and can measure high energy electrons greater than 40 keV. Preliminary results thereby obtained are presented, giving an account of characteristics of vertical profile and pitch angle distribution of energetic electrons during auroral disturbances, compared with those for the quiet time.

要旨. 1976年1月からの1年間に、オーロラ電子検出器搭載の 観測ロケット 5 台が、昭和基地から打ち上けられた うち1台は静穏日に、残り4台はオーロ ラ活動時に行われた. 電子検出器は、比例計数管とプラスチックシンチレーショ ン計数管である. 測定の下限エネルキーは 40 keV である. ここでは、オーロラ 出現時における高速電子の高度分布、ピッチ角分布について速報する. そしてす でに報告した静穏時における特性と比較する.

1. はじめに

オーロラに伴う降下電子の物理的諸性質を詳しく調べることは、その加速機構や加速領 域、ひいてはオーロラのメカニズムを探る上で、不可欠な研究手段の一つである。特に、 最近は人工衛星による観測技術の進展に伴って、数 eV から数 keV の低エネルギー電子 に関する情報が集積されつつある(たとえば、Lui et al., 1977). これらに対し、10 keV 以上の高エネルギー電子は、磁気圏後部磁気中性点あたりでの粒子加速に密接な関係を持 つと考えられるので、低エネルギー部分と同様に、その観測は重要である。特にその絶対

^{*} 理化学研究所宇宙線研究室. The Institute of Physical and Chemical Research, 7-13, Kaga-1 chome, Itabashi-ku, Tokyo 173

表1 高エネルキー電子観測ロケット

Table 1. List of sounding rockets for measurement of energetic electrons.

観測隊	ロケット号機	打ち上	げ日	発射時刻 (45°EMT)	到達高度	同時搭載計器
17次	S-210JA-20	June 25	, 197 6	0240	118 km	PWL, PWH, NEL.TEL, GA
	S-210JA-21	July 26	, 197 6	0323	116	PWL, PWH, NEL.TEL, GA
	S-210JA-22	Jan 26	, 197 6	0220	119	NNP-NO, NEL.TEL, GA
	S-210JA-23	Sep. 13	, 1976	0731	120	NNP-NO, NEL.TEL, GA
18次	S-310JA-2	Feb. 10	,1977	0322	212	PWL, PFX, PWH, NEL.TEL, ESL, GA
	S-310JA-3	July 26	, 1977	1835	222	PWL, PWN, NEL TEL, MGF, MS

ESL: 低エネルキー電子, GA[·] 地磁気姿勢計, MGF. 磁場, MS. 月センサー, NEL TEL[·] 電子密度. 温度, NNP-NO 一酸化窒素, PFX[·] VLF ポインティンクフラックス, PWH. HF帯プラズマ波, PWL VLF スペクトル, PWN: 電子プラズマ波, イオン音波

強度,エネルギースペクトル,ピッチ角分布ならびにそれらの時間的変動は,オーロラの ダイナミックスと直結する物理量である.

昭和基地では、1976年1月からロケットによる高速電子の観測が行われ、現在までに表 1 に示すような打ち上げを終了している.最初に行われた22号機(第17次)は、オーロラ の出現しない静穏時に相当するので、>40 keV電子の定常状態における諸性質が明らか になった(KODAMA et al., 1978).すなわち、ピッチ角分布は高度と共に鋭くなり、電子 の大部分は磁力線に直角に捲きついていること、エネルギースペクトルはピッチ角に依存 し、角度が小さいほどソフトになること、100 keVあたりから急激に下方に折れ曲ること 等である.これらの結果から、ピッチ角やエネルギー分解能をさらに向上させた観測が必 要であると判断され、第19次のロケット(S-310 JA-6)に生かされた.第18次では、非荷 電粒子と電子との分離を正確にするため、同一規格の検出器を2組用意し、一方を永久磁 石を使って低エネルギー荷電粒子を除去した.

本報告では、オーロラ出現中に打ち上げられた S-210 JA-20, 21, 23 号機と、S-310 JA-2 号機による観測結果の概要について速報するが、主として 20, 21 号機によるピッチ角 分布とオーロラの2つのタイプーdiffuse 型と discrete 型との関係について述べる.

