第15次南極地域観測隊気象部門報告1974

鈴木剛彦*・安富裕二*・林 則雄*・篠原健夫*

Meteorological Observations at Syowa in 1974 by the 15th Japanese Antarctic Research Expedition

Takehiko Suzuki*, Yuji YASUTOMI*, Norio HAYASHI* and Tateo SHINOHARA*

Abstract: This paper states the results of the meteorological observation carried out by the 15th JARE in 1974 at Syowa Station.

In accordance with the recommendation by WMO (World Meteorological Organization), surface observations were carried out every three hours from February 1 and aerological observations carried out twice a day from March 1 in 1974. The new type hydrogen generator, which resolves ammonium into hydrogen and nitrogen, was set up and the mixed gas was stored in the tank, from which balloons could be filled up anytime.

Meteorological characters of the year 1974 are as follows;

1) In May the Indian Ocean High had great influence over the Antarctic Ocean, and the barograph recorded 1025.0 mb on the 27th.

2) In June, November and December the fine weather lasted for a long time. In November the percentage of possible sunshine attained to 75% and the number of clear days was 16.

The results of ozone sonde (KC-68) observations showed that in the stratospheric sudden warming phenomena the temperature rise is closely related with the ozone-density increase.

Observations of the total amount of ozone were carried out with the ozone spectrophotometer.

The turbidity of the atmosphere was also calculated by means of the pyrheliometer and filter technique.

要旨: この報告は第15次南極地域観測越冬隊気象部門が,力点をおいて行った業務とその主な成果を述べたものである.

気象観測については,世界気象機構(WMO)の勧告にしたがって,3時間毎の 地上気象観測を1974年2月1日から,1日2回の高層気象観測を同年3月1日か ら,定常的に実施した.

今回導入された新しい施設は、アンモニア分解ガス発生装置と10立方メートルの水素ガスタンクとである.

第15次越冬観測期間中,特記される気象の概況は次の通りである.

* 気象庁. Japan Meteorological Agency, 3-4, Otemachi 1-chome, Chiyodaku, Tokyo 100.

一報告-Reports No. 60. 1977)

1) 5月にインド洋高気圧が南極大陸付近にまで張り出してきたため,自記気圧計では27日に,1025.0 mb を記録した.

2) 6月, 11月, 12月は好天が続き, 特に 11月には, 日照率 75% にまで達し, 晴天日数も 16日を数えた.

気象観測に関連したものとして,

1) オゾンゾンデ観測の結果から, 突然昇温が起こっている高さと, オゾン密 度最大の高さとが一致していることが判明した.

2) 新たにオーバーホールしたオゾン分光光度計(島津 No. 5706)を搬入して、オゾン全量観測を行った.

3) 三種類のショットフィルターを備えた直達日射計を使って, 大気混濁度 の 測定を行い, 昭和基地を全球的なバックグラウンド汚染基準観測点として整備す る場合の予備的調査を行った.

1. はじめに

第15次南極地域観測越冬隊気象部門は、1974年2月1日に第14次隊より業務を引き継ぎ、 1975年1月31日までの一ヵ年間観測を行った。

かねてより,世界気象機構(WMO)から勧告されていた地上気象観測1日8回と,高層気 象観測1日2回が第15次隊で実現し,地上気象観測は2月1日から,高層気象観測は3月 1日から開始した.これによって,昭和基地における気象観測はオールワッチとなった.

1日2回の高層観測を実施することに伴い,水素ガスタンクの設置と新アンモニア分解ガ ス発生装置(以下新ガス発生機と称す)の設置を行い,2月末より運転を開始した.新ガス 発生機は,初期故障が多く発生し,順調に運転できるようになるまでには,かなりの時間を 要した.

オゾン全量観測は,測器のオーバーホールのため一年間休止していたが,新たに搬入したオ ゾン分光光度計(島津 No. 5706)を用いて観測を再開した. 測器がオーバーホール後間も ないため,新たな補正値を決定しなければならず,そのため出来るだけ多くの観測を行った.

特殊ゾンデ観測は,放射ゾンデ観測を4月から7月にかけて7回,オゾンゾンデ観測を9 月から11月にかけての成層圏昇温期に10回それぞれ行った.

また,新しく3種類のショットフィルター(OG1, RG2, RG8)を装着した直達日射計を 持ち込み,大気混濁度を調べるための基礎観測を行った.

2. 地上気象観測

2.1. 観測と経過

地上気象観測は、気象庁地上気象観測法に準じ、WMO 観測ガイドに基づいて行った、気

〔南極資料

圧,気温,湿度,露点温度,風向,風速および水平面日射量については,自動気象観測装置
 (MAMS)により全期間連続記録し,上記各要素と蒸気圧の毎正時の値は,自動気象印字装置
 (MAMP)によって出力した.各観測に用いた測器を表1に示す.

 観	測	項	日	観 測 器
気			圧	フォルタン型水銀気圧計*(電気抵抗変化を利用) アネロイド型気圧計**(ホール効果を利用) 船舶用アネロイド型気圧計**
灵			温	白金抵抗式温度計* アスマン型通風乾湿計
露	点	温	度	デューセル型露点温度計* 鏡面式露点温度計**
湿			度	気温と露点温度により計算*
風	向	・風	速	風車型風向風速計*(平均値は MAMS 内で計算)
日	Ì	射	星	エプレイ型全天日射計* 直達日射計**
日	照	時	間	カンベル型日照計**
視程	・雲量	と大	気現象	(日視観測)

表1 地上観測の項目と測器

Table 1. Elements and instruments of surface observation.

*印は MAMS により記録され, MAMP により印字される. **印は記録計により記録のみ.

