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A Theoretical Steady State Profile of Ice Sheets
(Two-Dimensional Model)

Takesi NAGATA*
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Abstract: The Nye’s kinematic theory of ice sheet profiles is revised on
the basis of the conservation law of ice mass, because the Nye’s ice sheet
model or the revised Haefeli’s model does not satisfy the ice mass con-
servation law and therefore they cannot have a steady state.

In the present revised theory, the mass conservation condition is repre-
sented by

fs (bcos § — usin 6) ds=uh,

in place of Nye-Haefeli assumption that bx=uh, where cos §-ds=dx, —%z—

=tan #, and b and A(x) denote respectively the ice accumulation rate and
the height of ice sheet surface. Then, the revised ice sheet profile is expressed
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by
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where h=H at x=0 and x=L at A=0. This ice sheet profile model satisfies
the ice mass conservation within the ice sheet. In this model, the equilib-
rium point to separate the ablation area from the accumulation area is

clearly defined, and the stream-lines of ice flow within the ice sheet are
explicitly determined.

It seems further that the agreement of the present steady state theoret-

ical model of ice sheet profile with the observed data in Greenland is
satisfactory.

1. Introduction

A theoretical profile of the ice sheets proposed by NyE (1959) on the basis
of a simplified kinematic model seems to be in reasonably good agreement with
the observed profile of ice sheet (e.g. PaTERson, 1969). However, a significant
difficulty in the Nye’s theory is that the velocity of ice flow becomes infinite
at the outer edge of an ice sheet so that the real steady state of an ice sheet
cannot be present in this model.

In the Nye’s two-dimensional kinematic model, where the total width and
the thickness of an ice sheet are represented by 2L and 4 respectively in the
x-z rectangular coordinates of horizontal x-axis and vertical z-axis, it is assumed
that the amount of ice accumulating on the surface between the crest (at x=0)
and any point P on the ice sheet surface is equal to the amount of ice flowing
outwards through a vertical section at P (see Fig. 1.). When a uniform thick-
ness of ice, b, is continuously added to a unit area of the surface per unit time, the
horizontal velocity of ice flow, u, through the vertical section at P is given by

bx
=== 1
u ; (1)

z

ﬂ\
H .

\"

ram .9

Fig. 1. Coordinates for ice sheet profile model.
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Obviously, u becomes infinitely large at x—=L where 2=0. As mathematically
shown later, the mass balance of ice between the inflow caused by adding ice
of b in rate and the outflow caused by the horizontal movement with u in velocity,
both through the ice sheet surface, becomes infinitely large in the Nye’s model.
This result would mean that a real steady state of an ice sheet profile cannot
be present in this model.

It is obvious that the mass conservation law must be satisfied even in such
a simple kinematic theory of the ice sheet profile. In the present trial, it will
be assumed that the accumulation process of ice is exactly the same as in the
case of Nye’s model, but the outward flow of ice through the ice sheet surface
is taken off into the outer atmosphere by the ablation effect from the ice sheet
mass, Taking into consideration the mass conservation law in an explicit way
as mentioned, the Nye’s simple theory of ice sheet profile will be reasonably well
modified to satisfy all the necessary conditions for a steady state model.

2. Modified Profile of Ice Sheet

All basic assumptions in the present theoretical trial are same as those
adopted in the Nye’s theory, except one condition that the ablation effect on
the ice sheet surface is explicitly taken into account.

In accordance with the notations of s and & given in Fig. 1, the accumula-
tion rate of ice on ds is b cos f-ds, while the ablation rate on ds is represented
by usin -ds. Thus, the net accumulation rate dv per ds is given by

dv= (b cos §—u sin 6) ds. (2)

It may be clear that dv represents the vertically inward flow of ice through
ds and it must be considered that dv is taken out into the outer atmosphere by
some ablation effects when dv < 0, provided that the ice sheet profile expressed
by h(x) represents its steady state.

