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Abstract: The Nye's kinematic theory of ice sheet profiles is revised on 
the basis of the conservation law of ice mass, because the Ny�!s ice sheet 
model or the revised Haefeli's model does not satisfy the ice mass con­
servation law and therefore they cannot have a steady state. 

In the present revised theory, the mass conservation condition is repre­
sented by 

f: (b cos(} - u sin(}) ds=uh, 

dh in place of Nye-Haefeli assumption that bx=uh, where cos e-ds=dx, -­
dx 

=tan(}, and b and h(x) denote respectively the ice accumulation rate and 
the heigp.t of ice sheet surf ace. Then, the revised ice sheet profile is expressed 
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where h==H at x==O and x==L at h==O. This ice sheet profile model satisfies 

the ice mass conservation within the ice sheet. In this model, the equilib­

rium point to separate the ablation area from the accumulation area is 

clearly defined, and the stream-lines of ice flow within the ice sheet are 

explicitly determined. 

It seems further that the agreement of the present steady state theoret­

ical model of ice sheet profile with the observed data in Greenland is 

satisfactory. 

I. Introduction 
A theoretical profile of the ice sheets proposed by NYE (1959) on the basis 

of a simplified kinematic model seems to be in reasonably good agreement with 

the observed profile of ice sheet (e.g. PATERSON, 1969). However, a significant 

difficulty in the Nye's theory is that the velocity of ice flow becomes infinite 

at the outer edge of an ice sheet so that the real steady state of an ice sheet 
cannot be present in this model. 

In the Nye's two-dimensional kinematic model, where the total width and 
the thickness of an ice sheet are represented by 2L and h respectively in the 

x-z rectangular coordinates of horizontal x-axis and vertical z-axis, it is assumed 

that the amount of ice accumulating on the surface between the crest (at x==O) 

and any point P on the ice sheet surface is equal to the amount of ice flowing 

outwards through a vertical section at P (see Fig. 1.). When a uniform thick­

ness of ice, b, is continuously added to a unit area of the surface per unit time, the 

horizontal velocity of ice flow, u, through the vertical section at P is given by 

· z  

bx u==-. (1) 
h 

'---------'------------��" 
0 

Fig. 1. Coordinates for ice sheet profile model. 
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Obviously, u becomes infinitely large at x==-L where h==-0. As mathematically 
shown later, the mass balance of ice between the inflow caused by adding ice 

of bin rate and the outflow caused by the horizontal movement with u in velocity, 
both through the ice sheet surface, becomes infinitely large in the Nye's model. 
This result would mean that a real steady state of an ice sheet profile cannot 
be present in this model. 

It is obvious that the mass conservation law must be satisfied even in such 
a simple kinematic theory of the ice sheet profile. In the present trial, it will 
be assumed that the accumulation process of ice is exactly the same as in the 
case of Nye's model, but the outward flow of ice through the ice sheet surface 
is taken off into the outer atmosphere by the ablation effect from the ice sheet 
mass. Taking into consideration the mass conservation law in an explicit way 

as mentioned, the Nye's simple theory of ice sheet profile will be reasonably well 
modified to satisfy all the necessary conditions for a steady state model. 

2. Modified Profile of Ice Sheet 

All basic assumptions in the present theoretical trial are same as those 
adopted in the Nye's theory, except one condition that the ablation effect on 
the ice sheet surface is explicitly taken into account. 

In accordance with the notations of s and O given in Fig. 1, the accumula­
tion rate of ice on ds is b cos O· ds, while the ablation rate on ds is represented 
by u sin O · ds. Thus, the net accumulation rate dv per ds is given by 

dv==- (b cos 0-u sin 0) ds. (2) 

It may be clear that dv represents the vertically inward flow of ice through 
ds and it must be considered that dv is taken out into the outer atmosphere by 
some ablation effects when dv < 0, provided that the ice sheet profile expressed 
by h(x) represents its steady state. 