1974年2月1日より,00,03,06,09,12,15,18,21 GMTの1日8回観測を開始した. MAMP で出力される要素に加えて,雲,視程,天気について観測し,00,06,12,18 GMT に3時間前の電報と共に,国際気象通報式によりモーソン基地経由で解析センターへ通報し た.その他の要素(大気光象など)は随時目視による観測を行った.

MAMS, MAMP については大きな故障はなく,軽微な故障は,そのつど調整と部品交換で修理でき,欠測はほとんどなかった.

12月25日, 気温と露点温度の記録にノイズらしき記録乱れが現われた.この記録乱れは, 風速が10m/s以上になると顕著になったが連続せず時々現われた.発電機,送電線,信号 ケーブル等を点検したが不良なところはなく,原因不明のまま正常にもどった.その後風速 の記録にも現われたが,原因は不明である.

各測器や計器は設置後 10 年を経過しており老朽化が目立ったが,大きな故障もなく順調 であったことは幸いであった.

2.2. 観測結果

月別気象表を表2に、気圧、気温、風速、日照時間の旬別変化を図1に示す.

1974年 1月 1975年 2月 3 月 7月 9月 10 月 |11 月|12 月 4 月 5月 6月 8月 年間の 1月 996.3 980.0 983.1 平均気圧(海面) 991.3 983.6 984.2 987.7 989.9 990.0 986.7 991.3 994.5 992.9 (mb) X 平 均 気 温 (°C) -3.1-11.0 -16.7 - 16.7 - 17.7 - 17.4 - 14.0-1.4-8.5 -12.4 -5.7-0.8 -0.3象の概況は次の通 最高気温の極 (°C) 7.3 2.0 0.7 -3.4-3.4-5.8-6.9 -4.6 -4.6 -3.43.7 7.6 7.0 2, 起 12 28 628, 31 20 日 10 2 2 2 5 6 13 同 7 最低気温の極 (°**C**) -9.1-29.4-30.3 -37.2 - 38.6-29.4-7.9-6.9-7.8 -22.0-32.1 **-34.4** 14.6 起 30 5 29 26 22 10 25 23 30 10 同 日 31 13 4 湿 平 度 (%) 64 66 71 54 均 70 70 64 71 58 59 65 71 73 雲 平 均 量 5.1 7.8 7.0 7.1 6.3 7.7 4.6 8.2 4.2 8.5 6.9 3.1 5.4 3 平 風 速 6.3 6.1 9.2 10.7 5.4 6.5 5.3 5.9 5.7 5.0 3.3 均 (m/s)2.1 4.4 ų 84 10.9 26.8 25.2 26.5 26.3 31.2 10 分平均 (m/s)35.1 31.1 32.3 28.9 30.2 17.9 16.1 ১ ENE ENE ENE 風 NNE ENE NE ENE Ε NE ENE NE Έ Ε 最 向 同 7 1, 2 17 大 同 起 日 13 22 12 16 29 25 2 31 9 33.2 34.3 38.5 35.3 風 33.8 31.9 42.9 39.4 40.2 34.9 22.1 21.0 瞬 間 (m/s)14.0 NNE ENE ENE E Ε NE ESE ENE ENE NE E Ε 速 百 風 向 NE 17 9 2 同 起 日 13 22 2 12 28 29 25 4 31 日照時 間 388.0 171.1 147.9 44.9 84.0 78.9 220.0 469.7 477.2 461.7 (h) 15.2 (3.0)率 55 39 23 日 照 (%) 35 37 17 13 (6) 46 75 64 65 4190 11299 19866 22986 20770 水平面日射量(cal/cm²) 20068 10291 6596 1680 158 31 1251 2 3 8 9 10 m/s~14.9m/s 13 9 11 7 9 7 2 15 13 暴 15 m/s~28.9m/s 0 11 11 19 10 9 10 2 7 7 3 5 風 29 m/s ≦ 0 0 4 0 0 0 0 0 0 4 5 2 1 日 数 26 計 2 20 20 26 18 16 18 16 12 19 18 11 快晴 (雲量<2.5) 16 天 6 2 3 1 3 13 0 6 2 5 6 11 (雲量≧7.5) 気 11 18 18 23 17 11 24 15 20 18 2 11 11 曇 20 22 日 雪 9 17 17 21 16 6 24 13 1 12 7 数 霧 7 0 0 0 0 0 0 0 0 2 6

表2月別気象表 Table 2. Monthlynsmmaries of surface observation in 1974.

Ν ï

光

中旬,

5.5 ω 5 旧. 約10日周期でブ Ν Ŀ ŧ 1 ドがあ ১ たが比較的弱く、 快晴の日は夜間の冷え込みが厳し

J, Ľ ず Fit, 最低気圧 962.8 mb を記録したが強くはなかった

Ш θ

F. 旬は好天に恵まれ穏やか

ų

下旬はぐずついた天気が続き,

鳯 9

日が多か

১

5

60. 1977)

No.

15 次南極地域観測隊気象部門報告

1974

図 1 旬別気象変化図 Fig. 1. Annual variation of ten-day mean values in 1974.

4月:2日と12日の2回強いブリザードに見舞われ,その他も雪の日が多かった.26日に 日最低気温 −29.4°C を記録し,4月としては基地開設以来の記録であった.

5月:地ふぶきの日が多く,上旬6~8日と中旬16~18日に強いブリザードに見舞われた. 下旬にはインド洋高気圧も南極海付近にまで張り出し,27日には MAMSの気圧記録がスケ ールアウトし (1,012 mb をこえたため),自記気圧計では 1,025.0 mb を記録した.

6月:月初めと月末に弱いブリザードがあったが,6~26日の間は天気がよく,特に中旬の平均雲量1.9は記録的であった.