Then, the mass conservation law can be expressed by

[ (b cos 6—u sin 6) ds=hu, (3)
or
[* (b +u 2 )dxzhu, (4)
Jo dx
and eq. (4) leads to
du — b (5)
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where b is assumed to be constant,
On the other hand, the stress and strain rate law on the bottom surface of
ice sheet may be represented, according to Nye’s original expression, as

) (6)

u=A4 (— h
PE I
where p, g and 4’ denote respectively the density of ice, the gravity accerelation
and a material constant. Eq. (6) can be rewritten as

1
pdh_ __ u" (7)
dx B
1
where f=pgA’™. Combining eq. (5) with eq. (7), we get
1
u™du=—>b B dh. (8)

Integrating eq. (8) and putting =0 and ~A=H at x=0, we get

m+1

(mzl )u " _ppH—K. (9)

Then, combining eq. (7) and eq. (9), we get a h~x relation as
1
<m+1 bﬁ) m+1
m
dx. (10)

hdh
(H_h)ﬁi_l B

The integration of eq. (10) with a boundary condition of 2—=0 at x=L is given by

GRSV PR PO I X TP T
m(2m+1) m+1 H H

:(’"mi b)ﬁl?fﬁ’ﬁfL<l——%>. (11)

Then, considering that ~—H at x—=0, we can rewrite eq. (11) as

[ -

with

(m+1)2 HZ”++11: ( m—+1
m(2m+1) m
As well known, the Nye’s ice sheet profile is expressed as

1
b)"‘“ gL, (13)

m+1

)+ )= 1
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with

mtl 2 g LM (15)

2m+1
As generally discussed by PatersoN (1969), the observed results of ice sheet
profile indicate that m—2~3 and most likely m=2, Fig. 2 illustrates the present
revised profile of ice sheet given by eq. (12) together with the Nye’s profile
expressed by eq. (14) for the case of m=2. As shown in the figure, the revised
profile is not too much different from the Nye’s one, though the apparent
mathematical expression given by eq. (12) looks considerably different from that

of eq. (14).
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Fig. 2. The theoretical steady state profile of an ice sheet in com-
parison with the Nye’s model for m=2.

However, the relative relation between H and L for the same physical
parameters such as S5 and b is different in eq. (13) from that in eq. (15),

because eq. (13) can be rewriten as

1 1
m+1 n'z"‘,,flz( m )/2’"4“1\7 p" B LS. (13)
2m+1 m+1/\ m+1/ )

1
Since ( m ) (2m+1) " <1 for m >0, the H value in the present revised
m+1 m+1

model is always smaller than that in the Nye’s model as far as the L value
is fixed.

3. Ice Mass Conservation

A steady state of the ice sheet profile can be maintained only if the ice inflow
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through the accumulation area surface is balanced with the ice outflow through
the ablation area surface. The total net accumulation rate over the whole ice
sheet surface is given from eq. (3) as

L . ds
I(L)= f (b cos 9—usin 0) 4 ax

0 X
H
_—_bL—f wdh. (16)
0

The integration of eq. (16) by considering eq. (9) leads to

m

mel 2mil
[(L)=bL— ( m+1 )( m+1 bﬁ) ' e (17)
2m-+1 m
Putting eq. (13) into eq. (17), we find that
I(L)=0.

Namely, the ice mass conservation law holds in the present ice sheet profile
model. Actually, the velocity (u,) of ice outflow at the outer edge of ice sheet
(at x=L, h=0) takes a finite value and is given by eq. (9) as

m+1
u, m = ’"njl bBH (18)

In comparison, the u, value in the Nye’s model is infinitely large, and I(L)
also becomes infinitely large, because

2m+1 m

Iy (Ly) = bLy — bLNJ:[l——( ”N )T]_li‘g’- (16')

where Iy(Ly) represents the mathematical operation expressed by eq. (16) in
the case of Nye’s model. This result may indicate that the Nye’s ice sheet
model cannot have a steady state and the ice sheet must disappear with time
in spite of a continuous ice accumulation represented by b.

In the present model, an area of bcos §—u sinf > 0 represents the accumu-
lation area, while that of bcos §—usinf < 0 the ablation area, the equilibrium
point being determined by

bcosf — usinf = (b—l— u-g—h)cos 6=0. (19)

X
Putting eq. (9), eq. (12) and eq. (13) into eq. (19), we can get

he  m+1 xe_<3m+l>( m >7"ir

H 2m+1° L  \2m+1/)\2m+1 (20)

where 4, and x. denote respectively 2 and x values at the equilibrium point.
Thus, the accumulation area can be defined by x/L<x./L or h/H> h/H,
whereas ‘the ablation area by x/L > x./L or h/H < h/H. This conclusion is
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obvious from a caluculated result that

m
2m+1

J?(b_utan 6)dx = bL ( )Wm;r:—.[:a(b—u tand) dx.  (21)

In the case of m=2 which may represent the most realistic ice sheet profile,

2
3 7\ 2\ %
he=—H and x, = (—5 )(—5 ) L=0.760 L.