2. 測定装置

電子検出器としては比例計数管 (PC·Proportional Counter) とプラスチックシンチレ ーション計数管 (SC: Scintillation Counter) の2種類が用意された.前者は大きさ $6\phi \times$ 16.5 mm で2気圧の PR ガスが封入された.電子入射口として, 1.5 mg/cm² 厚のマイ カ窓1個が, 開口角 ±20°のコリメータ付で設けてある. その幾何学的断面積は 0.028 cm² str である. 後者は 1.7 mg/cm² のアルミ箔で遮蔽された 円板型プラスチックシンチ レータで, 4 個の入射窓の全幾何学的断面積は, 0.019×4=0.076 cm² str である. 両検出

測定器	比例計数管			プラスチックシンチレーション計数管			
*** n	PC-L	РС-Н	PC-BG	SC-L	SC-H	SC-BG	データ チャネ
エイル ギー*	keV 40-60	keV 60-110	keV >110	keV 60-80	keV 80-170	keV >170	ル数
S-210JA-20	90	0	$\left \right>$		90°		5
S-210JA-21	90	0	$\mathbf{\mathbf{X}}$		5		
S-210IA-22	45°		$\mathbf{>}$				7
5-210371-22	90°		$\left \right>$	90°			
S-210IA-23	45°		$\left \right>$				7
	90°		\mid	90°			
S-310IA-2	65°			11			
	65° M		\boxtimes	65° M			**
S-310JA-3	65°				11		
	65° M		\geq	65° M			

表 2 電子検出器の測定エネルキー範囲と各号機別取付角度 *Table 2. Specifications of rocket-borne electron detectors.*

* 検出器のディスクリレベル設定値 M: 永久磁石つき

S-210JA-20,21

S-210JA-22,23

S-310JA-2,3

図1 ロケット搭載用高速電子検出器の配置(上から見た図). H は GA センサー方位 Fig. 1. Bird's view diagram of arrangement of rocket-borne electron detectors.

器の測定エネルキー範囲および各号機毎の配置仕様は,表2と図1に示される.1機当た り2個ないし4個の検出器が搭載されたが,図1に見るように,310号機以外はお互いに 直角に取付けられた.搭載場所は210号機ではノーズコーン内,310号機では胴体内部で ある 各4チャネルのデータ伝送は次のように行われた SC-BG と PC-BG は、宇宙線 によるバ,クグラウンドなのて,計数量はあまり多くないことと,短周期変動も少ないと 予測されたので,1フレーム(約1秒)の間の積算値を出した.また,実験中のモニター の必要性から,一番変動が大きいと思われる低エネルキー電子のテータを,1パルスが1 ステップの電圧波形となるように変換し出力した 210号機の場合,それ以外の4ないし 6チャネルからのデータが,50 ms 毎に集積され、その4けた表示の各数字がアナロク量 に変換された後,次の50 msの間に順次送り出された したがって,ロケットのスピン 周期が2rpsなら,各データは約36°の角度分解能を持つ 実際には解析方法の工夫に より約5°の分解能を得た(和田他,1979)310号機の場合も同様に,50 ms毎に送り出 された ただし、テレメータが2波利用できたので、4チャネルと6チャネルがそれぞれ に割り当てられた.なお、スピン周期は約1rpsなのて、210号機に比べ角度分解能は2 倍向上した.

3. 観測結果

まず,各号機の打ち上げ時におけるオーロラ活動度の概要を知るため,SC による 60-80 keV チャネル (SC-L) の5 秒計数値の高度変化を図2 に示した 静穏時の 22 号機に比 べ,他はいずれも 100 km 以上の高度で,1 けたないし2 けた多い強度を示している し かし,100 km 以下の高度て逆に 22 号機の方が多いのは,SC 検出器が電子の他に,カン マ線に対して若干の感度を持つため,その寄与があるのではないかと考えられるが,結論 はまだ得られていない.低高度で 310 号機の計数が 210 号機より多いのは,検出器用の窓 が最初から開いている事によるバ,ククラウンドの寄与てある.

3.1. タイムプロファイル

受信記録用磁気テープのデータを A/D 変換した後,50 ms 毎の計数値の全生データを そのまま時間に対しプロ,トした S-210 JA-20 号機の一部の例が図3 に示される この 一連の操作は、すべて計算機処理によった(和田他、1979). この図からは、スピン周期 変化の存在がはっきり分かるだけでなく、その波形や振幅の変動までも明らかに識別でき

32

Fig. 2. Altitude variations of 60-80 keV electron fluxes from several rocket flights

Fig 3 Intensity-time profiles of auroral electrons at S-210JA-20^{*}rocket flight.

る.特定のパターンがある期間継続する事から,それが統計的なふらつきではなく,十分 物理的な意味を持った変化であるといえる.これについては後述する.