7月: ブリザードが4回あり,その他も雪の日がほとんどで天候は悪かった.このため気 温は高目に経過したが,31日には晴れて冷え込み,日最低気温 −37.2°C を記録した.

8月:気圧は、平年に比べて高目に経過し、月初めのブリザードは 1,000 mb 台で吹き荒

No. 60. 1977]

第15次南極地域観測隊気象部門報告 1974

れた. 中旬までは雪の日がほとんどであっが, 月末はよい天候に恵まれた.

9月:月初めを除いては、短い間隔でブリザードが襲来し、悪天が続いた.

10月:月初めと月末にブリザードに見舞われたが、その他は好天が続いた.

11月:1日の強いブリザードで積雪が一段と増した.その後は晴天が続き,雪日数1,日 照率 75%,平均雲量 3.1 は記録的であった.

12月:雪日数は12日(平年は8日)であったが,日中は比較的天気がよかった.気温は高目で上旬の平均気温 0.3°C は平年よりも 3.1°C 高かった.このため基地周辺の積雪は急速に解けた.

1月: 好天に恵まれ穏やかな日が続いた. 霧日数6は昨年同様多い方ではあったが,日照時間 461.7 は1月としては最高値であった.

観測結果からみたこの一年の特徴は次の通りであった.

1) インド洋高気圧が例年に比べて強く,しばしば南極海付近にまで張り出してきた.南 極大陸の高気圧の消長とも相まって,昭和基地では5月下旬,6月中旬,8月上・下旬,11 月下旬,12月上旬に気圧は平年よりかなり高目に経過した.

2) 真冬の6月の好天も大変珍しい.太陽のないどんよりした暗黒の日々を思えば,太陽こ そないが,晴れ渡った明るい冬であった.

3) 真冬と同様,夏の11,12月の晴天続きも特異と思われる.11月の日照率75%,快晴日数16は記録的である.11月1日の強いブリザードで積雪は最高になったが,その後の晴天続きで,予想以上に雪解けが進んだ.

3. 高層気象観測

3.1. 観測と経過

高層気象観測は、気象庁高層気象観測指針に準じて行い、国際気象通報式によりモーソン 基地経由で解析センターへ通報した.3月1日から12GMTの観測を開始し、00GMTと併 せて1日2回の観測が実現した.ゾンデの2回観測は、シノプティックスケールの現象解析に とって有効であり、今後も昭和基地は世界気象監視計画(WWW 計画)のネットワークの重 要な責任を果すこととなろう:

観測項目および測器は表3のとおりである.1日2回の観測に伴い,ガスタンクと新ガス 発生機を設置したが,トラブルが多かった.計画では,旧ガス発生機を取りはずし,新ガス 発生機を設置することにしていたが,新ガス発生機にトラブルがある時のことを考え,狭い放

_						
	観測	順目	感	部	備	考
	気	温	サーミス 温	ター 度計	温度抵抗:0°C で約 45 kΩ 遅れの係数:風速 4 m/s, 地上	で2秒以下
	気	圧	7ネロイ 気	ド型 圧 計	直径 60mm の空ごう,材質はス 接点は観測要素の切り換えをか	ミスパン,150接点を持つ摺動式 ^ねる.
	湿	度	カーボン 湿	抵抗型 度 計	遅れの係数:風速 4m/s, 気温	20°Cで15秒以下
	風向·	風速	自動追跡對	き置 (D55B)	計算機 (WAC) で計算	

表 3 高層観測の項目とそのセンサー Table 3. Elements and sensors of aerological observation.

搬送周波数:1680 MHz, 出力 0.5 W, パルス幅 30~50 µ 秒, 変調周波数範囲 10~200 Hz

球棟内に二台の発生機を置いた.これが結果的には良策で,00 GMT 観測には旧ガス発生機 を年間通じて使用じた.

新ガス発生機のトラブルは,異常ガス圧警報装置のガスもれ,圧力スィッチの腐蝕,第一,第 二減圧弁の腐蝕,フィルターの目詰まり,バルブの開閉不能,コンプレッサーのオイル流出 による配管内でのオイル凍結などであった.これらの故障は,部品交換や不良部分の除去な ど,コンプレッサーのオイルについてはオイルトラップの新設などでどうにか解決がついた.

ゾンデのトラブルは, M型気圧計のレファレンス抜け, レファレンスとびが主で, これは 空ごう気圧計の排気によるならしでほぼ解決した.

D55B 受信機は、AFC 回路,追跡制御系回路などの不調が目立ったが、そのための欠測はなかった. 6月12日、アンテナ系の信号ケーブルが振動でコネクター (J403) から脱落し、受信不能で欠測した.これは定期整備での見落しが原因であるが、思わぬ所に落し穴があるものと痛感した.

D55B 受信機の追跡状況のチェックのため経緯儀による比較観測を3回行った.結果は表4のとおりである.パラボラアンテナは気象棟屋上に設置してあり,架台が不安定なので,追

	表 4	経緯儀— L)55B	比較額	見測	
Table 4.	Con	np ar ison of	theo	odolite	and i	D55 B
	ang	le measure	ment	s. '		

		高度角	(度)	方位角(度)		
月	日	差の平均	標準偏差	差の平均	標準偏差	
10	16	0.02	0. 26	0.12	0. 25	
11	7	0.07	0.40	0.38	0.52	
11	23	-0.08	0. 20	0.33	0.23	

跡中振動が激しく,ハンチングも多いように思われた.

測風計算機(WAC)は、製作後ほぼ10年を経過し、計算機構がトランジスタとダイオードを主とした構成のため、計算速度は遅く、時々誤計算をするようになり、更新が待たれているが、15次隊では暫定的にリコマック X822 を使用した.