In the Nye’s ice sheet profile also, the equilibrium point may be defined by
the point where b—l—uﬂ-zo. This condition is satisfied by

dx
§\ 1 =
e\ ™ [ Xe m ____’n__

(H) (L) T 2m+1° (22)

Then, putting eq. (14) into eq. (22), we get

Xe _ [2m+\mT R, ( m O\ TaeT (23

L~ \3m+1] ° H 3m+1]

for this case. The equilibrium point thus defined for both the Nye’s model
and the present modified one is illustrated in Fig. 2 for the case of m=2.

4. Stream Lines of Ice Flow within the Ice Sheet

When the horizontal and vertical velocities of ice flow with in an ice sheet

are noted by u and w respectively, the stream line of ice flow can be represented
by

dx
u

dz
W (24)

Since the equation of continuity is expressed by

ou ow
—t—= 0,
0x 0z

and —Z—Z given by eq. (5) is independent of z, the vertical velocity, w, on the

condition that (w),.o =0 and (w),.,——»b must be given by

w(x)= —% z. (25)

On the other hand, combining eq. (9) with eq. (12) and eq. (13), we get
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y— (2m+1) bx
m+1 H<l+ m _/z_)
m+1 H

whence eq. (24) becomes
( m+1 )de ( m )dx dz

2m+1 xh 2m+1 x +T:0’

and therefore
m+1 dx m
( Imt1 )HIEZ“L 2mt1

The first term of the left-hand side of eq. (26) can be integrated with the aid
of eq. (12), thus eq. (26) becoming

logx + log z=constant.  (26)

( ) 1 1_% Vo7 ogxad (26
og | og x+log z=constant. (26’
2m+1 g( . m h +2m+1 s )
Ul H
Noti —x-=5—ﬁ—= adL=Ce (26’) can be rewriten as
ng — - =& 7 =70 and - =4 eq. n rewriten
Bt/ B g
m & { = constant, (27)
1+ 2y
w1 )/
or, with the aid of eq. (12),
m e —constant 28)
sle ) = : (
where 7,(&) is a function of & and expressed by
ABLATION
'oh——‘ACCUMULATION AREA ™ AREA
08 \ '
T 06 \i
z <
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Fig. 3. Stream lines of ice flow within a steady state ice sheet profile. (m=2)
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m

w3

An example of the stream lines of ice flow thus obtained is shown in Fig. 3
for the case of m=2, It will be clearly seen in the figure that any ice mass
accumulating on the accumulation area surface flows downwards along a stream
line and comes out from the ablation area surface and that the equilibrium
point represents the lowest limit in height where the ice mass can move into
the ice sheet.

In the Nye’s model of ice sheet profile, the stream lines of ice flow can
be determined in a similar way., Namely,

( 14 vo) (1 —vo)T"m*Tée. (13%)

dx _  dz
bx bz
h h

for the Nye’s model, and consequently the stream lines are expressed by xy—
constant or

& L = constant. ' (29)
In this case also, any ice mass accumulating on the accumulation area surface
flows down along a stream line and comes out from the ablation area surface.

5. Comparison of the Present Steady State Model
with the Nye’s Model

Although the Nye’s model of ice sheet profile includes the essential difficulty
with respect to the mass conservation, the shapes of the ice sheet profile and
the stream lines derived from this model are not essentially different from those
derived from the present self-consistent model of a steady state.

When m becomes very large, the Nye’s ice sheet profile approaches to a
parabolic form as expressed by

75 + & =1, (for m — o), (30)
whereas the present self-consistent steady state profile also approaches to the
same expression as given by eq. (30). The geometrical characteristics of stream
lines of ice flow in the Nye’s model are not qualitatively different from those
in the present self-consistent steady model. Namely, all ice masses accumulat-
ing on the accumulation area come out from the ablation area surface, and the
position of equilibrium point to separate the ablation area from the accumula-
tion one is not significantly different from that derived from the present theory.

