第11次南極地域観測隊極光部門報告 1970-1971

福西浩*・鮎川 勝**

Auroral Observations at Syowa Station, 1970-1971

Hiroshi Fukunishi* and Masaru Ayukawa**

Abstract: The auroral observations carried out by the 11th wintering party of the Japanese Antarctic Research Expedition, 1970–1971, are; 1. Photographic observations of auroras with 16 mm and 35 mm all-sky cameras on routine basis. 2. Visual and photographic observations of auroras. 3. Observations of the space and time variations of proton auroras with the H_{β} tilting-filter meridian-scanning photometer and electron auroras with the multicolor meridian-scanning photometers. 4. Observations of auroral pulsations with the zenith photometers.

The principal aim of these observations is to study the dynamical morphology of proton and electron auroras during magnetospheric substorms. A high time-resolution scanning photometer was constructed to measure the H_{β} emissions in proton auroras. The equipment consists of the coelostat for scanning the sky along the geomagnetic meridian and the tilting-filter photometer for detecting the intensity and Doppler shift of the H_{β} emission. The scanning period of the coelostat was 45 s, and the tilting period of the filter was I s. The lower threshold of the detection was 0.25 R/Å. In order to study the space and time variations of the electron flux and energy spectra of auroral electrons, observations with the multicolor meridian-scanning photometers were carried out. The scanning period of these photometers was 5 s. The observed emission lines were $N_2^+\lambda 4278$, $0I_{\lambda}5577$ and $0I_{\lambda}6300$. The minimum detectable intensities of the photometers were 100 R, 100 R and 30 R, respectively for these emissions.

The photographic observations were carried out with an improved model of 35 mm all-sky camera mounted with a fish-eye lens.

1. はじめに

最近の科学衛星による地球周辺の直接観測によって地球磁気圏の構造が次第に明らかにな

^{*} 東京大学理学部地球物理学教室. Geophysical Institute, University of Tokyo, Bunkyo-ku, Tokyo.

^{**} 国立科学博物館極地研究センター. Polar Research Center, National Science Museum, Kaga 1–9–10, Itabashi-ku, Tokyo.

ってきた、しかし磁気圏プラズマの爆発的加熱現象である磁気圏サブストームの機構や磁気 圏プラズマ中の現象である地磁気脈動,VLF 帯自然電波の発生機構に関し, 未解決の問題 がまだ多く残されている.極光は加速された磁気圏プラズマが磁力線に沿って極域電離圏ま で降下することによって起きる.従って極光の空間的,時間的変動を知ることにより磁気圏 プラズマの構造やその運動を知ることができる.そこで極光のダイナミカル・モルフォロジ ィを明らかにすることがとりわけ重要になってきた.このため1967年(第8次隊)から極光輝 度の地磁気子午線に沿っての掃天観測が始められ (HIRASAWA and KAMINUMA, 1970; HI-RASAWA and NAGATA, 1972), 1969年(第10次隊)からは、極光の更に早い動きをとらえ るため、高速度二重掃天光電受光器による観測が始められた。但しこれらの観測は、極光が 主として高エネルギーの電子によって励起されることや、技術的困難さから、電子励起の極 光に限られていた.しかしながら磁気圏プラズマが,電子とプロトンからできていることか ら磁気圏サブストームの構造や、地磁気脈動、VLF 帯自然電波の発生機構を解明するう え で,電子励起の極光を観測すると同時に,プロトンによって励起される極光(プロトン・オ - ロラ)の観測が是非とも必要となってきた(これまでに昭和基地でなされたプロトン観測 の結果に関しては、NAKAMURA、1962; TSURUDA and KANEDA、1968 参照). 1970年(第11 次隊)の極光研究観測では,プロトン・オーロラの観測に主眼をおき,新たに掃天受光器を 設置し,プロトンによって励起される水素バルマーベータ線 (H₆)の空間的,時間的変動を 観測し、多くの新しい事実を得ることができた.電子励起の極光に関しては、新たに多色式 光電受光器を用いて、極光の空間的、時間的変動を知ると同時に降下電子のエネルギースペ クトルに関する情報を得た.

一方極光の定常観測では、全天写真観測に新しいモデルの全天カメラ(魚眼レンズを用いた 35mm 全天カメラ)装置が使用されるにいたり、従来の16mm 全天カメラの欠点が改善され、より充実した観測態勢が整った.

第11次越冬観測(1970年2月~1971年1月)の極光部門の定常・研究のそれぞれの観測項目は次の通りである.