Then, the mass conservation law can be expressed by 

or 

and eq. (4) leads to 

J: (b cos 0-u sin 0) ds==-hu, 

J
x ( b + u .-!!.I!:_) dx==-hu, 
o . dx 

du _ b -----, 
dx h(x) 

( 3 ) 

( 4 ) 

( 5 ) 
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where b is assumed to be constant. 
On the other hand, the stress and strain rate law on the bottom surface of 

ice sheet may be represented, according to Nye's original expression, as ( dh )m u == A' -p gh dx , ( 6 ) 

where p, g and A' denote respectively the density of ice, the gravity accerelation 
and a material constant. Eq. (6) can be rewritten as 

1 

1 dh um h --==--' dx [3 
where f3=pgA'm. Combining eq. (5) with eq. (7), we get 

1 umdu==-b [3 dh. 
Integrating eq. (8) and putting u==O and h=H at x==O, we get 

m+l 

( 7 ) 

( 8 ) 

( m )u?i1 ==b [3(H-h). ( 9 ) m+l 
Then, combining eq. (7) and eq. (9), we get a h-x relation as 

hdh (10) 
(H-h)m+1 

The integration of eq. (10) with a boundary condition of h==O at x==L is given by 
(m+1)2 H2::+�1

[1 - (1 + 
m . !!_) (1-_l!_) m7'.:1] m(2m+l) m+l H H 

==( m;l b)m�l 13-m:1 L ( 1- � ). (11) 
Then, considering that h==H at x==O, we can rewrite eq. (11) as 

with 

m 
( m h ) ( h )m+l _ X 1 + ·- 1-- --, m+l H H L 

1 (m+ 1)2 2m+l 
( 

m+ 1 ) m+l m _ ___ H m+l == b {3-m+l L. m(2m+l) m 
As well known, the Nye's ice sheet profile is expressed as 

2m+l m+l ( ! ) 1n + ( l) 1n ==l, 

(12) 

(13) 

(14) 
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+ 1 2m+l 1 m+l m Hrn == bm 13-1 L rn. 2m+l 

17 

(15) 
As generally discussed by PATERSON (1969), the observed results of ice sheet 
profile indicate that m==2-3 and most likely m==2. Fig. 2 illustrates the present 
revised profile of ice sheet given by eq. (12) together with the Nye's profile 
expressed by eq. (14) for the case of m==2. As shown in the figure, the revised 
profile is not too much different from the Nye's one, though the apparent 
mathematical expression given by eq. (12) looks considerably different from that 
of eq. (14). 
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Fig. 2. The theoretical steady state profile of an ice sheet in com­

parison with the Nye's model for m=2. 

However, the relative relation between H and L for the same physical 
parameters such as f3 and b is different m eq. (13) from that in eq. (15), 
because eq. (13) can be rewriten as 

1 1 m+l H 2m:_1 == ( m ) (2m+l ) m b m /3-1 Lm!1 • (13') 2m+l m+l m+l 
Since ( m ) (2m+ 1 ) m < 1 for m > 0, the H value in the present revised m+l m+l 
model is always smaller than that in the Nye's model as far as the L value 
is fixed. 

3. Ice Mass Conservation 

A steady state of the ice sheet profile can be maintained only if the ice inflow 
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through the accumulation area surface is balanced with the ice outflow through 
the ablation area surface. The total net accumulation rate over the whole ice 
sheet surface is given from eq. (3) as 

I(L)== fL 
(b cos 0-u sin 0) ds dx 

o dx 

==bL-f: u dh. (16) 

The integration of eq. (16) by considering eq. (9) leads to 

I(L)==bL- ( m+I) ( m+l b f3)m+T H2://_ (17) 
2m+l m 

Putting eq. (13) into eq. (17) , we find that 
I(L) ==O. 

Namely, the ice mass conservation law holds in the present ice sheet profile 
model. Actually, the velocity (u

0
) of ice outflow at the outer edge of ice sheet 

(at x==L, h==O) takes a finite value and is given by eq. (9) as 
m+l 

m+ 1 
U

0 
m - b /3 H. 

m 
(18) 

In comparison, the u0 value in the Nye's model 1s infinitely large, and J (L) 
also becomes infinitely large, because 

(16') 

where IN (LN) represents the mathematical operation expressed by eq. (16) m 
the case of Nye's model. This result may indicate that the Nye's ice sheet 
model cannot have a steady state and the ice sheet must disappear with time 
in spite of a continuous ice accumulation represented by b. 