As already discussed in Section 3, significant difficulty in the Nye’s theory
is concerned with the horizontal velocity of ice flow which becomes infinitely
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large with x approaching to L. If we do not deal with the ice flow velocity,
therefore, the Nye’s model might be considered as a simple but reasonably
good approximation of an ice sheet profile model. The essential difference of
the Nye’s theory from the present one is based only on a rough approximation
that % is assumed to be independent of x in eq. (5). If 4 assumes to be con-
stant in eq. (5), # can be represented by eq. (1).

The reason why importance is still put on the Nye’s classical model is
due to its extremely simple concept represented by eq. (1), because the Nye’s
two-dimensional model can be directly extended to a three-dimensional case
(e.g. HaereLl, 1961). If, for instance, we consider a pancake shape ice sheet
having a circular symmetricity, eq. (1) can be replaced in a cylindrical coordi-
nate system, (r, 6, z), by

7 r*b=2rr hu,
or
rb
"22' .
In an exactly same way as in the Nye’s theoretical approach, eq. (6) together
with eq. (31) leads to a conclusion that

2m+1 m+1

h\ = ro\"m
(&) "+ (&) "= (32)
where /=0 at r=R and A=H at r=0 are assumed. The mathematical form
of eq. (32) is exactly the same as that of eq. (14), and the relationship between

H and R is given by

(1)

u—=

2m +1

m+1 m
2m+1

= 5 R p, (33)

which is of the same mathematical form as eq. (15), but
1
B =pg(24)".
The equilibrium circle and the stream lines of ice flow in this three-dimensional
ice sheet model can be obtained as

m

e /4m+2\"m“"ii h, . ( m+1 )2m+1 (34)
R \sm+3] > H ™ \sm+3) °
and
(—%—) ¢? = constant for stream lines. (35)

It will be certain that the shape of ice sheet given by eq. (32), the position
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of equilibrium line by eq. (34) and the stream lines by eq. (35) are quantitatively
different from their respective corresponding values which could be derived from
the self-consistent steady state model. Nevertheless, general characteristics of
those parameters of ice sheet profiles may be qualitatively represented by these
mathematical formulae. If we try to extend the present two-dimensional model
of steady state ice sheet to a three-dimensional case, we must face an extreme
complexity of mathematical expressions. :

Recently effects of the bed rock topography upon the ice flow pattern
within a three-dimensional ice sheet is becoming one of important problems
specifically in connection with the transportation mechanism of meteorites and
other solid materials by the ice flow (e.g. NagaTa et al, 1975). It seems in
this sense that the Nye’s simplest possible model of ice sheet kinematics is still
important as the basis for dealing with a very slow motion of ice sheet interior
on various complicated boundary conditions.

It must be again emphasized, however, that any model of ice sheet based
on the Nye’s concept cannot quantitatively deal with the velocity of ice flow
and the ice mass balance. In brief, the Nye’s model could be considered as
a topological model; it is not a dynamic model nor even a kinematic one, but
it may be still useful for the purpose of a topological consideration of the ice
sheet behavior.

6. Comparison of the Theoretical Steady State Ice Sheet
Profile with Observed Data

Comparisons of the theoretical ice sheet profiles with the observed data in
Antarctica and Greenland have been reported (e.g. HAEreLI, 1961; PATERSON,
1969). It has been generally accepted that the Nye’s theoretical profile can
reasonably well fit the observed profile data except for the neighborhood of the
outer edge of an ice sheet.

One of studies in detail on this problem is a theoretical and analytical
work by HaereLr (1961) on the Greenland ice sheet. HAEereL! did not directly
applied the Nye’s theoretical profile in his analysis, but proposed a little modi-
fied theoretical model. In his case, the basic formula to represent the ice
creep in an ice sheet is given by

. Ou

_ = krn’

0z

instead of the Nye’s basic assumption that

u=A
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at the bottom of ice sheet and u is constant at all levels in an ice sheet along
a line of x—=constant. However, HAErELI also made an assumption on the ice
mass conservation that

bx :Jhudz: hu,. (36)
0

Eq. (36) is essentially the same as eq. (1) in the Nye’s theory. On these

assumptions, HAEreLT has derived an expression of an ice sheet profile as
2(n+1) n+1