A. 16mm 全天写真による極光の形態と運動の観測(鮎川・千葉)

B. 35mm 全天写真による極光の形態と運動の観測(鮎川)

C. 目視およびスチール写真による極光形態観測(鮎川)

D. 極光輝度地磁気子午線掃天観測(福西)

a. H_β線掃天観測 b. 多色掃天観測

LT 12 UT 9 **LT** 12 ŪŤ 9 **AUG**,13 VIIIIIIIIIIIIII SEP.23 mmmmmmmmm anna anni anni mmunimm TITTI TITTI TITITITI in a printing in the internet of the second OCT. 1 minimum mminin Thin the second day entim -----proved to come _____ and an an SEP. 1 17.17 ⊟Hø MULTICOLOR □ AURORAL PULSATION I. 35 mm ALL-SKY CAMERA ★ 🚾 16 mm ALL-SKY CAMERA (d) 図1(a-d)極光観測実施図. 1(a-d)極光観測実施図. 1(a-d)極光観測実施図. 水素ベータ線掃天観測, /////は, 多色掃天観測, □□は, 極 光輝度短周期脈動観測を表わす. and a contract of the contract The state of the s Figs. 1 (a-d). Aurora observation chart at Syowa Station. Legend: all-sky camera; H_{β} tilting-filter meridian-scanning photometer; /////. multicolor meridian scanning photometers; zenith photometer for auroral pulsations; ★ 16 mm all-sky camera.

(**c**)

E. 極光輝度短周期脈動観測(福西)

F. 極光雑音の電波観測(福西)

筆者らはこの報告で、それぞれの観測方法、経過および結果の概略などについて紹介し、 広く一般に資料を利用していただく手引きにしたいと考える.

全天カメラ観測,H_β線掃天観測,多色掃天観測,極光輝度短周期脈動観測の実施状況を 図1(a, b, c, d)に示す.

2. 16mm 全天写真観測

1968年(第9次隊)に地学棟(旧観測棟)より,観測棟の屋根の上に移転された16mm全 天カメラにより30秒毎に15秒露出で撮影した.観測期間の詳細はАуикаwа(1971)を参照 されたい.本観測器は1966年(第7次隊)以来のもので随所に老朽化が目立ち,9月初めよ りカメラ本体の故障が頻繁に発生し,9月29日に観測を打切った.

3. 35mm 全天写真観測

3.1. 観測装置

本観測装置は、金田栄祐氏(東京大学理学部)の設計によるもので、従来の16mm 全天 カメラによる観測の不満足な点を補い、全天写真観測記録の精度、取り扱いおよび資料整理 上において大きな進歩をもたらしたといえる.図2(a, b)にその実施概念および系統図を 示す.

図 2 (a) 35mm全天カメラのブロック・ダイアグラム Fig. 2 (a). Operation diagram of the 35mm all-sky camera.

No. 44. 1972]

図 2 (b) 35mm 全天カメラの概観図 Fig. 2 (b). Layout of the 35mm all-sky camera.

この装置は、オートマックス、シネ・パルスカメラを使用し、35mm シネ判フィルム上 に極光現象を撮影記録するものであるが大別して撮影カメラ(G-4SD シネ・パルスカメ ラ)、カメラ制御器、保温箱の三つから成立っている.撮影カメラは、オートマックスG-4SD シネ・パルスカメラ本体、データーボックス、撮影レンズ(魚眼レンズ)およびマガジンか ら構成され、G-4SD カメラ制御器内に組み込まれた撮影パルス信号に同期して動作する設 計になっている.

その仕様は次のとおりである.

35mm

(a) 使用フィルム

データ部分 18.75mm×5.08mm (b) 画面寸法 画面 18.75mm×18.75mm 400フィート (マガジン) (c) フィルム容量 魚眼レンズ (ケンコー), f: 40mm (アンジェニュー), F: 3.5 (d) 撮影レンズ (e) レンズマウント スクリューマウント パルス駆動方式 (f) 撮影方式 (g) データーボックス ①時計, 回年月日, 撮影条件などのデータを書き込んだデータ板, ○現象状態他フィルム感光濃度の比較を行なうための基準となるチ ャート(上記①~②の各データを, 画面データー部分に撮影する) AC100V および DC28V (h) 電源

(i) 寸法, 重量 約170mmW×360mmH×480mmL, 約9kg

G-4 SD シネ・パルスカメラ制御器は1分間に2こまの露出を制御できる撮影パルス発生器,撮影されたフィルムの長さを表示するフーテージカウンター,撮影こま数の選択操作(1こま/分,2こま/分のいずれかを選択できる)およびフィルム送りチェック操作などを行なう操作スイッチから構成され,その電源容量は約700VA である.

3.2. 観測経過と結果

観測期間の詳細は Ayukawa (1971) に述べてあるが,記録の大半は,観測開始当初,初 期故障と思われる種々の事故があり,時計表示などデータ焼込み部分に判別しにくい部分が ある.

従来の 16mm 全天カメラを魚眼レンズ使用の 35mm 全天カメラに変更したことによって 得られる特徴を以下に簡単に述べ,両者の撮影記録を図 3,4に示す.

① 魚眼レンズ使用により従来かけていた天頂付近の撮影が可能となった.

② 撮影画面の拡大により解析精度が向上した.

③ 日付,フィルム感光標準濃度板などが,目的の被写体と同時かつ同一画面内に記録で きた.

④ 取り扱い,操作が非常に簡単になった.

⑤ 将来問題として,極光の多点観測の使用に適する(コンパクトであるため,運搬,設置などが比較的容易).

⑥ 資料整理上の労力の軽減.