冬期間のゾンデの到達高度を高めるため、従来から気球を軽油などに浸す、いわゆる油浸 けが行われている.15次隊では、4月中に00GMT 観測時に試験的に油浸けをし、5月から 昼夜共油浸けをした.油浸けは、ゴムの劣化を早める作用があるといわれており、紫外線の 影響も考慮して、昼(12GMT) 飛揚の気球は9月末まで、夜(00GMT)は10月末まで行っ た.油浸けは、はじめ飛揚の12時間前に一回だけ行い、上層の気温が次第に下がってから は、一回目の油浸けの時間を早めて24時間前に行うと共に、回数を増して8月には合計3回 の油浸けを行い、結果は良好であった.

3.2. 観測結果

高層気象観測状況および月別指定気圧面観測値は表5と表6のとおりである.

ゾンデの1日2回の観測値をつかって,昭和基地における上高層大気の昼夜の変化について概観してみる.

夜間(00GMT)の観測値を基準として、昼間(12GMT)の観測値がどれほど違うかを月平

1u	Tuble 5. Transer of times and arrived neights of derological observation.							
在 日	組測 同数	ケ測同数	重組測		到 達	高图	E	
	BUND X	700 D		平均km	平均 mb	最高km	最高 mb	
1974. 2	28	0	4	26.8	19.6	30.1	12	
3	62	0	2	26.7	19.3	32.1	8	
4	56	4	3	24.6	23.2	30.5	10	
5	60	2	5	24.7	20.3	29.6	9	
6	60	. 0	4	24.1	20.2	29.4	8	
7	59	3	1	23.6	20.7	29.2	8	
8	62	0	2	23.5	20.8	28.3	9	
9	59	1	3	24.0	21.0	28.7	11	
10	62	0	5	24.9	20.6	32.4	8	
11	60	0	1	26.1	20.8	32.0	10	
12	62	0	2	26.9	20.6	31.0	12	
1975. 1	62	0	3	27.2	19.9	30.2	13	
計	692	10	35					

表 5 高層気象観測状況一覧表 Table 5 Number of times and arrived heights of genelogieal observation

表 6 月别指定気圧面観測値

Table 6. Monthly summaries of aerological observation in 1974.

00 GMT

	(mb)	1974 2	3	4	5	6	7	8	9	10	11	12	1975 1
	850	1140	1129	1149	1168	1149	1119	1189	1064	1107	1189	1239	1232
	500	5041	5016	4989	5010	4980	4908	4981	4859	4913	5072	5172	5186
高度	300	8449	8420	8356	8366	8338	8209	8298	8166	8213	8460	8616	8651
(Spin)	100	15764	15593	15403	15200	14985	14731	14716	14667	14851	15417	15901	15992
	30	23885	23423	22953	22377	21916	21504	21409	21788	22427	23685	24220	24282
	850	-10.0	-12.4	-15.2	-14.6	-18.0	-19.3	-19.6	-20.6	-16.4	-11.6	- 8.4	- 7.0
	500	-33.8	-34.3	-37.5	-38.1	-37.1	-41.2	-40.2	-39.9	-40. 7	-34.6	-31.4	-29.5
気 温 (° C)	300	- 53.5	-55.3	-55.6	- 58. 2	-59.5	-62.5	-62.1	-63.1	-62.4	- 57. 7	-52.9	-51.9
、 - <i>y</i>	100	-43.8	-49.4	-56.1	-63.7	-71.4	-76.0	-79.7	-73.6	-65.4	-47.7	-41.1	-40.4
	30	-41.3	-51.6	-62.2	-73.0	-80.4	-82.8	-83.8	-64.9	-49.2	-30.4	-33.6	-35.4
	850	7.5	7.8	10.1	13.1	10.0	10.2	8.9	7.8	8.5	6.3	8.2	5.6
	500	7.0	9.4	10.0	14.3	10.4	11.1	11.1	12.0	8.9	7.9	10.0	7.2
風 (m/s)	300	12.0	16.4	17.0	20.6	13.0	15.4	15.2	17.2	12.6	12.1	11.9	10.7
(11,0)	100	7.9	12.5	14.8	23.6	15.8	19.8	17.2	26.6	20.2	12.6	3.7	4.0
	30	4.6	12.1	24.2	37.8	34.2	39.4	33.8	58.0	44.5	22.7	10.9	7.3
												12	2 GMT
	(mb)	1974 2	3	4	5	6	7	8	9	10	11	12	1975 1
	850	/	1130	1162	1160	1146	1122	1190	1066	1105	1199	1240	1232
	500		5028	5002	5005	4975	4919	4986	<i>'</i> 4873	4928	5094	5188	5204
高度 (g nm)	300		8453	8377	83 59	8328	8229	8309	8203	8251	8497	8652	8687
(81)	100		15671	15440	15215	14969	14752	14756	14754	14940	15496	15959	16066
i	30	/	23 5 6 9	23058	22432	21900	21527	21514	21972	22521	23795	24306	24394
	850		-12.0	-15.9	-14.6	-18.2	-19.2	-19.7	-19.8	-15.5	-11.3	- 7.7	- 6.4
	500		-33.1	-37.2	-38.0	-36.7	-40.3	-39.4	-38.5	-39.4	-33.8	-30. 1	-28.3
気 温 (° C)	300		-54.1	-54.8	-58.1	-60.1	-62.2	-61.4	-61.8	-61.0	- 56. 5	-51.8	-51.4
< - <i>y</i>	100		-47.7	-55.0	-63.3	-71.5	-76.0	-78.7	-71.5	-63.6	-46.0	-40.3	-39.2
	30	/	-49.1	- 59.3	-72.3	-80.5	-83.0	-81.6	-62.0	-48.8	-29.8	-32.7	-34.0
	850	/	8.4	7.2	16.2	9.2	10.4	10. 2	9.8	9.5	6.8	8.0	5.8
	500		9.6	9.6	13.5	8.4	12.3	11.9	10.9	9.7	7.5	9.9	6.8
風	300		17.0	14.5	18.4	11.0	17.3	14.8	17.1	13.3	11.6	12.3	10.9
,	100		12.8	15.5	23.4	15.4	20.9	17.7	27.3	20.7	12.6	3.5	4.0
	30	/	13.0	23.6	37.1	33.4	38.5	37.0	61.6	47.0	24.1	10.2	6.6

均値でみると、気温については図2となる・指定気圧面高度についてもこれと同様な変化が みられたが、それは気温変化が主要因であるということは言うまでもない.