In the present model, an area of b cos 0-u sin O > 0 represents the accumu­
lation area, while that of b cos 0-u sin O < 0 the ablation area, the equilibrium 
point being determined by 

b cos O - u sin 8 = (b+ u �� )cos 8==0. (19) 

Putting eq. (9), eq. (12) and eq. (13) into eq. (19), we can get 

he _ m+l, Xe ==(
3m+l

) ( 
m 

) 
m7:i' (20) H 2m+l L 2m+l 2m+l 

where he and Xe denote respectively h and x values at the equilibrium point. 
Thus, the accumulation area can be defined by x/L < Xe/L or h/H > he/H, 
whereas the ablation area by x/L > xe/L or h/H < he/H. This conclusion is 
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obvious from a caluculated result that 
Jxe ( m \ m+l JL 

0 
( b- utanO)dx== bL 2m+l) ==- x

6

( b- u tanO)dx. 
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(21) 
In the case of m ==2 which may represent the most realistic ice sheet profile, 

3 ( 7 ) ( 2 )+ 
he ==s H and Xe == -5- 5 L==- 0.760 L. 

In the Nye's ice sheet profile also, the equilibrium point may be defined by 
the point where b + u �� ==O. This condition is satisfied by 

Then, putting eq. (14) into eq. (22), we get 

m+l 

2m+l • 

�
== (2m+l) m:1 �

== ( m )2:+1 

L 3m+l ' H 3m+l ' 

(22) 

(23) 
for this case. The equilibrium point thus defined for both the Nye's model 
and the present modified one is illustrated in Fig. 2 for the case of m==2. 

4. Stream Lines of Ice Flow within the Ice Sheet 

When the horizontal and vertical velocities of ice flow with in an ice sheet 
are noted by u and w respectively, the stream line of ice flow can be represented 
by 

dx dz 
u w 

Since the equation of continuity is expressed by 
au aw_ O ax + az - ' 

(24) 

and �: given by eq. (5) is independent of z, the vertical velocity, w, on the 
condition that (w) z=o==O and (w) z= n== - b  must be given by 

b w(x)== --z. h (25) 
On the other hand, combining eq. (9) with eq. (12) and eq. (13), we get 
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( 2m+ 1 ) bx 
m+I H (1+ m".:-1 ; )' 

whence eq. (24) becomes 

and therefore 

( 
m + 1 ) 

H 
dx 

( 
m 

) 
dx + dz == O, 2m + 1 xh + 2m + 1 x z 

( m+ 1 ) f dx m 
2m+ 1 H xh + 2m+ 1 log x + log z==constant. (26) 

The first term of the left-hand side of eq. (26) can be integrated with the aid 
of eq. (12), thus eq. (26) becoming 

( 
m ) log

( 
l--11 \+ m logx+logz=constant. (26') 

2m + 1 
1 + 

m . l!_ } 
2m + I 

m+l H I 

Noting � = �' � = 1)o, and � = (, eq. (26') can be rewriten as 

m 
�2m+i ( == constant, 

( l -1)0 )2:+1 _!I!:_ 

1 + 
m+ 1 1Jo 

or, with the aid of eq. (12), 
m+l �, (1 + m 1)0)-

2
m

+l ==constant, 
m+I 

where r;0( �) is a function of � and expressed by 

0-8 
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II 

� 0.4 

0.2 

ABLATION 
----ACCUMULATION AREA------AREA 
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Fig. 3. Stream lines of ice flow within a steady state ice sheet profile. (m=2) 
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( 1+ m
m
+l 7Jo) (1-7)o)m1:1==�. (13') 

An example of the stream lines of ice flow thus obtained is shown in Fig. 3 
for the case of m== 2. It will be clearly seen in the figure that any ice mass 
accumulating on the accumulation area surface flows downwards along a stream 
line and comes out from the ablation area surface and that the equilibrium 
point represents the lowest limit in height where the ice mass can move into 
the ice sheet. 