4. 目視およびスチール写真(単発,連続写真)による観測

目視およびスチール写真観測は,天測点にコルゲートの残品によって防風装置を作り,そ こを第1観測点とした.当初この防風装置の中に長時間(3~4時間,長い時は一晩中)待機 して観測したが,6月頃から防寒のため,待機場所を第9発電棟の暗室に移し,オーロラの 活動度,あるいは風・温度など気象条件によって,その観測場所を天測点,第9発電棟裏ま たは屋根の上など,適当に選定して観測した.目視観測は,3月6日から10月20日の間,夜 間晴天時(月令12~22の期間は軽視)原則として30分毎に International Auroral Atlas の code によって記録をとった.スチール写真は,ニコンS2(F:1.1,50mm)およびニ コンF(F:1.4,50mm)×2計3台のカメラを使用して撮影した.主としてニコンS2を カラー単発写真,ニコンFを連続および単発自黒写真用と使い分けた.観測開始当初は,カ

図3 35mm 全天カメラによるブレイクアップ時のオーロラの急激な強度上昇と極方向への広がりの例. この時の地磁気 H 成分の変化は, 図10に示される. Fig. 3. 35mm all-sky camera sequential photographs showing a sudden brightening of the quiet arc followed by a rapid poleward motion during an auroral breakup event. Simultaneous magnetic records are shown in Fig. 10.

JUL. 3, 1970

図 4 サブストーム中のオーロラの35mm および16mm 全天カメラ記録の比較

Fig 4. Comparison of simultaneous autoral photographs taken with the 35 mm all-sky camera and the 16 mm all-sky camera during the autoral substorm on 3 July, 1970.

ラーと赤外線フィルム同時撮影に重点をおき,極光の活動状態によって随時連続写真観測を した.7月中旬よりブレイクアップ後のベイル,パッチ状オーロラの連続写真に重点をおい て観測した.使用フィルムは,カラー写真用として,コダックエクタクロム HS, 白黒単発 写真用にコダック2475またはコダック 4-X, 連続写真用にコダック 4-X などを用いた.な お新しい試みとして,オーロラブレイクアップ時を撮影することを目的としてコダックイン フラレッド,コダックエアロエクタクロムフィルムを若干使用した.

表1にスチール連続写真観測がおこなわれた日数および枚数を示す.

Data	Time	(U. T.)	Number of	Rem	narks
Date	Start	Stop	photographs	Azimuth	Elevation
1970 Mar. 2	h m s. 23 04	h m s 23 06	10	192°	22.°
	23 08	23 10	10	180	30
	23 16	23 17 30	7	42	10
	23 20	23 23	7	42	10
Mar. 3	19 46	19 50	18	67	6
	20 00	20 01	6	18	43
	20 10	20 16	24	58	10
	20 30	20 33	16	54	13
	20 56	20 58	10	56	10
	20 59 50 [,]	21 04 20	14	86	13
	21 10	21 14	10	301	10
	21 15	21 16	6	260	10
	21 17	21 21	19	198	10
	22 46	22 48	11	32	12
Mar. 6	20 58	20 59 30	13	180	70
	21 42	21 44	7	223	12
	21 50	21 52	10	218	12
	21 53	21 57	17	270	68
	22 00	22 04	12	214	52
	22. 06	22 09	17	20	20
Mar. 9	22 53 30	22 55 30	14	122	16
	23 11	23 14	15	264	22
Mar. 17	22 25	22 29	16	188	12
	22. 35	22 39	23	184	10
	22 50	22 57	30	194	10
	23 04	23 11	29	223	16
Mar. 18	20 40	21 20	207	5 7	12
Mar. 19	21 43	21 47	15	200	76

表 1 スチール連続写真による極光観測実施表 Table 1. Dates and times for serial photographs of auroras.

福西 浩・鮎川 勝

Date		Time (U. T.)						Number o	f	Remarks		
Da	ite	Sta	art		S	top		photograp	hs -	Remain Azimuth 90° 158 184 112 82 182 0 288 300 314 94 230 98 204 184 202 170 0 300 230 204 184 202 170 0 300 230 200 190 270 320 260 290 278 338 304 260 330 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320 320	Elevation	
Mar	19	h 23	m 04	S	23	14 m	S		- -	90°	109	
	15	23	15		23	23		33		158	Elevatio	
		23	37		23	4 5		37		184	8	
Mar	28	00	17		00	19		13		112	10	
wiai.	20	19	58		20	00		20		82	14	
		20	10		20	16		38		182	10	
		22	37		22	38		5		0	20	
		22	39		22	46		21		288	17	
		22	53		22	55		13		300	18	
		23	02		23	03		11		314	13	
Anr	6	21	42		21	45		17		94	10	
•••	Ū	21	47		21	49		9		230	6	
Apr.	19	22	50		22	59		41		98	8	
Anr	20	02	30		03	32		18		204	.8	
p		22	37		22	41		16		184	7	
		22	49		22	50	30	13		202	6	
Mav	16	01	17		01	25	30	7		170	10	
Iu v	3	00	35		00	56		22		0	90	
5-7	-	21	46		21	47		9		300	58	
		23	04		23	05		9		230	10	
		23	08		23	11		9		200	90	
		23	14		23	16		13		190	82	
		23	17		23	19		10		270	20	
		23	25		23	27		10		320	60	
July	6	00	19		00	23		20		260	70	
		00	30		00	40		11		290	68	
		00	55		01	08		14		278	70	
		01	14		01	20		7		338	20	
		01	25		01	40		29		304	70	
		01	49 3	30	01	59		20		260	40	
July	9	21	23		21	25		12		330	80	
		21	50		21	53		13		320	75	
		22	41		22	43		8		320	80	
		23	34		23	43		20		330	70~80	
		23	50		23	52	30	15		300	80	
July	10	23	46		23	50		18		290	0	
July	11	00	11		00	21		40		320	75	
		01	26		01	38		24		320	80	
July	21	19	06		19	10		22		200~240	50~60	
		22	45 3	30	22	47		15		90	15~20	