Fig. 2. Temperature differences between daytime and nighttime at the constant pressure levels at Syowa in 1974.

気温の昼夜の差についてまとめてみると,6月と12月に極小値,3月と9月に極大値がみ られる.6月は各層とも差がないのに反し,12月は昼夜で1°C 程度の差がみられる.また 3月,9月には,100mb 以上で2°C かそれ以上の差がみられる.

このような昼夜の気温測定値の差は,特に成層圏については,日射の影響による測定誤差 と実際の大気温度の日変化の2つが原因として考えられる.昭和基地(69°S)では,6月初め に太陽が地平線下に没し,7月上旬まで夜の期間が続く.また,12月初めに太陽が沈まなく なってから,1月上旬までは昼の期間が続き,この期間の太陽高度角には0°~45°の日変化 がある.12,1月の極小期の温度差約1℃は,00GMT(03地方時)と12GMT(15地方時)の 太陽高度角の差約30°が影響しているのではないかと思われる.

また,3月,9月には昼夜の時間がほぼ等しくなり,成層圏大気の温度の日変化も顕著に現われるようになる.また,センサーも昼間には日射による昇温も加わって実際の大気より極

鈴木剛彦·安富裕二·林 則雄·篠原健夫

い温度を示すであろう.これらの効果が加算されて昼夜の測定値に大きな差が生ずるのでは ないかと思われる.

気温測定は,ビード型サーミスタに白色の塗料(酸化アルミニウム)を塗布して,日射の 影響を除いて行っているが,日射による測定誤差の見積もりは現在まで行われていない.

昼と夜の差の年間の変化を比較するために,1962年のアメリカ隊の各基地との比較を行っ た(図3). アムンゼン・スコット基地(90.0°S), バード基地(80°01′S, 119°31′W), ハレッ ト基地(72°18′S,170°19′E)がそれである.昭和基地の差に比べて,各基地とも差は小さい. バード基地で,3月と9月にわずかに極大がみられる程度で特徴的な変化はみられない.ア ムンゼン・スコット基地は,南極点にあり,一日の太陽高度角の変化はわずかであるので, 差はほぼ0となる.昭和基地における昼夜の差が,日射による測定誤差で大部分占められる ならば,他基地との比較が説明付けられる.しかし,一年間だけの昼夜の差から日射誤差と 断定はしがたい.そのためにも,一日2回の観測が実現したことは,大変有意義なことであ り,今後の資料蓄積と共に解析が待たれるところである.

〔南極資料

4. 特殊ゾンデ観測

4.1. 観測と経過

放射ゾンデ観測は、4月から7月にかけて計7回、オゾンゾンデ観測は、9月から11月に かけて計10回行った.これらの観測のうち、6月4日飛揚の放射ゾンデのみが、高断気圧計 の接点不良のため資料欠測となったほかはほぼ順調であった.

4.2. 観測結果

ここでは、オゾンゾンデの観測結果について、成層圏昇温の問題とあわせて述べる.

オゾンと成層圏昇温とのかかわりについて概観してみると、まずオゾンは高さ35 km 以下 では、分解の時定数が数カ月から1年であり、気塊のトレーサーとしての機能を有する(関 ロ、1969). さらに、オゾン全量と成層圏昇温との相関はかなりよく対応する(SHIMIZU、1970 など). 一方、成層圏突然昇温の機構も次第に明らかにされつつあり、上方へ伝播する対流圏 プラネタリー波が、重要な役割りを果していることが知られるようになってきた(MATSUNO、 1971 など).

南極昭和基地における,1974年9月23日から11月23日までの2ヵ月間のオゾンゾンデ, レーウィンゾンデおよびオゾン全量の観測の結果から,成層圏で昇温している高さどオゾン 密度が増加している高さとの間に,密接な関係があることが示された.この期間のオゾン全 量の変化を図4に示す.急激なオゾン全量の増加は,9月26日,10月7日,17日,23日,

Fig. 4. Variation of the total amount of ozone.

〔南極資料

Fig. 5. Ozone density and temperature in the stratosphere.

11月2日,5日,16日,20日頃にみられ,それぞれに対応して成層圏で顕著な温度上昇がみられる.

オゾン密度と成層圏温度変化の合成図は図5である. 図の横軸は日付で,オゾンゾンデは 矢印で示した日に飛揚した. 気温は細線で示し,これは毎日の03時のレーウィンゾンデの観 測結果を使った. 気温のデータに比べてオゾン密度のデータが少ないため,細かな変化は検 出できなかったが,顕著な温度の上昇に対応してオゾン密度が増大している. たとえば,10 月7日の70mb付近,10月24日70~50mb付近と30mb付近,11月2日の70mb付近と 30mb付近,11月14日40mb,30mb付近,および11月23日100~50mb付近などであ る. 成層圏は11月18日最終昇温の後,夏の状態となり,オゾン全量は大きな季節変化の波 にのって漸減している. オゾン全量とある高さの温度変化(たとえば50mb,30mbなど)と の相関については,SHIMIZU(1970)の報告があるが,ある時期から急に相関が悪くなる. そ れは,昇温は成層圏上部から始まり,次第に下部へと波及してくるが,昇温が終了した高さ では,それ以後オゾン全量の変化に対応するような顕著な温度上昇がみられないことに由来 する. たとえば20mb面についてみると,10月24日以後にはもはや,11月2日,5日,16 日,20日などのオゾン全量の増加に対応するような急激な温度の上昇はみられない.