In the Nye's model of ice sheet profile, the stream lines of ice flow can 
be determined in a similar way. Namely, 

dx _ dz 
bx--1n 
h h 

for the Nye's model, and consequently the stream lines are expressed by xy== 
constant or 

� {; == constant. (29) 
In this case also, any ice mass accumulating on the accumulation area surface 
flows down along a stream line and comes out from the ablation area surface. 

5. Comparison of the Present Steady State Model 

with the Nye's Model 

Although the Nye's model of ice sheet profile includes the essential difficulty 
with respect to the mass conservation, the shapes of the ice sheet profile and 
the stream lines derived from this model. are not essentially different from those 
derived from the present self-consistent model of a steady state. 

When m becomes very large, the Nye's ice sheet profile approaches to a 
parabolic form as expressed by 

r;� + �o == 1, (for m-+ oo ), (30) 
whereas the present self-consistent steady state profile also approaches to the 
same expression as given by eq. (30). The geometrical characteristics of stream 
lines of ice flow in the Nye's model are not qualitatively different from those 
in the present self-consistent steady model. Namely, all ice masses accumulat­
ing on the accumulation area come out from the ablation area surface, and the 
position of equilibrium point to separate the ablation area from the accumula­
tion one is not significantly different from that derived from the present theory. 

As already discussed in Section 3, significant difficulty in the Nye's theory 
is concerned with the horizontal velocity of ice flow which becomes infinitely 
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la rge w ith x app roach ing to L. I f  we do not deal w ith the ice flow veloc ity , 
the refore ,  the Nye's model m ight be cons ide red as a s imple but reasonably 
good app rox imat ion of  an ice sheet p rofile model. The essent ial d ifference of  
the Nye 's theory from the p resent one is based only on a rough approx imat ion 
that h is assumed to be independent of x in eq. ( 5). If h assumes to be con­
stant in eq. ( 5) ,  u can be rep resented by eq. (1). 

The reason why impo rtance is st ill put on the Nye 's class ical model is 
due to its ext remely s imple concept represented by eq. (1) , because the Nye 's 
two -d imens ional model can be d irectly extended to a th ree -d imens ional case 
(e.g. HAEFELI, 19 61). I f, fo r  instance , we cons ide r  a pancake shape ice sheet 
hav ing a c ircula r symmet ric ity , eq. (1) can be replaced in a cyl ind rical coord i­
nate system , (r, 0, z), by 

or  
rb u == 2h ( 31) 

In an exactly same way as in the Nye 's theoret ical app roach , eq. ( 6) to gethe r 
w ith eq. ( 31) leads to a conclus ion that ( h ) 2n;,:-1 ( r ) m;1 

H + R ==l, ( 32) 
whe re h== O at r==R and h==H at r== O a re assumed. The mathemat ical form 
of  eq. ( 32) is exactly the same as that o f  eq. (14) , and the relat ionsh ip between 
H and R is given by 

2m +l + 1 --;,,;;- 1 m+l m H == b-:;;;: Rrn:- / /3' 2m+l 
' ( 33) 

wh ich is o f  the same mat he mat ical form as eq. (1 5) ,  but 
/3' = pg ( 2A') m • 

The equ il ib rium c ircle and the st ream l ines of  ice flow in th is three -d imens ional 
ice sheet model can be obta ined as 

and 
R 

( 4m+2 )  m� 1 

5m+ 3 ' �-H ( m+ l ) 2mm+ 1 

5m+ 3 ' ( 34) 

( ; ) (2 == constant fo r  st ream l ines. ( 35) 
It w ill be ce rta in that the shape of  ice sheet given by eq. ( 32) , the pos it ion 
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of equ il ibr ium l ine b y  eq . (34) and the s tream l ines by  eq . (35 )  are quan tita tively 
d ifferen t from the ir respective corres pond ing values wh ich could be der ived from 
the self-cons is ten t s tead y s tate mode l .  Ne ver theless , genera l character is tics of 
those parame ters of ice shee t pro files ma y be qual ita tive ly  re presen ted b y  these 
ma thema tica l formulae. If we tr y to e xtend the presen t two-d imens ional model 
of s tead y s ta te ice shee t to a three -d imens ional case , we mus t face an extreme 
comple xity of ma thema tica l e xpress ions . 