Fig. 5(a). Serial photographs showing the formation of multiple arcs and the brightening of the northernmost arc before an auroral breakup event.

43m24s

Mar. 18 20h 40m 00 s(UT) E.

41m00s

- 図 6 スチール連続写真. Mar. 19は、ブレイクアップ後のオーロラの極方向への移動の例. Jul. 6 は、サブストームの回復期にみられるペッチ状オーロラの例
- Fig. 6. Serial photographs taken on Mar. 19 and Jul. 6, 1970 showing the poleward movement of rayed bands after an auroral breakup event and the appearance of patches during the subsequent recovery phase.

Jul. 9 23h50m00s NNW.

29m00s

図7 スチール連続写真. Jul.9は、ブレイクアップ時に天頂近くでみられるコロナ状オーロラの例. Sep.1は、ブレイクアップ 前の多重アークの形成と低緯度側への移動の例

Fig. 7. Serial photographs taken on Jul. 9 and Sep. 1, 1970 showing auroral corona at the zenith and the formation of multiple arcs, which

Sep.3 21h45m00s SSE. 53m00s

図8 スチール連続写真. 極側の地平線でみられるループ状オーロラの例 Fig. 8. Serial photographs taken on Sep. 3, 1970 showing auroral loops near the pole-side horizon.

Sep. 22 22h01m SE.

図 9 スチール連続写真. Sep. 3 は、 ブレイクアップ時のレイ・バンドの輝度上昇の例. Sep. 22 は、 トラベリング・サージの例 Fig. 9. Serial photographs taken on Sep. 3 and Sep. 22, 1970 showing the brightening of rayed bands during an auroral breakup event and a westward traveling surge. No. 44. 1972]

Date	Time ((U. T.)	Number of	Remarks		
Date	Start	Stop	photographs	Azimuth	Elevation	
Aug. 2 Sept 1	h m 01 48 19 19	h m 01 55 19 29	38 40	300~330° 40	20~30°	
Sept. 3	21 45	21 53	50	60~80	0~10	
	22 31	22 37	15	30~40	0~10	
Sept. 22	21 51	22 05	46	60	0	

また撮影したスチール連続写真の中で代表的なオーロラの形態を選んで図5(a, b), 6, 7,8,9に示し、その時の地球磁場水平成分の変化を図10に示す.

一方第11次隊では、冬期に内陸旅行が行なわれ、昭和基地の南東約 300 km の地点にみず ほ観測拠点(70°42.6′S,44°18.9′E,海抜 2,167 m)を設け、超高層部門では、地磁気や極 光などの予備的観測を行なった。図11は、その時撮影したオーロラのスチール写真である。 将来この地点と昭和基地とのオーロラの同時観測が行なわれるならば、オーロラ機構解明の ための有力な情報が得られるであろう。

5. 極光輝度地磁気子午線掃天観測

5.1. H。線掃天観測

プロトンによって励起される H_β線 (λ4861.3 Å) の強度を,地磁気子午線に沿って掃天 観測することにより,プロトン・オーロラの空間時間変動に関する情報を得ようとするもの であり,装置は,子午面をスイープするシーロスタット部と。それより取り入れた H_β光を 検出するティルティング・フィルタ方式の光電受光器よりなる.ティルティグ・フィルタ方 式は,多層膜干渉フィルタの透過波長が,その光の入射角の増加とともに短波長側へ移動す る特性を利用したもので,干渉フィルタを周期的に傾けることによって波長をスイープする. 高速プロトンによって励起された H_β線は,ドップラー・シフトのため 4861.3Å より短波 長側へずれており,ティルティング・フィルタ方式で波長をスイープすることにより,ドッ プラー・シフトの大きさ,従って入射プロトンのエネルギーを知ることができる.また同時 にバックグランドの光の強度を測定することができるので, H_β線のように非常に弱い光を 検出するのに適している.

装置の概観図は、図12に示される.地磁気子午線に沿って、180°45秒の周期で掃天するシ ーロスタット部より取り入れられた極光の光は、ダクトを通り、ティルティング・フィルタ光 電受光器に導かれる.光電受光器の先端には平面鏡があり、これを倒すことにより、極光の

図 10 図 5~9 で示されたスチール連続写真撮影時の地磁気 H 成分 Fig. 10. Geomagnetic H-component variations during the days of auroral activity shown in Figs. 5-9.

