昭和基地における地吹雪発生中の視程と風速の関係

真木太一*

Relationship between the Visibility and the Wind Velocity in Drifting Snow at Syowa Station

Taichi MAKI*

Abstract: At Syowa Station, Antarctica the author investigated the relation between the visibility and the wind velocity from May to August in 1970. On some occasions, blowing snow was mixed in snow fall.

The results are summarized as follows;

The snow particles start to drift when the wind velocity at 10m height (U_{10}) becomes larger than 8m/s and the visibility becomes 150 m with the wind velocity of about 15m/s; 10m at about 25m/s; and $2\sim3m$ at about 35m/s.

The visibility observed at 1.5m height (V) is inversely proportional to the fifth power of the wind velocity:

 $\log(1/V) = 5.00 \times \log U_{10} - 8.03$,

where V and U_{10} denote MKS unit.

The deduction of friction drag $(r-\tau_c)$ is almost proportional to the fifth power of the velocity (U_{10}) .

 $\log(\tau - \tau_c) = 5.10 \times \log U_{10} - 7.34$,

where τ is obtained from the friction velocity(U_{*}), and τ_e from the roughness length(Z₀) of the constant value of 0.01cm. τ , τ_e and U₁₀ denote MKS unit. $\tau - \tau_e$ is related to the energy which causes the blowing of snow particles and is almost inversely proportional to the visibility.

1. はしがき

南極において,気温の低い冬期間には,強風になると必ず,大陸および海氷上の雪面から 雪粒子が飛び,いわゆる地吹雪が発生し始める.地吹雪に降雪を伴った場合のブリザードで は,特に視程が悪くなり,外出は極めて危険を伴うことになる.

視程と風速に関して,風速が7~8m/sになると,低い地吹雪が発生し始め,それ以上に風 速が強まれば,急速に視程が悪くなり,風速が30m/s位になると視程が数メートルにしばし ばなることが定性的に分かっていた.しかし,南極において視程と風速の関係を定量的に研 究したのは,LILJEQUIST (1957)の論文がある程度で著者が調べた範囲では,他に見当ら ない.著者は,1970年1月から1971年2月まで昭和基地で第11次南極地域観測隊の気象研究担 当隊員として越冬したが,その内の冬期間である1970年5月から8月までに視程と風速の観

^{*} 農林省農業技術研究所気象科. Division of Meteorology, National Institute of Agricultural Sciences, Nishigahara 2-1-7, Kita-ku, Tokyo.

[南極資料

測を行なった. 観測結果を比較の意味で LILJEQUIST の方法に従ってまとめたのでその結果 を報告する.

2. 観 測 方 法

観測は近距離については、ヘリポート上および電離棟までの空地に 25m毎に150m までに 旗を立て、第9居住棟の北出口から、さらにすでに立ててあった旗で、距離が13,21,40m である旗を利用して、通信棟の北出口から、視程観測を行なった.また遠距離については、 見晴らし岩 (1km) までに存在する各地形および大陸氷の断崖縁辺 (4km) および送信棟の ある場所 (400m) までの距離を、あらかじめ測定しておいてから視程観測を行なった (図1).

摩擦応力の測定は、管制棟の北側150mの海氷上に、6mの測風用のポールを立て、三杯式 微風速計5台を高度6、3、1.5、0.8、0.4mに取りつけ、風速の垂直分布を測定することによ り、粗度長と摩擦速度を求め、その摩擦速度を用いて摩擦応力を求めた・風速の計数場所は、 内陸棟で計数方法は風程としてディジタルで出てくるため、写真撮影制御装置を用いて、毎 時間および適宜に撮影して読み取った・

一方,20m鉄塔に21,10,5,2.5,1.25mの各高度に取りつけてある三杯式風速計と同じ 高度に取りつけてある白金抵抗温度計より,風速と気温の垂直分布を求め,リチャードソン ナンバー(Ri)を算出して,その値が0.05より小さいものを選出し,さらに不安定状態に なる場合は,ほとんどなかったため,Riの範囲としては-0.01<Ri<0.05に含まれる風速 値を用いて以後の解析を行なった.