Recen tly  e ffects of the bed rock topograph y u pon the ice flow pa ttern 
w ith in a three -d imens ional ice shee t is becom ing one of im portan t pro blems 
s pec ifical ly in connec tion w ith the trans porta tion mechan ism of me teor ites and 
o ther sol id ma ter ials b y  the ice flow (e.g. N AGATA et al., 1975 ). It seems in 
th is sense tha t  the Nye 's s imples t poss ible model of ice shee t kinematics is s till 
impor tan t as the bas is for deal ing w ith a ver y  slow mo tion of ice shee t in ter ior 
on var ious complica ted boundar y cond itions . 

It mus t be aga in emphas ized , howe ver , tha t  an y model of ice shee t based 
on the Nye 's conce pt canno t quan tita tively deal w ith the veloc ity of ice flow 
a nd the ice mass ba lance . In br ie f, the N ye 's model could be cons idered as 
a topolog ical model ; it is no t a d ynam ic model nor e ven a kinema tic one , bu t 
it ma y be s till use ful for the purpose of a topolog ical cons idera tion of the ice 
shee t beha vior . 

6. Comparison of the Theoretical Steady State Ice Sheet 

Profile with Observed Data 

Compar isons of the theore tical ice shee t pro files w ith the o bser ved da ta in 
Antarctica and Greenland ha ve been repor ted (e. g. HAEFELI, 1961; PATERSON, 
1969). It has been generall y acce pted tha t  the Nye 's theore tical pro file can 
reasonab ly  well fi t  the o bser ved pro file da ta e xce pt for the ne ighborhood of the 
ou ter edge of an ice shee t. 

One of s tud ies in de ta il on th is problem is a theore tical and analytical 
wor k b y  HAEFELI (1961) on the Greenland ice shee t. HAEFELI d id no t d irec tl y 
a ppl ied the Nye 's theore tical pro fi le in h is analys is ,  bu t pro posed a l ittle mod i­
fied theore tical model . In h is case , the bas ic formula to re presen t the ice 
creep in an ice shee t is g iven b y  

. au k - - 1:n 

az - ' 
ins tead of the Nye 's bas ic assum ption tha t  

u==A' r:'f: 
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at t he bottom of ice sheet and u is constant at all le vels in an ice sheet a long 
a l ine of x ==constant . Ho we ver , HAEFELI also made an assumpt ion on the ice 
mass conservat ion that 

bx == f: udz== hum, (36) 

Eq . (36) is essent ially the same as eq . (1) in the Nye 's theory. On these 
assumpt ions , HAEFELI has der ived an express ion o f  an ice sheet pro file as 

2 (n+l) n+l (}!__)-n (�\ -n _ 
H + L )  - 1. 

(37) 

It may be o b vious that the Hae fel i 's model also cannot ha ve the ice mass 
conser vat ion with in an ice sheet and consequently t he real steady state of ice 
sheet sha pe cannot be represented by th is model . In h is analys is of the 
Greenland ice sheet with eq . (37), HAEFELI p icked u p  the crest po int A (h== 
3,160 m ,  x ==O) and po int C (h==2,000 m ,  x == 385 km ) as th e t wo re ference po ints 
(see Fig .  4), and parameter n of the theoret ical pro file eq . (37) to fit the o b ­
ser ved one was determ ined . It a ppears in h is res ult that n== 4 is the best , as 
sho wn in Fig .  4. The present steady state model is app l ied on the same data 
of Greenland ice sheet pro file by ta king A and C as the re ference po ints . 
For the purpose of compar ing the present steady state model with the Hae fel i  
one , s pec ial po ints , P1, P2, P3 and P4 bet ween A and C in h is wor k are ex-

ICE SHEET PROFILE 

GREENLAND A 

NAG�:> -

�EFEL( n , 4  ) 

j 

sookm 

Fig. 4. 

----t----L----------+---------llOOO 

I 

I 

400 x -­ 200 

Comparisons of the theoretical steady state model of an ice 
sheet profile (m=3) and the Haefeli's model (n=4) with the 
observed ice sheet profile of Greenland represented by full 
circles. 

0 
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Table 1. Theoretical ice sheet profiles to approximate the Greenland ice sheet. 