図 11 1970年7月27日みずほ観測拠点で撮影されたオーロラ(撮影者:福嶋泰夫) Fig. 11. Aurora observed on Jul. 27, 1970 at Mizuho Camp (courtesy of Dr. Yasuo FUKUSHIMA).

図 12 H_{β} ティルティング・フィルター方式掃天光電受光器の概観図 Fig. 12. Schematic operation diagram of an H_{β} tilting-filter meridian-scanning photometer.

光はしゃ断され、代りに水素標準光源からの光が光電受光器に導かれ、キャリブレーション が行なわれるようになっている.水素標準光源は、定電流電源によって安定化された水素ス ペクトル・ランプからの光を、干渉フィルタを通して H_β線だけ選び出し、半透明の平板に よって面光源にしたものである.入射光の量は、絞りをマニュアルで切換えることによって 変えられる.

極光の光,あるいは水素標準光源からの光は、半値幅約5Åの狭帯域干渉フィルタによっ て特定の波長だけ選別され、対物レンズによって集光され、光電子増倍管に導かれる. 干 渉フィルタは、シンクロナス・モーターにより、0°→15°→0°と周期的に傾き、波長領域を 福西 浩・鮎川 勝

〔南極資料

スイープする.スイープの速さは,モーターを取りかえることにより,2段階に変えられ, 0°から15°までのティルティング周期は,1秒及び0.25秒である.0°から15°までのティル ティングにより,4866Åから短波長側~80Åのスイープを行なっている.視野を限定するた めのフィールド・ストップは,マニュアルで回転し,視野は,1.5°,2.5°,7°と選択できる. フィールド・ストップの前には,シャッターがあり,電気的に光電子増倍管への光をしゃ断 することができる.光電子増倍管は,9558 B-EMI を使用,S/N を改善するため,冷却器 により,-20°C に冷却し,暗電流は5×10⁻¹¹A 以下である.光電子増倍管の出力は,極光 のダイナミック・レンジが広いため,増幅率の違う2つの IC オペアンプにより増幅され, 3チャンネル・ペンレコーダー及び4チャンネル・FM データレコーダーに記録された.記 録紙上の感度は,0.25R/Å・mm 及び2.5R/Å・mm であり,測定できる強度範囲は, 0.25R/Å~100R/Å である.

5.2. 多色掃天観測

極光の3つの特徴的輝線 N₂+ λ4278, 0I λ5577,0I λ6300の掃天観測をすることによって、電子によって励起される極光の空間時間分布,及び入射電子のエネルギー・スペクトルに関する情報を得ようとするものである.

図 13 多色掃天光電受光器の概観図

Fig. 13. Schematic operation diagram of multicolor meridian-scanning photometers.

装置は、図13に示されるように、空間を掃天するために鏡を回転させる機械部分をおさめ たチェンバーと、極光の光を検出する光電受光器をおさめたチェンバーよりなり、屋外に置 かれるため機械部分のチェンバーは、ヒーターによって約 15°C に保温される.一方光電受 光器のチェンバーは保温されず,外気温程度まで冷却されるため,冬期極光観測期には,約-20°C 以下に下がり,光電子増倍管の S/N を改善するのに役立っている.

鏡は、回転軸に対し45°の角度で取り付けられ、地磁気子午線に沿って180°往復回転運動 を行ない、NごS と空間をスイープする.180°掃天周期は、シンクロナスモーターの回転速 度を変えることにより、5秒及び2.5秒と2段階に切り換えられる.回転する鏡によって取 り入れられた極光の光は、干渉フィルタによって定められた特定の波長だけ選別され、対物 レンズによって集光され.光電子増倍管に導かれる.視野を限定するためのフィールド・スト ップは、マニュアルにより回転し、視野は、1°~5°と選択できる.光電受光器には、また電子 シャッターがあり、これを閉じることにより、ベース・ラインを決めることができる.光電 子増倍管は、OI 26300 検出用に R374-HTV、OI 25577、N₂+24278 検出用に R 268-HTV を使用、暗電流はそれぞれ0.005 μ A、0.03 μ A 以下である.光電子増倍管の出力は、H_θ 光 電受光器と同じく、極光のダイナミック・レンジが広いため、それぞれ増幅率が違う 2 つの IC オペアンプで増幅され、3 チャンネル・ペンレコーダー及び4 チャンネル・FM データ レコーダーに記録された.記録紙上の感度は、6300Å は60R/mm、1kR/mmで、測定でき る強度範囲は、30R~40kR である.5577Å、4278Å は、高感度の方が 200 R/mm、低感度 の方が 1.25kR/mm であり、測定できる範囲は、100R~50kR である.

装置の感度検定は、白色標準光源によって行なった.これは、定電流電源で安定化された タングステンランプからの光を半透明の平板により面光源にしたもので、光源の強さは、電 流を変えることによって調節できる.

5.3. 極光掃天観測の結果

図14は、H_β掃天光電受光器による極光中の H_β エミッションの観測例である. H_β線は、 ドップラー・シフト及びドップラー・ブロードニングを起こしており、昭和基地を通る磁力 線方向 (~10°N) に近ずくにつれドップラー・シフトが大きくなる (ピークの間隔が広く なる)のが認められる. 図15は、多色掃天受光器による極光アークの観測例であり、6300Å、 5577Å、4278Å の3輝線が感度を変えて記録されている. 図16は、極光のブレイクアップに 伴う H_β強度上昇の例で、電子励起の極光からのコンタミネーションによるバックグランド ・レベルの上昇がみられる. 固定フィルタでは、バックグランドの強度と、H_β強度を区別 できないが、ティルティング・フィルタ方式では、H_βエミッションの輝線強度だけを求め ることができる.