観測期間は視程関係では、1970年5月から8月までとし、風速関係では安定度の関係上、 比較的安定度を考慮しなくていい時期である3、4月の値を用いた.なお視程観測で地吹雪発 生中の気温は、-5°C~-20°Cの範囲である.

図1 昭和基地で視程観測に用いられた旗の位置,各旗の上の数字は観測基点から旗までの距離 Fig. 1. Location of flags which were used in the visibility observation at Syoura Station. Numerals on each flag denote the distance from the observation base to flags.

36

3. 結果および結果の考察

接地気層中で風が定常的に吹き,中立成層状態に近い場合には,一般に風速分布は対数法 則で表わされる.

 $U = \frac{U_*}{\kappa} \ln \frac{Z}{Z_0} \qquad (1)$

但し, U: 高さZでの風速, κ: カルマン定数, 一般に0.4と考えられている, U_{*}: 摩擦速度, Z₀: 粗度長.

風速分布と温度分布より求められるリチャードソンナンバー(Ri)が,-0.01 < Ri < 0.05の範囲に入る場合の風速分布より求めた摩擦速度(U_{*})および粗度長(Z₀)をグラフに表わすと図2のようになる.

粗度長は風速が増加するに従って、高度6mでの風速(U₆)が13m/sまでは一定な値で、

 $Z_0 = 0.01 \text{ cm} \dots (2)$

13m/sを越えると,

 $\log Z_0 = 0.0010 U_6 - 3.30 \dots (3)$

で表わされることが判った.すなわち13m/s以下で粗度長が一定であることは,風速分布式 に関して,雪面の表面粗度が変わらないことを示し,それ以上で粗度長が増加することは, 雪粒子を持ち上げるのに,風のエネルギーが使われるため,雪面の粗さが風速分布式に関し て,見掛け上増加するためだと考えられる.また摩擦速度は,風速に対して 13m/s までは (1)および(2)式から導かれる関係式,

 $U_* = 0.0365 U_6$

図 2 6m高度の風速 (U₆) に対する摩擦速度 (U_{*}) および粗度長 (Z₀) Fig. 2. Relation between the friction velocity (U_{*}) and roughness length (Z₀) against the wind velocity at 6m height (U₆).

〔南極資料

に従って直線的に増加することになり、13m/sを越えると(1)および(3)式により導かれる関係式,

$$U_* = \frac{U_6}{34.95 - 5.75 \times 10^{-8} U_6}$$

に従って増加することが判った.また摩擦応力(で)は一般に次式で表わされる.

 $\tau = \rho U^2_*$

但し,ρ:空気の密度,ここでτは風速の増加に対してZ₀が風速13m/s以下では(2)式に,13m/s 以上では(3)式に従って変化するとして求めたものである.

次に図2より、 U_6 の増加に対して $Z_0=0.01$ cm=const.,とした場合の摩擦応力を τ_e とし、 U_6 に対する τ 、 τ_e および $\tau-\tau_e$ との変化を図3に示す.

図3で、 $\tau \ge \tau_e$ は風速の増加に対して同様に増加するが、 U_6 が13m/s以上で τ_e の方が $\tau \ge 0$ も小さな値を示すことになる、そこで、 $\tau \ge \tau_e$ との差を求めた結果を、同じく図3に示してある、 U_6 が13m/s以上になると急速に視程が悪くなるが、この $\tau \ge \tau_e$ との差は、雪粒子を持上げるのに、単位時間に消耗される<u>運動量</u>を表わしていることにほかならない。

次に視程と飛雪粒子密度との関係について述べると,飛雪粒子が同じ密度で分散している か,同じ大きさの飛雪粒子が分散していると考えた場合,

$$\rho_s = \mathbf{k} \cdot \frac{1}{\mathbf{V}}$$

が成り立つことが判っている.例えばLILJEQUIST(1957),山崎・井部・福谷(1969). 但し、 *ρ*_s:飛雪粒子密度,V:1.5m高度での視程,k:比例定数.