R

It may be obvious that the Haefeli’s model also cannot have the ice mass
conservation within an ice sheet and consequently the real steady state of ice
sheet shape cannot be represented by this model. In his analysis of the
Greenland ice sheet with eq. (37), HaereLt picked up the crest point A (A=
3,160m, x=0) and point C (A=2,000 m, x=385 km) as the two reference points
(see Fig. 4), and parameter n of the theoretical profile eq. (37) to fit the ob-
served one was determined. It appears in his result that n—4 is the best, as
shown in Fig. 4. The present steady state model is applied on the same data
of Greenland ice sheet profile by taking A and C as the reference points.
For the purpose of comparing the present steady state model with the Haefeli
one, special points, P;, Py, P; and P, between A and C in his work are ex-

ICE SHEET PROFILE
GREENLAND A
M"‘ m
13000
| 2000
NAGATA (m=3) { h
: 'HAEFELK n=4 )
]
|
IS 1000
| |
|
{
[
|
I
|
!
600km ] %00 x < 200 0

Fig. 4. Comparisons of the theoretical steady state model of an ice
sheet profile (m=3) and the Haefeli’s model (n=4) with the
observed ice sheet profile of Greenland represented by full
circles.
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Table 1. Theoretical ice sheet profiles to approximate the Greenland ice sheet.

Theoretical values of x
Points h : :
NAGATA (m=2) NAGATA (m=3) HAEFELI (n=4)
A 3,160m (0O)km (0)km (0)km
P, 3,043 96.3 80.5 76.3
P 2,865 ‘ 174.4 157.1 154.3
P 2,644 245.8 231.4 230.9
P, 2,362 316 307.8 308.7
C 2,000 (385) (385) (385)
1,750 422.2 427.8 425.4
1,500 452.6 463.2 457.3
1,250 477.1 492.1 481.7
1,000 496.3 514.9 499. 6
500 520.5 544.2 514.2
0 528.1 553.6 523.3

amined in the present work also. Results for the cases of m=2 and m=3
are given in Table 1 together with the Haefeli’s best case of n—=4. As shown
in Fig. 4, there is practically no difference between the present m=3 model
and the Haefeli’s n—=4 model for x=0~400km or ~2=1,800~3,160m., It
may be concluded therefore that the present m=3 model well fits the observed
profile of Greenland ice sheet. Dealing in more detail with the curve fitting
between the present m=3 model and the observed profile, it may be found in
Fig. 4 that the m=3 model can well represent the observed profile down to
h=1,500m, but ~ of the theoretical model becomes higher than that of observed
data for A below 1,500 m. It seems therefore that the present theoretical result
is more feasible than the Haefeli’s n—4 model which results in theoretical #
values smaller than the observed values in the outer region.

7. Concluding Remarks

As already discussed in the preceding sections, the significant difficulty in
the Nye’s and Haefeli’s models is mainly that the ice mass conservation does
not hold within their ice sheet models and consequently they cannot have their
steady state. This is due to the theoretical result in their models that the

. . . 1 .
horizontal velocity of ice flow (x in the Nye’s model and u,= TJ- udz in
0

the Haefeli’s model) becomes infinitely large with x approaching to L. In these
.models u is given by
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u(or u,)= _bzx_ =b <_I£;T~> _f;,

whereas u in the present steady state model is expressed as

w= [ bﬁ<H—h)]%:(2m+l>b(IL{)(I—M%. (39)

) (38)

m-+1

m

Fig. 5. Horizontal velocity of ice flow dependent of x/L=E¢&.

In Fig. 5, values of u as a function of &, are illustrated for the case of m=2
in both the present and Nye’s models. The relation of u, to &, in the Haefeli’s
model is almost the same as that in the Nye’s model.

The u values in the Nye’s and Haefeli’s models are not much different
from those in the present steady state model for &, < 0.4, but the former becomes
considerably larger than the latter for the range of &, > 0.5, finally approaching
to infinity with &, approaching to 1. The surface integral to represent the
total net accumulation rate of ice over the whole ice sheet surface, Iy (Ly),
expressed by eq. (16’), can be analytically obtained, the results of calculation
showing Iy(Ly)=—oco regardless of m. The divergence of integration is due
to that of the second term of eq. (16”), which represents the outflow of ice
through the ice sheet surface.

As far as the two-dimensional ice sheet model of steady state is concerned,
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the present model only may be considered self-consistent with respect to all
physical boundary conditions. However, an extension of the present self-con-
sistent theory to a three-dimensional circular ice sheet or a modification of the
Haefeli’s model on the basis of ice mass conservation law cannot keep the
mathematical simplicity such as used in the present work.
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