さて、こうした掃天受光器の記録から、極光の空間的、時間的変化、及びプロトン励起の

Fig. 14. Example of auroral H_{β} emission record by an H_{β} tilting-filter meridianscanning photometer.

図 15 多色掃天光電受光器によるオーロラ・アークの観測例 Fig. 15. Example of the multicolor meridian-scanning photometer record of auroral arcs.

- 図 16 ブレイクアップに伴う H_βエミッション強度の上昇の例. 上段が 多色掃天光電受 光器からの 0I 25577 エミッションの記録で,中段,下段は, H_β 掃天光電受光器からの感度の異なる H_βエミッションの記録である.
- Fig. 16. Example of the record for an auroral breakup event accompanied by an H_{β} emission enhancement. Top: 0I λ 5577, middle and bottom: H_{β} emissons (low and high sensitivities.)

Date Mar.	Time (U.T.)				Data		Time (U.T.)			
	St	art	E	nd	- Date	Start		End		
	h	m	h	m	Aug.	h	m	h	m	
18–19	18	30	00	30	23	16	15	22	30	
19-20	21	45	00	30	27-28	16	00	02	30	
27	17	30	23	00	28–29	16	00	02	30	
28-29	22	00	00	45	31-1	16	15	02	15	
Apr.					Spet.					
3-4	18	15	01	15	1-2	16	30	01	30	
4-5	21	15	00	15	2-3	16	30	01	45	
6-7	17	45	01	00	3-4	16	15	02	00	
15-16	16	45	02	00	6-7	17	30	01	45	
30-1	15	00	03	26	19–20	17	39	00	45	
/ Iay					22-23	18	04	00	30	
1-2	14	55	03	15	24–25	18	15	00	15	
3-4	16	00	03	30	25-26	18	15	00	00	
14–15	15	30	04	00	26–27	18	15	00	00	
27	18	45	21	45	27	18	16	23	48	
une					28	18	30	23	45	
12-13	18	45	05	00	29	19	00	23	46	
13	14	14	16	00						

表2 プロトン・オーロラ及びエレクトン・オーロラの空間時間変化図リスト Table 2. List of the intervals, for which space and time diagrams of H_B emissions and 5577 Å emissions are available. 福西 浩・鮎川 勝

〔南極資料

図 17 (a, b) Sep. 6, 1970 の H_β エミッションおよび 5577Å エミッションの空間時間変化図. 最上段が H_β エミッション, その 下が5577Å エミッションの空間時間変化図で, 数字1は, それぞれ8R, 100R に相当. 最下段は, 昭和基地の地磁気 H,D,Z成分 Figs. 17 (a, b). The space-time diagrams of H_β emissions (top) and 5577Å emissions (middle). Numerals in the contour map are given in units of 8R and 100R, respectively. Bottom traces are the H; D; Z components of geomagnetic variations.

極光、プロトン・オーロラと、電子励起の極光、エレクトロン・オーロラの相互関係を求めるため、H_β線掃天光電受光器による記録、及び多色掃天光電受光器の記録からは、エレクトロン・オーロラの代表的輝線 0I λ 5577 エミッションを選び、縦軸に地磁気子午線方向の空間位置、横軸に時間をとり、オーロラ強度を等強度線で表わすダイアグラムの作成を行なった. 作成した日数は、31日間で、日時は表2で示される.

この空間時間変化図は、プロトン・オーロラとエレクトロン・オーロラの関係に関する有力な情報を提供してくれた.図17(a, b)は、その代表的例である.

最上段は、 $H_{\beta} x \leq y \geq y \geq z$ の空間時間変化図.数字1は、8Rに相当.その下は、5577 Å $x \leq y \geq y \geq z$ の空間時間変化図で、数字1は、100Rに相当.空間時間変化図では、斜入 射効果 (van Rhijn effect) や大気吸収等による補正は行なわれていない.また、オーロラ の高度を 100km と仮定し、天頂角を昭和基地からの地磁気子午線に沿っての距離に変換し た.最下段は、地磁気変化の H, D, Z 成分である.

この図をみると、2000UT(昭和基地では、Geomagnetic Local Time、GLT は、UT より15分進む)よりも早い時間帯では、H(あるいは Z)の増大及び減少とより相関をもっ て極方向から赤道方向に H_βのエミッション・ゾーンが広がり、また極方向に後退してゆく のがみられる(1800UT 及び1900UT 付近をみよ). この時の0I λ 5577 エミッションの空間 時間変化は、H_βのそれと非常に類似しており、強度比 I(5577)/I(H_β)は約10で、 プロト ンによって5577Åが励起された場合の計算値(EATHER、1967 a、b)と一致する. このこと

図 18 午後側でみられるプロトン・オーロラのスチール写真 Fig. 18. The proton aurora observed in the dusk of Sep. 1, 1970.