この式の理論的考察については、LILJEQUIST (1957),気象学ハンドブック(1959)を参照してもらうとして、ここでは割愛する.

次に視程と風速との関係を図4に示す.図4に示すごとく、 U_{10} が8m/sで低い地吹雪が発生し始め、風速の増加に対して急激に視程が悪くなり、 U_{10} が平均15m/sで約150m、25m/sで約10m、35m/sで2~3mとなることが判った.

風速 (U_{10}) が8m/sで地吹雪が発生し始めるが,その時の摩擦速度 U_* が,29.1cm/s (10 m高度),これを高度30cmの値に修正すると風速が5m/sで地吹雪が発生し始め、地吹雪発生 の U_* の臨界地は、18.2cm/sであり、その時の Z_0 の値は0.01cmである.一方、NEMOTO *et al.*、 (1969)が砂地で求めた場合の値は、砂粒子の直径が0.25mm高度30cmで U_* が、19.6cm/sで ある.ここで砂粒が跳躍しない場合の Z_0 の値は、0.0012cmである.さらに、ZINGG (1952) が、風洞で求めた結果では、直径が0.44mmで U_* が30.5cm/s、 Z_0 が0.031cm という値が出

38

5

1K 500

٤

VisibilitY, V ,

10-5-May ~ August, 1970 35 1 5 10 15 Wind²⁰ Velocity, 30 计 图 4 宝貌: 10m 高度の國連(IL-)上

図3 粗度長(**Z**₀)が一定でない場合の摩擦応力 (τ), **Z**₀を一定な値0.01cmとした場合の摩擦応力 (τ_c)および(τ-τ_c)の6 m高度の風速に対する 関係

Fig. 3. Relations between τ , τc and $\tau - \tau c$ against the wind velocity at 6 m height (U₆). The friction drag (τ) is obtained from roughness length (Z₀) which is not constant and the friction drag (τc) is obtained from Z₀ which is constant, 0.01 cm.

図 4 実線:10m 高度の風速(U₁₀)と1.5m高度 の視程(V)との関係. 点線:U₁₀とVとの関係の 最大・最小限界値

Fig. 4. Solid line: Relation between the visibility at 1.5m height (V) and the wind velocity at 10m height (U_{10}) . Dotted line: Maximum and minimum limits of the relation between V and U_{10} .

ている.この結果より、雪と砂においても直径が砂で0.25mm、雪で 0.02~0.5mm の場合, ほぼ同じ摩擦速度で砂粒が跳躍し、地吹雪が発生することになる.

図4で、降雪を伴い、降雪量が増える場合には、左下方にづれていくことになり、降雪がない場合には、右上方にづれていくことになる.なお図中での点線はバラつきの最大、最小値を示す.この関係を logU₁₀とlog(1/V) のグラフに表わすと図5のようになり、式に表わせば、

$$\log(-\frac{l}{V}) = 5.00 \log U_{10} - 8.03$$

となり、視程は風速の5乗に反比例することが判った.

一方 $\tau - \tau_{e}$ (dynes/cm²単位) と U_{10} (cm/s単位) との関係を同じく図5に示す. さらに式

図 5 10m高度の風速 (U₁₀) に対する1.5m高度 の視程の逆数(1/V)および摩擦応力の差 (τ-τ_c) との対数関係

Fig. 5. Logarithmic relation between the deduction of the friction drag $(\tau - \tau_c)$ and the inverse number of the visibility at 1.5m height (1/V) against the wind velocity at 10m height (U_{10})

に表わすと,

 $\log(\tau - \tau_c) = 5.10 \log U_{10} - 7.34$

ということになり、摩擦応力は風速の5乗に比例することが判った.なおここで式中のV、 U_{10} および $\tau-\tau_c$ はMKS単位とする.

さらに図5に示すようにVと $\tau-\tau_c$ との関係は、ほぼ平行な直線で表わされることが判った. この変化傾向はLILJEQUIST (1957)の結果とよく一致していることになる.またVと $\tau-\tau_c$ との関係を式で表わせば、ほぼ次式のような結果が得られることになる.なお式中のVと $\tau-\tau_c$ はMKS単位とし、比例定数はm²sec²/kgの単位をもつものとする.