オゾンが気塊のトレーサーであるという立場から、オゾン密度極大層における風向風速の

No. 60. 1977]

第15次南極地域観測隊気象部門報告 1974

変化をみてみよう.風向風速の時系列分布を図6に示す.これによると,オゾン密度の増加 に伴い,風向風速に顕著な変化がみられる.つまり,風向は WSW→WNW または NW, そして再び WSW と変化し,最終昇温期には,WSW→NW→N→NE→E と変化した.風速 は,前者ではやや増加する傾向もあるが,後者ではむしろ減少する.これらは,極夜ジェッ トの南北方向の蛇行の強まりを示し,成層圏擾乱の通過,中緯度高圧部の張り出し,周極渦 の崩壊,夏期成層圏高気圧の形成などを示している.すなわち,周極渦の弱まりに伴って北 から南へのオゾンの輸送(低緯度から高緯度へ)が行われたことを示唆している.

以上,今回の観測結果についてまとめると次のようになる.

1) 成層圏昇温が起こっている高さと,オゾン密度が増加している高さとは一致している.

2) 風向風速の変化は、この時期に低緯度から高緯度へオゾンが輸送されたことを示している。

3) オゾン全量と成層圏昇温との相関はよいが、それは必ずしも同一の高さだけの温度変化と対応づけられるものではない。

5. 大気混濁度の測定

5.1. 観測と経過

今回,ショットフィルター (OG1, RG2, RG8) を装着した直達日射計を持ち込み,大気混 濁度の測定を試みた.

観測は冬明けの10月から、太陽正中時付近の時刻に行った. また12月28日には、約2時間毎の日変化も測定した.しかしこの測器はフィルターの切り替え、太陽同期を手動で行う 必要があるため、測定回数は限られたものとなった.

5.2. 測定結果

ある波長域における大気外日射量を I_{0d2} , $\nu - \eta - 散乱とオゾンによる 消散係数の和を$ $(<math>\bar{T}_{Rd2} + \bar{T}_{zd2}$),太陽と地球の距離係数を S,波長域 $d\lambda$ における平均波長を λ_n ,現地気圧を b,標準気圧を b_0 および太陽天頂角を z とする.これらの値のうち,大気外日射量, $\nu \eta - 散乱とオゾンによる消散係数,距離係数は,WMO (1971) の値を引用した.また,フ$ $<math>\eta \mu \beta - のカットオフ波長はそれぞれ,530 nm (OG1),630 nm (RG 2),700 nm (RG 8) と$ した.

1)絶対大気路程 M は

$$M = \frac{b}{b_0} \sec z$$

2) 全波長域における大気透過度を A とすると、入射量 I は

$$I = I_0 A^{\sec z}$$

3) エーロゾルの粒度分布に関する波長指数 α は、ある波長域における Schüepp の混濁 係数を B_n として、

$$B_{n} = \frac{\ln\left(\frac{I_{0d\lambda}}{I_{d\lambda}} \cdot \frac{1}{S}\right)}{M \cdot \ln 10} - (\bar{T}_{Rd\lambda} + \bar{T}_{zd\lambda})$$
$$\alpha = \frac{\ln\frac{B_{2}}{B_{3}}}{\ln\frac{\lambda_{3}}{\lambda_{2}}}$$

ここで,

 $B_2 \ (630 < \lambda < 700 \text{ nm})$ $B_3 \ (\lambda < 530 \text{ nm})$

No. 60. 1977]

第15次南極地域観測隊気象部門報告 1974

, , , , , , , , , , , , , , , , , , ,	Tuble 7. Calacatation of the larbianty of the atmosphere:								
日 197	付 4 年	M ·	A	α	B ₅₀₀	β	記事		
月 10 6		2. 25	0. 81	0.35	0.050	0.089			
	7	2.19	0. 81	0.24	0.044	0.086			
	14	2.01	0.81	0.14	0.044	0. 091			
	15	2.00	0. 81	0.65	0.046	0.068			
11	4	1.84	0. 81	0.65	0.042	0.061			
	6	1.70	0.80	1.02	0.042	0.048			
	7	1.80	0.80	1.21	0.042	0.042			
	9	1.61	0. 79	0.83	0.048	0.062			
	11	1.58	0. 79	1.35	0.047	0.043			
	22	1.50	0. 79	0.79	0.064	0.085			
12	3	1.48	0. 77	1.41	0.044	0.038	薄い Ci		
	4	1.46	0.78	1.00	0.053	0.061			
	10	1.45	0. 78	1.07	0.052	0.057			
		1974	年 12 月	3 28 日の	日変化				
 時	刻	М	A	α	B ₅₀₀	β	記事		
時 9	分 20	1.63	0.78	0. 58	0.056	0.086			
11	30	1.43	0. 78	1.47	0.046	0.038			
13	20	1.43	0.78	1.03	0.050	0.056			
16	30	1.87	0.80	0.03	0.042	0.094	薄い Ci		
18	30	2.72	0.83	0. 27	0.036	0.068			
20	30	4.91	0.87	-0.20	0.016	0.044			

表 7 大気混濁係数の計算結果 Table 7. Caluculation of the turbidity of the atmosphere.