3.2. 高度変化

34

図4a, b に S-210 JA-20, 21号機による高度変化を示した. それぞれ PC-L と PC-H の2 チャネルからの1 秒値が,時間と高度に対してプロットしてある. 20 号機では全体に 大きな変動を伴いながら最高高度に達する前に,最大強度となるのに対し,21 号機の変動 率は比較的小さく,最高高度通過後のロケット下降時に最大となっている. バックグラウ ンドに対するピーク値の比率は,それぞれ約 500 倍と 200 倍である. 磁力線に対するロケ ットの姿勢の電子計数率に対する影響は,スピン周期が1 秒以下なので,ピッチ角分布が 平均化され,図4a,bの1 秒値プロットの高度変化には現れてこない. ただし,数秒から 数 10 秒単位の準周期的変動には(特に 20 号機で顕著),ピッチ角分布が関係していること が後で示される. 310 号機の1 例は図4c に示される. 到達高度が 100 km 以上で高いこ とと,スピン周期が長く,約 1 rps であることが 210 号機と異なる. また,数 100 keV 以下の低エネルギー電子を排除して,比較用データを得る目的で,別の1 組の検出器には 1200 ガウスの永久磁石が付加された. 図4c には SC-L チャネルだけだが,磁石有無の 結果が示される. 全体に見られる 10 秒前後の周期変化は,スピン周期が正確に 1秒でない

図 4 電子強度1秒計数値の時間と高度による変化 Fig. 4. 1-s counts of electrons as a function of time and altitude.

36 奥谷晶子・和田雅美・竹内 一・小玉正弘・今井 喬 〔南極資料 ために現れた疑似的なもので特に意味はない.

3.3. ピッチ角分布

入射電子のピッチ角は、検出器の取付角度、ロケットのプレセッション角度とスピン周 期が与えられれば一義的に決まる. 50 ms 時間単位毎に計算されたピッチ角とそれに対す る計数値をプロットすればピッチ角分布が得られる 図5a, b にその1例を示した. た だし、ここでは、図3に基づき、全体を2つの型、すなわち precipitated 型と trapped 型とに分類した 1スピン毎に2個の山が現れるが、その波形が sin カーブに 近いもの (たとえば、+124 s ~ +130 s) を前者に、波形に高周波成分の含まれるもの(たとえば、 +132 s ~ +135 s) を後者とした. ピッチ角 90° 近くにピークを示した 22 号機の分布に比 べると、じょう乱時の 20、21 号機は共により小さい ピッチ角の方にずれており、特に、 precipitated 型て顕著である このことは、じょう乱時には 磁力線に沿った粒子成分が増 えることを意味する 上記2 個の型は、ある期間継続した後、かなり突然に他の型に移行

Fig 5 Pitch angle distributions of auroral electrons

- 図 6 オーロラ電子の計数変化と2つのピッチ角分布型との関係,下のカーブ はプレセッションの変化
- Fig. 6. Time variation of auroral electron fluxes and two types of pitch angle distributions.

する場合が多い.しかもその交代はフラックスの増減と関係がある.その様子を図6a,b に示した.20号機の例ては,precipitated型でフラックス増大,trapped型て減少となる 傾向にある.ピッチ角の小さい成分が増えることは,磁気圏からの新たな粒子の流入と考 えられるので,その時フラックス増大となるのはもっともらしい.しかし,21号機の例で はこの関係はそれほど明瞭でない これはオーロラの型と関連がありそうである.全天カ メラ写真によると,20号機では多数のオーロラアークの存在する discrete型,21号機で は diffuse型てあったと判断される (DEEHR et al, 1976).したがって前者では,ロケッ

- 図7 オーロラ電子の異なる2チャネル間の計数比とピッチ角分布型との関係, 数字はエネルギースペクトルのベキ指数
- Fig. 7 Count ratio of auroral electrons between two different energy channels and two types of pitch angle distributions.

- 図8 電子強度のタイムプロファイル, S-310JA-2 号機の例, 異なるプレセッション角度. (A)~50°, (B)~30°, (C)~10° に対するスピン周期変化の差に注意
- Fig 8. Intensity-time profiles of auroral electrons at S-310JA-2 rocket flight. Precession angles of rocket are roughly 50°, 30°, and 10° for (A), (B), and (C), respectively.