 $V = 5/(\tau - \tau_c)$

この結果より視程Vは Z_0 が風速によって変化するとして求めた摩擦応力 τ と、 Z_0 が風速によって一定である時の摩擦応力 τ_e との差、すなわち($\tau - \tau_e$)に反比例することが判った.

飛雪粒子は風のエネルギーによって雪面より持ち上げられ,重力とバランスする所で空中 に浮かび,風速とほぼ同じ速さで飛んでいることになる.降雪と雪面の雪粒子からの供給が 増えれば増える程,空中に浮かんでいる飛雪粒子が多くなり,視程を悪くすることになる.

表面が滑らかな場合より、粗度が大きい方が持ち上げられる雪粒子が多くなることが考え られる.そして、U₁₀で8m/s以上になると地吹雪が発生し始めるが、凸地においては、風が 強くなり、風圧が強く働いて地吹雪が強くなり、視程を悪くすることになる.一方凹地にお いては、風が弱まるため、飛雪粒子は少なくなり、逆に雪が堆積することになる.このこと は雪面におけるサスツルギーの凸凹の場合に言えることであり、南極大陸内部のアンジュレ

〔南極資料

No. 42. 1971] 昭和基地における地吹雪発生中の視程と風速の関係

ーションにも適用されることである.

4. あとがき

南極の昭和基地において、5月から8月までの冬期間に降雪を伴った場合および降雪を伴わ ない場合の視程と風速との関係を調べてみた.その結果次のようなことが判った.

10m高度の風速が8m/sを越えると低い地吹雪が発生し始め、10m高度での平均風速が15 m/sでは、平均値で約150mまでに急速に視程が悪くなり、25m/sでは平均約10mまでとなり、 さらに35m/sになると2~3mまでになってしまう.

視程(V)は風速(U₁₀)の5乗に反比例する関係,すなわち関係式で表わせば,

 $\log(\frac{l}{V}) = 5.00 \log U_{10} - 8.03$

となることが判った.但しMKS単位とする.

また摩擦速度より求めた摩擦応力(τ)と粗度長が、常に一定とした場合の摩擦応力(τ_e) との差、すなわち $\tau - \tau_e$ と10m高度の風速(U_{10})との関係を式で表わせば、

 $\log(\tau - \tau_c) = 5.10 \log U_{10} - 7.34$

のようになることが判った. 但しMKS単位とする.

このことにより、アーアーとは雪粒子を持ち上げるために要す<u>る運動量</u>と考えられ、その運動量が視程の逆数にほぼ比例することが判った.

5. 謝辞

南極地域観測隊員として推選されるに当たっては,農業技術研究所の井上栄一博士,久保 祐雄博士(現在草地試験場),および気象庁南極観測事務室の清野善兵衛室長に,観測に当た っては第11次隊の松田隊長,および気象の定常観測隊員にお世話になったことに対して心か ら謝意を表します.

文 献

気象学ハンドブック編集委員会(1959): 視程. 気象学ハンドブック, 技報堂, 東京, 778~780.

LILJEQUIST, G. H.(1957): Energy exchange of an antarctic snow-field; (C) Wind structure in the low layer. Norwegian-British-Swedish Antarct. Exp., 1949-52, Scient. Results, II, Part 1C, 193-206.

NEMOTO, S., M. MITSUDERA, K. TAKAHASHI, H. UOTSU and S. KOBAYASHI (1969): On the threshold friction velocity for saltation of sand. Pap. Meteorol. Geophys., XX(4), 365–383.

真木太一

〔南極資料

42

山崎道夫・井部良一・福谷 博(1969):昭和基地の天気と気象観測.天気,16(8),339~348.

u.

ZINNG, A. W. (1952): Wind tunnel studies of the movement of sedimentary material. Proc. Fifth Hydraulic Conf., 111-135.

(1971年7月26日受理)

•