4) 波長 500 nm における Schüepp の混濁係数 B₅₀₀ は,

$$\ln B_{500} = \alpha \left\{ \ln \left(\frac{\lambda_2}{500} \right) \right\} + \ln B_2.$$

5) Ångström の混濁係数 β は $\beta = B_n \cdot \ln 10 \cdot \lambda_n^{\alpha}$. 計算結果の一覧表を表7に示す.

これらの値を岩手県綾里にある気象ロケット観測所における大気バックグラウンド汚染観 測で試験的に求めた値(一木, 1975)と比較すると, *B*₅₀₀ では約 1/3, β については約 1/2 程度であった.(綾里における値は, 1975年8月1日から 31日までの平均で, *B*₅₀₀=0.147, β=0.125 である.) β の値は, 0.1 以下ではかなり透明, 0.2 以上でかなりかすんだ状態であることを示して おり, 昭和基地での値は, 南極の空がかなり透明であることを示している.

大気中のエーロゾルの発生源は,自然活動によるものと,人間活動によるものとに分けら れるが,後者のいわゆる人工的な大気汚染の度合の低い南極地域において現状を把握し,今 後の汚染の進行状態をモニタリングする必要があろう.

今回の測定は試験的なものであり、 今後測器の自動化と共に、 観測体制の確立が 望まれる.

6. おわりに

一年間の越冬期間を通じて<u>昼</u>も夜もワッチに追われ, つきあいの 悪かった 気象部門に対し,よき理解を示し,ご協力下さった村越望越冬隊長はじめ第15次越冬隊の隊員諸兄に心よりお礼申し上げます.

またこの報告をまとめるにあたり,ご校閲いただいた気象庁観測部長小林寿太郎氏,東京 管区気象台技術課長清野善兵衛氏をはじめ種々ご助言を頂いた気象庁南極観測事務室井部良 一氏,国立極地研究所川口貞男助教授の皆様方に感謝いたします.

文 献

ー木明紀 (1975): 波長別直達日射計による大気の混濁係数の測定.昭和 50 年度日本気象学会秋季大会 予稿集,95.

MATSUNO, T. (1971): A dynamical model of the stratospheric sudden warming. J. Atmos. Sci., 28, 1479-1494.

関ロ理郎 (1969): オゾン層の光化学理論. 化学の領域, 23(4), 359-366.

SHIMIZU, M. (1970): Total ozone observations at Syowa in 1966. Nankyoku Shiryo (Antarct. Rec.), 37, 17-25.

WMO (1971): WMO operation manual for sampling and analysis techniques for chemical constituents in air and precipitation. Geneva, WMO, 36 p (WMO No. 299).

(1977年2月28日受理)

付録 1. 昭和基地で使用したアンモニア分解ガス発生装置とタンク

従来,気球充塡用の水素ガスを生成するために要した電力は,1回の充塡当たり10kW/h ×4時間であった.1日2回のゾンデ観測を実施するのに伴い,昼間にこれだけの電力を消 費することは,他分野の活動にかなりの制約を加えることになり好ましくない.このため, 主として夜間または週末に集中的に水素ガスを生成し,これをガスタンクに貯蔵することに した.以下これらの装置の概略をのべる.

No. 60. 1977)

1.1. 水素ガスタンク

材質は SUS 27 で容積は約 10 m³,置換用にヘリウムガスを 2 気圧充填しておき,14 次隊 で陸上げを試みたが果たせなかった.このため 15 次隊では,出発準備期間中にヘリコプター によるスリング輸送の実験を,風洞と実地で行い,最悪の場合はスリング輸送できる目途を つけた.結局氷上輸送によって,昭和基地への陸上げに成功した.製作後1年半経過してい たが,ヘリウムガスの漏れはなかった.ガスタンクの耐圧は,7気圧であり,常用圧力は 5 気圧である.

1.2. アンモニア分解ガス発生装置

装置のフローシートを図7に示す.

Fig. 7. Block diagram of the new type hydrogen generator.

1.2.1. アンモニア気化部

温水槽,温水ヒータ,架台からなり,温水槽内に2本のアンモニアボンベを直立にセット して,約 23°C 前後で温浴する. 槽内には,凍結防止のため,30~50% エチレングリコー ル水溶液を入れる.

1.2.2. アンモニア分解部

分解塔(インコロイ; 触媒も含む), 電気炉, 架台からなる. 第一減圧弁で 2 kg/cm², 第二

〔南極資料

減圧弁で 0.5 kg/cm² に減圧されたアンモニアガスは, 炉に導かれ, 900~1,000°C で熱分解 され,水素 3,窒素 1 の分解ガスが生成される. ヒーターは, 上・中・下の 3本で各々 4 kW/h である. 設計流量は 5~7 m³/h であり, これを超えるとアンモニアの未分解が多くなる.

1.2.3. 昇圧部

分解ガスを最高 7 kg/cm² まで昇圧して,水素ガスタンクに充填する.分解塔からの未分 解アンモニアガスを吸引しないように,高圧サブタンクからサージタンクへ一部帰還する回 路を設け,分解塔の流量を調節するようになっている.

1.2.4. 制御部

分解部の主電源を開閉し,動作中の炉の温度を監視することが出来る.また設定温度以上 に炉が異常昇温した場合には,警報表示する.制御部は,気象棟内におかれている.

消費電力は,最大時約 17 kW/h となり,順調に運転出来れば,余熱時間も含めて 12~15 時間で,設定圧 5 kg/cm² の分解ガスがタンクに充塡出来,これで週の約半分の放球分が確保出来る.ガスの生成を一度に行うため余熱分が不要となり,電力消費の上で有利である. またタンクから気球への充塡は,発生ガスを直接充塡するよりも短時間で済むため,能率的である.

この装置について問題点をあげると,第1は,気化部と分解部が離れすぎているため,一 度気化したアンモニアが,特に冬期間は配管内で再液化し,流量を著しく低下させることで ある.これは液体アンモニアを炉のすぐ近くまで導き,蒸発槽で気化すれば解決出来ること である.