トが細いアークまたはその近くを逐次横切って行き,それに応じて precipitated と trapped の2個の型が交互に現れたと解釈される.その際,新しく流入した電子は低エネルギ ー部分が多いことが,異なるエネルギーチャネル同志の比(SC-L/SC-H)から分かる. 図7aは20号機の例で,ピッチ角分布が,precipitated型の場合にこの比が大きくなる. エネルギースペクトルにベキ関数を仮定して求めた指数が図に示してあるが,trapped型 の平均値57に対し,precipitated型では 6.6~8.0の範囲にある.図7bの21号機では, 対応するようなスペクトル変化は見られない.310号機の場合については,図4c に見る ように,全体の強度変動はプレセッション角の変化とかなり良い相関にある.特に磁場に よるカットオフエネルギー(数 100 keV)以上の粒子にも,それが見られることに注意し たい.プレセッション角の大小は、検出器の探査視野範囲の広さに対応する.図8の生記 録によると、プレセッション角の大小に応じて、スピン周期変化に著しい差を認めること ができる.もし 90°方向にピークを持つようなピッチ角分布を仮定するとこの現象を説 明できるが、いずれピッチ角分布の計算結果を得た上でくわしく議論したい。

4. 討論

22 号機の観測によれば, 静穏時における電子の絶対強度は ~10³/cm²・str・s・keV であ る. これがじょう乱時にいくらになるかは,各ロケット搭載の検出器の仕様が同一である ので,近似的には特定チャネルのフラックス比から推定できる. 表3は SC-L チャネル の比である. 正確にはエネルギースペクトルを考慮すべきであるが,オーロラ時にはフラ ックスは数倍から数10倍に増大した.

表3 オーロラ静穏時に対するじょう乱時の 60-80 keV 電子の計数比

Table 3	Count ratio of 60-80	ke V	electrons	between	auroral	disturbed		
	and quiet times.							

	S-210JA-20	S-210JA-21	S-210JA-23	S-310JA-2
カウント比	12.5	5	2	50

ピッチ角分布については、じょう乱時では静穏時に比べより小さいピッチ角成分の寄与 が大きくなるが、オーロラの diffuse 型と discrete 型とでは 大差ない. 分布のピークは precipitated 型で約 65°, trapped 型で約 80° にある. 一般に、discrete 型オーロラは 90° にピークを持つ trapped 型と解釈されている(福西, 1977). 今回の観測ではピッチ 角分布のピークは 90° 以下にあり、precipitated 電子の寄与も現れている. これは210号 機の打ち上げ高度がオーロラ帯中心部まで到達せず、オーロラ底部に降下してくる散乱電 子を捕捉したためではないかと思われる. Diffuse 型オーロラでは、ピッチ角散乱が主要 な機構であるとされているが、図 3 の trapped 型期間にそれらしい形跡が見られる.

エネルギースペクトルのベキ指数は,静穏時の4~5.7 に比べ,20号機の場合は57~8 と大きい.ピッチ角依存性を考慮すると,両者の差はさらに大きくなる.つまり,オーロ ラ出現時には,降下電子のピッチ角は小さくなり,絶対強度は増大し,エネルギースペク トルはソフトになると結論される.

以上本報告で述べた結果は、テレメータ受信用磁気テープからのデータ再生に基づくが、 その復調過程において一部技術的に不備な点があり、満足すべき S/N 比が得られなかっ た.このため定量的なくわしい議論のために 310 号機の解析も含めて、再復調の磁気テー プによるデータ処理を進めている この意味から、本報告は序報的なものであることを断 っておきたい. 終りに、南極でのロケット観測に従事された第17次隊,第18次隊各隊員諸兄のご努力 に対し深く感謝いたします。

文 献

福西 浩 (1977) オーロラフレアにおける粒子入射 IMF シンポジウム報告,東京大学宇宙航空 研究所,181-188.

- KODAMA, M., IMAI, T., TAKEUCHI, H. and WADA, M. (1978): Rocket measurements of auroralzone energetic electrons at Syowa Station, Antarctica I. Characteristics of electrons under no geomagnetic disturbance. Mem. Natl Inst. Polar Res., Spec. Issue, 9, 11–23.
- DEEHR, C. S., WINNINGHAM, J. D., YASUHARA, F. and AKASOFU, S.-I. (1976): Simultaneous observations of discrete and diffuse auroras by the Isis 2 satellite and airborne instruments. J. Geophys. Res., 81, 5527-5535.
- LUI, A. T. Y., VENKATESAN, D., ANGER, C. D., AKASOFU, S.-I., HEIKKILA, W. J., WINNINGHAM, J. D. and BURROWS, J. R. (1977): Simultaneous observations of particle precipitations and auroral emissions by the ISIS 2 satellite in the 19–24 MLT sector. J. Geophys. Res., 82, 2210–2226.
- 和田雅美・奥谷晶子・今井 喬・竹内 一・小玉正弘(1979) オーロラ電子観測資料処理. 南極資料, 63, 53-59.

(1978年6月10日受理)