No. 44. 1972]

第11次南極地域観測隊極光部門報告

から,この時間帯での5577Åエミッションは,プロトンによって励起されていると考えられる.

一般に、プロトン・オーロラは非常に強度が弱いため(H_ℓ強度で普通 100R 以下)、全 天カメラ写真ではむろん識別できないが、午後側でみられるプロトン・オーロラは、非常に 幅の広い、構造がはっきりしない帯状のオーロラが東西にかかるのが普通である。図18は、 長時間露出をかけた午後側でみられるプロトン・オーロラのスチール写真である。

さて、2000UT以降になると、プロトン・オーロラが見える領域(プロトン・オーロラ・ オーバル)は、徐々に赤道側に向かって移動し始め、プロトン・オーロラ・ベルトの極側に エレクトロン・オーロラのアークが出現し始める(21000 UT 以降).ここで重要なことは、 プロトン・オーロラとエレクトロン・オーロラの出現する領域がはっきりと分離されている ことである.この事実と FRANK (1971)の科学衛星の 観測結果などを合わせて考えると、 磁気圏においてエレクトロン・オーロラは、プラズマ・シートからの降下電子によって、プ ロトン・オーロラは、トラッピング・バウンダリイの内側のリング・カレント・プロトンか らの降下プロトンによって起こされていると考えられる.

そして,2200UT に南の地平線でエレクトロン・オーロラのブレイクアップが起こり,そ れより少し遅れてエレクトロン・オーロラの低緯度側から始まるプロトン・オーロラのブレ イクアップ現象がみられる.このブレイクアップ現象によって,プロトン・オーロラのゾー ンは,極方向に後退することが分かる.

Sep. 6 の例は, KP が低い (2+, 2+) 比較的静かな日の例で, エレクトロン・オーロ ラ・オーバルの位置は, 昭和基地よりも極方向 (高緯度側) にあった. KP の大きい荒れた 日は, エレクトロン・オーロラ・オーバルの位置は, 低緯度側に下がり, それと同時にプロ トン・オーロラ・オーバルの位置も低緯度側に移動する. 図19 は, そうした日の例で, KP は4 である. しかし, この例でも先に述べたような, ブレイクアップ前のプロトン・オーロ ラの低緯度側移動と, ブレイクアップ時の極方向への広がりがはっきりとみられる. ブレイ クアップの直前2230UT には, プロトン・オーロラは, 昭和基地の北の地平線よりも低緯度 側へ移動してしまい, プロトン・オーロラが消失したようにみえる.

ブレイクアップ時の極方向への広がりは、エレクトロン・オーロラとプロトン・オーロラ で様子が違い、プロトン・オーロラのブレイクアップの方が数分遅れる.また2249UT に始 まる2度目のブレイクアップでは、 プロトン・オーロラで地磁気 Z 成分の鋭い減少とよい 対応をもって顕著なブレイクアップ現象がみられるのに、エレクトロン・オーロラでは、は

図 19 Sep. 27, 1970の H_β エミッションおよび5577Å エミッションの空間時間変化図 Fig. 19. The space-time diagrams of H_β and 5577Å emissions on Sep. 27, 1970 shown along with the simultaneous geomagnetic variations.

っきりしない.これらは、Sep.6の静かな日と同様、プロトン・オーロラの ブレイクアップがエレクトロン・オーロラのそれより低緯度側で起こることによって解釈される.

KP=3の中程度に荒れた日の例を図20に示す.この例でも、2000UT付近から、プロトン ・オーロラ・オーバルの低緯度側移動が始まり、それ以降、その高緯度側に、強いエレクト ロン・オーロラが出現する.そしてエレクトロン及びプロトン・オーロラのブレイクアップ 現象が2209UTからみられる.

さて,真夜中以後の午前側では, ブレイクアップ現象は,かなり様子が違ってくる.図21 に示されるように,ゆっくりした地磁気 H 成分の減少がおこっている最中に0020UT から, 急激なプロトン・オーロラの極方向への広がりが起こる.この時,真夜中より前のNarssarsauq (昭和基地より27°西)では,鋭いネガティブ・ベイが起こっている. 即ち,真夜中以 降では,エレクトロン・オーロラよりもプロトン・オーロラでブレイクアップ現象がはっき

Fig. 20. The space-time diagrams of H_{β} and 5577Å emissions on Sep. 2, 1970 shown along with the simultaneous geomagnetic variations.

図 21 Sep. 1-2, 1970 の H_βエミッションおよび 5577Å エミッションの空間時間変化図 Fig. 21. The space-time diagrams of H_β and 5577Å emissions on Sep. 1-2, 1970 shown along with the simultaneous geomagnetic variations.

りとみられる.以上の結果をまとめる.

A. Early evening secter

1) 午後側の2000GLT (地磁気が荒れている日は、1800GLT) より早い時間帯で観測される5577Åエミッションは、空間時間分布 H_θ がエミッションと非常によく似ており、強度も弱く、強度比は、I (5577)/I(H_θ)~10で、5577 Å エミッションがプロトンで励起されていると考えた場合の計算結果と一致する.このことから、この領域では降下粒子はプロトンのみで、純プロトン・オーロラの領域と考えられる.即ち、エレクトロン・オーロラ・オーバルの位置は、昭和基地より5°以上極側にあり、掃天光電受光器ではエレクトロン・オーロラは観測されない.