第2は、分解部付属のバルブ、メータ類を炉と一諸に保温しているため、温度変化が大き く、締め付け部のゆるみが生ずることと、メータの誤差を大きくすることになっている.こ れは、炉の断熱を十分に行うことと、分離出来る装置は、炉から離すことで解決出来ると考 えられる.

付録 2. 昭和基地におけるオゾン全量観測の経過と補正手続

2.1. 観測と経過

気象庁オゾン観測指針に準拠し、オゾン分光光度計(島津製作所製 No. 5706)を用いて観 測を行った.この測器は、15次隊で新たに搬入したもので、1974年1月下旬に、開梱、組立 後、標準ランプ点検、水銀ランプ点検などを行い、輸送による特性変化のないことを確認し、

2月2日から観測を開始した.2,3月中には直射光観測を中心に行い,4~8月は µ>3.5 とな

るので観測を休止した(µは大気路程を表わす).9月から観測再開を予定したが、中旬まで は連続した悪天候のため下旬に入ってようやく再開できた.10月から翌年1月までは天候に

<u>-</u>				02011e.	······		
· · · ·	年	月	観測日数	観測回数	比較観測回数	全観測回数	• •
-	1974	年 2月	13	34	9 .	43	
		3	16	. 21	18	39	
		9	5	5	3	8	
		10	23	47	35	82	
		11	29	88	78	166	
		12	30	87	67	154	
	1975	1	31	90	70	160	,
-	190	t	147	372	280	652	
- 			· · ·		· · · · · ·	•	
20-	•					. • •	• •
10		•	•		•	•	•
o <u>-</u>			•	•	•		
R							
57 - 8 56 - 9			· .	·		ş	•
55 -	8	•	•				, 8
53 -					•	•	
52 -			•	•			
51-			, o	•	8		
R							
61 -							
50- 59- A	•		 	• •			
58 -		•	-		-	• • •	• 8
57 -						•	
R 61 -					,		
1x 60 - 8 • 59 -	Ð	•	۴ ۽	• •	• ð	• Ø •	• • • 0
	2	3	6	7 8	9 10	, , , D II I	2 I 1975

•		表	8	オ	ゾ	ン全	量	観測回数		
	-		-			-	-		-	

 Table 8. Number of times of observation of the total amount of ozone.

恵まれて、かなりの成果を上げることができた、観測回数は表8のとおりである。

10月中は,正中時および午前の µ=2.5, 11 月から翌年1月までは,正中時および午前と 午後の µ=2.5 を観測時刻とした。

標準ランプ点検(図8)では,各波長組共ほぼ一定値を示した.しかし,観測休止の冬期間, 器温が 5°C 以下の時, *R*₄ 波長組のみが,かなり小さい値を示した.これは,観測再開時に は問題なかったが,今後検討を要するところである.

水銀ランプ点検は,全期間を通じて ±0.2 の範囲にあり,波長の基準点は正常に保たれていた.

、天頂光による波長点検は、標準ランプ点検を補う意味で、1974年9月から11月にかけて 数回行い、各波長組共基準値内であった.

2 ランプ点検 (図 9) では、各波長組共、 $\Delta N = 30.1$ に対する系統的な偏差はなく、R 対 N表の補正は行わなかった.

Fig. 9. Results of the test with 2-lamps.

2.2. オゾン資料の補正

2.2.1. *ΔN*。の補正

90

 ΔN_0 には ΔN_{01} (準器との比較観測を行って求めた補正値) と ΔN_{02} (大気外定数と器械定 数の経年変化等によって変わりうる補正値) があり, ΔN_{01} には -3.0を用いた. また ΔN_{02} は各観測値を使って求められる. 月別の ΔN_{02} の平均値は表9のとおりで, 全期間の平均値 は -1.8 であった. ΔN_{02} を -1.8 として, μ に対するオゾン全量の補正値 $\Delta \Omega$ (表 10) を 求めた. 直射光観測 (DS) 値, 天頂光観測 (ZB と ZC) 値共に,表 10 によって補正した. 2.2.2. 天頂光図表の補正

天頂光図表は暫定的に決めた図表を使用したので、これの補正のため DS-ZB、DS-ZC の

No. 60. 1977]

第15次南極地域観測隊気象部門報告 1974

表 9 ΔN_{02} の月別の平均値 Table 9. Monthly mean values of ΔN_{02} .

		1974 2 月	3月	10 月	11 月	12 月	1975年 1月
	ΔN_{02}	-2.6	-3.9	-2.8	-2.2	-0.8	-2.0
· <u>.</u>	資料数	16	4	15	51	42	41

表 10 μ に対する ΔΩ の値

Table 10. Values $\Delta\Omega$ dependence on μ .

μ	⊿Ω
1.49 以下	+9
1.50~1.69	+8
1.70~1.95	+7
1.96~2.30	+6
2.31~2.82	+5
2.83~3.63	+4

比較観測を約 280 回行った. 結果は図 10 である. μ =1.5 付近および μ =2.5 付近の Ω 対 $\Delta\Omega$ の図はそれぞれ図 11 と図 12 である. これらから, 補正値を μ と Ω の関数として求め(図 13), 天頂光観測を補正した. その結果, DS-ZB の平均は -0.32, DS-ZC は 0.41 となった.

〔南極資料

Fig. 13. Correction chart of ZB observation.

2.3. 報告について

1974年2月~3月,および1974年9月~1975年1月までのオゾン全量観測値は,上記の 補正手続きを終え,高11,高11-2の様式で報告した.ただし,この報告には,下欄に, corrected in Apr. 1975 と注書きしてある.