Theoretical values of x 
Points h 

NAGATA (m=2) NAGATA (m = 3) HAEFELI (n=4) 

A 3, 160m (O)km (O)km (O)km 

P1 3, 043 96. 3 80. 5 76. 3 

P2 2, 865 174. 4 157. 1 154. 3 

Pa 2, 644 245. 8 231. 4 230. 9 

P4 2, 362 316 307. 8 308. 7 

C 2, 000 (385) (385) (385) 

1 , 750 422. 2 427. 8 425. 4 

1 , 500 452. 6 463. 2 457. 3 

1, 250 477. 1 492. 1 481 .  7 

1 , 000 496. 3 514. 9 499. 6 

500 520. 5 544. 2 514. 2 

0 528. 1 553. 6 523. 3 

am ined in the presen t wor k also . Results for the cases of m==2 and m ==3 
are g iven in Ta ble 1 toge ther w ith the Hae fel i 's bes t case of n==4. As shown 
in Fig .  4, there is prac tically no d ifference be tween the presen t m==3 mode l 
and the Hae fel i's n==4 mode l for x ==0-400 km or h==l ,800-3, 160 m .  It 
may be concluded therefore tha t  the presen t m==3  model well fits the o bse rved 
pro file of Greenland ice shee t. Deal ing in more de ta il w ith the cur ve fi tting 
be tween the presen t m==3 mod �l and the o bser ved pro file , it may be found in 
Fig . 4 tha t  the m==3 mode l can we ll re presen t the o bser ved profile down to 

h:::: 1,500 m ,  bu t h of the theore tica l model becomes h igher than tha t  o f  o bser ved 
da ta for h below 1,500 m .  It seems therefore tha t  the presen t theor etical result  
is more feas ible than the Hae fel i 's n==4 mo del  wh ich resu lts in theore tical h 
va lues smaller than the o bser ved values in the ou ter reg ion . 

7. Concluding Remarks 
As a lready d iscussed in the preced ing sec tions , the s ign ifican t d ifficu lty in 

the Nye 's and Hae feli  's mode ls is ma inly tha t  the ice mass conser va tion does 
no t ho ld w ith in the ir ice shee t mo dels and consequen tly they canno t ha ve the ir 
s teady s tate .  Th is is due to the theore tica l result in the ir mode ls tha t  the 

hor izon ta l  ve locity of ice flow (u in the Nye 's mode l and um == + f: udz in 

the Hae feli 's mode l) becomes infin itely large w ith x approach ing to L. In these 
,.mode ls u is g iven by 
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u (or Um) =  �x = b (  t-) :: , 
whereas u in the present steady state model is expressed as 

10  

i 
i 8  

l U/b( h )  

i 
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Fig. 5. Horizontal velocity of ice flow dependent of x/L=�. 

(38) 

In Fig. 5 ,  values of u as a function of �0 are illustrated for the case of m==2 
in both the present and Nye's models. The relation of um to �0 in the Haefeli's 
model is almost the same as that in the Nye's model. 

The u values in the Nye's and Haefeli 's models are not much different 
from those in the present steady state model for � 

0 < 0.4, but the former becomes 
considerably larger than the latter for the range of �0 > 0.5 ,  finally approaching 
to infinity with �0 approaching to 1. The surface integral to represent the 
total net accumulation rate of ice over the whole ice sheet surface, IN (LN), 
expressed by eq. (16') ,  can be analytically obtained, the results of calculation 
showing IN(LN) == - oo regardless of m. The divergence of integration is due 
to that of the second term of eq. (16') ,  which represents the outflow of ice 
through the ice sheet surface. 

As far as the two-dimensional ice sheet model of steady state is concerned, 
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the presen t model only may be cons idered se lf -cons is ten t w ith res pect to all 
ph ys ical bound ar y  conditions . Howe ver, an e xtens ion of the presen t se lf-con ­
s is ten t theor y to a three -d imens ional c ircular ice shee t or a mod ification of the 
Haefeli 's mode l on the b as is of ice mass conser vation law canno t kee p  the 
mathematical s implic ity such as u sed in the presen t wor k. 
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