2) 地磁気の H 成分の増大とともに、プロトン・オーロラの強度は増大し、領域は極方 向から赤道方向に広がる.また H 成分の減少とともに、プロトン・オーロラは強度を減少 No. 44. 1972]

第11次南極地域観測隊極光部門報告

させつつ極方向に後退する.即ち、プロトン・オーロラは、ポジティブ・ベイの発達及び衰 退とよい相関をもっている.

B. Late evening secter

2000GLT から2200GLT の時間帯(荒れた日は、1800GLT から2100GLT の時間
帯)になると、プロトン・オーロラのゾーンは高緯度側に鋭い境界をもち、この境界の高緯
度側の領域にエレクトロン・オーロラが出現する。

2) ブレイクアップの1時間位前から,プロトン・オーロラのゾーンは低緯度側に移動し 始め,その高緯度側に出現したアークも同時に低緯度側に移動し続ける.

3) プロトン・オーロラ・オーバルの高緯度側で、エレクトロン・オーロラのブレイクア ップ現象(急激なオーロラ強度の上昇と、極方向へのオーロラの広がり)が起こるが、この ときプロトン・オーロラは、極方向への広がりを示さない.

C. Pre-midnight secter

 1) 2200 GLT から 0000 GLT の時間帯(荒れた日は 2100 GLT から 0000 GLT の時間
帯)になると、エレクトロン・オーロラのブレイクアップ現象と同時に、プロトン・オーロ ラもブレイクアップを起こす。

2) プロトン・オーロラのブレイクアップは、エレクトロン・オーロラよりも遅れ、かつ エレクトロン・オーロラの低緯度側で起こる.

D. Post-midnight sector

ゆるやかなネガティブ・ベイの中で、プロトン・オーロラの顕著なブレイクアップ現象が起こる.エレクトロン・オーロラは、弱いレイが出現するだけでブレイクアップ現象は見られない.

2) このとき,0000 GLT 前の地点では,鋭いネガティブ・ベイが観測される.

6. 極光輝度短周期脈動観測

極光輝度の短周期変動,およびそれらの地磁気脈動との関連を調べるため,天頂方向に固 定された視野の異なる二つの光電受光器により極光輝度の連続観測を行なった.

観測装置のダイアグラムは図22に示される.受光器の視野は,それぞれ 30°及び5°で,干 渉フィルタは両者とも4278Åを用いた.記録器には,6チャンネル・ペンレコーダーを用い, 広域用受光器の出力は,帯域フィルタF1 (0.01~0.1Hz),F2 (0.1~2Hz)を通し,直流 成分に重なった短周期の変動だけを記録させ,狭域用受光器の出力は,そのまま記録させた.

図 22 極光輝度短周期脈動観測システムのブロックダイアグラム

Fig. 22. Block diagram of the operation system of auroral and geomagnetic pulsations.

地磁気脈動の X 成分は、同じ周波数特性をもつフィルタ Fl, F2を通し、Y 成分はフィルタを通さずそのまま記録させた.

7. あとがき

プロトン・オーロラとエレクトロン・オーロラの同時掃天観測の結果は,オーロラ・フレ 7(磁気圏サブストーム)を解明する上で,多くの新しい情報をもたらしつつある.これら についての更に詳しい結果は,おって JARE Scientific Report や,その他の雑誌に発表 していく予定である.

終りに,観測実施にあたりご指導とご協力をいただきました第11次隊の皆様,ならびに準 備段階でご指導いただいた東京大学理学部地球物理学研究施設の皆様に厚く謝意を表します.

文 献

- AYUKAWA, M. (1971): Records of all-sky camera utilization at Syowa Station, Antarctica in 1970. JARE Data Rep., 13, 1-19.
- EATHER, R. H. (1967 a): Secondary process in proton auroras. J. Geophys. Res., 72, 1481-1490.
- EATHER, R. H. (1967 b): Auroral proton precipitation and hydrogen emissions. Rev. Geophys., 5, 207-285.
- FRANK, L. A. and K. L. ACKERSON (1971): Local-time survey of plasma at low altitudes over the auroral zones. Univ. Iowa Res. Rep., 71-40.
- HIRASAWA, T. and K. KAMINUMA (1970): Space-time variation of aurora and geomagnetic disturbances, auroral observations at Syowa Station in Antarctica. JARE Sci. Rep., Ser. A, 8, 1–29.
- HIRASAWA, T. and T. NAGATA (1972): Constitution of polar substorm and associated phenomena in the southern polar region. JARE Sci. Rep., Ser. A, 10, 1-76.

NAKAMURA, J.(1962): Time correlation of auroral spectra. J. Phys. Soc. Japan, 17, Supp. A-I, 227-233.

TSURUDA, M. and E. KANEDA (1968): Hydrogen emission preceding auroral break-up. Rep. Ionos. Space Res. Japan, 22, 289-294. (1972年4月11日受理)