## Total Ozone Observations at Syowa in 1966

Masayoshi SHIMIZU\*

## 昭和基地における1966年のオゾン全量観測

## 清水正義\*

#### 要 旨

南極昭和基地におけるオゾン全量の観測は, 1961年に始められたが,1962年基地の閉鎖で中 断され,1966年基地再開とともにまた開始され た.本報告は,1966年2月から1967年1月まで のオゾン分光光度計の保守状況,オゾン全量の 計算法を述べた後,資料として同期間のオゾン 全量の日代表値を提供する(ただし4~8月は 太陽高度角が低すぎるため欠測).月平均値の 年変化曲線では 9~11 月のオゾン増加が著しい. 9~12月(冬から夏)への 50 mb 温度とオゾン 全量とを日日変化で比較すると,11月中旬の最 高値(両者とも)までは良い対応が見られる. 1966年の成層圏突然昇温のうち,10月20日頃の ものは最も著しく,オゾン全量の増減もよくこ れに対応しており,9~12月各月のオゾン全量, 100 mb 高度,気温,風の南成分との相関が検 討される.

### 1. Introduction

Total ozone observation with a Dobson spectrophotometer at Syowa Station (69°00'S, 39°35'E) was begun in 1961 by SEINO, SAEGUSA, SUZUKI and SAKAGUCHI (1963) of the 5th Japanese Antarctic Research Expedition, but the station was closed in early 1962. The spectrophotometer, which was brought back to Japan and recalibrated at Tateno, was installed again at Syowa in 1966 when the station was reopened, and since then the total ozone observation with the instrument has been continued, accompanying observations of vartical ozone distribution with chemical ozone sondes. This report describes briefly the total ozone observations from February 1966 to January 1967.

## 2. Conditions of the Instrument

The operation and maintenance of the Dobson spectrophotometer, and also technical terms and notations in this report were in accordance with the description by DOBSON (1957 a, b). The spectrophotometer was installed in a hut with a small

<sup>\*</sup> 気象庁. Japan Meteorological Agency, Otemachi, Chiyoda-ku, Tokyo.

hatch on the roof, through which the direct sunbcams were guided by a long sized sun director, or the scattered light from the zenith sky can enter the instrument window.

The wavelength setting of the Q dial for the instrument temperature was calibrated several times with the clear zenith sky near noon (Test 15 in the reference (DOBSON, 1957 b)) and with a mercury lamp (Test 16 (DOBSON, 1957 b)) especially for low temperatures below 0°C.

The optical density of the wedge was checked monthly with two standard lamps, but no severe change was found. The gradient of the optical density was calibrated by the 2-lamp method (Test 14.1 (DOBSON, 1957 b)) twice in the period. Although small differences from the calibration at Tateno were found near the thin end of the wedge, this end was not used in the observations and, therefore, the table relating dial reading R to N (logarithm of the intensity ratio of two wave-lengths) prepared at Tateno was used without amendment.

In order to keep dry the inside of the spectrophotometer, silica gel was renewed monthly before it changed colour. In October 1966, several teeth of the bakelite wheel driving the sector were damaged, and temporary repair was made with a rubber adhesive tape to drive by friction instead of gearing, without interruption of the observations until the wheel was renewed in January 1967.

### 3. Observations and Calculations of Total Ozone Amounts

The observations of total ozone amounts were made with *AD* wavelength pairs from February 1966 to January 1967, except April through August 1966 when the sun was too low for ordinary setting observations. The Umkehr observations for getting information of vertical ozone distribution and the focused image observations on very low sun or moon were not tried.

The total amount of ozone  $\mathcal{Q}$  obtained by a direct sun observation was calculated with the equation below :

$$\Omega$$
 (in atm-cm) =  $\frac{N_A - N_D - \Delta N}{1.388 \,\mu} - 0.009$ ,

where  $N_A$  (or  $N_D$ ) is a variable concerned to the intensity ratio of A (or D) wavelength pair,  $\mu$  is the slant path of the solar beam, and  $\Delta N$  is a constant concerned to the instrument and the extraterrestrial intensities of the light used.  $N_A$  and  $N_D$ are obtained from dial readings of each observation and the tables prepared by the wedge calibration at Tateno.  $\mu$  is calculated from the observation time and the solar declination.  $\Delta N$  was determined as -0.003 from 22 pairs of observations at around noon and at the solar elevation of  $20 \sim 30$  degrees on the same day.

The total amount of ozone obtained by a zenith sky light observation was read

out on the chart which was constructed with 146 pairs of comparison between zenith sky and direct sun observations made nearly at the same time.

The data of the total ozone amount thus calculated are presented in the Annex. The accuracy of the total ozone amount is estimated as about  $3\sim5$  matm-cm or  $1\sim2\%$  of total amount.

# 4. Some Results, Especially on the Ozone Increase from September to November 1966

Fig. 1 shows yearly marches of monthly mean total ozone amounts. The increase of ozone from September to November 1966 is remarkable both at Syowa and Roi Baudouin (70°26'S, 24°19'E) which is the nearest station west of Syowa, and the maximum in 1966 is much larger than in 1961. Another interesting feature is the increasing tendency in March at Syowa, although this is not noticed at Roi Baudouin.

Fig. 2 shows day-to-day changes of total ozone amount and 50 mb temperatures at Syowa for the period of September to December 1966. The temperature increased from  $-80^{\circ}$ C in winter to  $-25^{\circ}$ C in early summer with 2 or 3 sudden warmings and the total ozone increased parallel to the temperature, showing a remarkable correspondence.

According to PHILLPOT (1964), the accelerated warming over Antarctica appears



and Roi Baudouin.

#### Masayoshi Shimizu



to be a result of warm air invasion, principally from the Australian sector, and possibly from the Indian Ocean sector. The warming in 1966 also appeared at first over the coastal stations in the Indian Ocean sector such as Roi Baudouin and Syowa. The sharp increase of the temperature accompanying the ozone peak around the 20th of October was the commencement of this warming. After the 21st, the warming region moved eastward to the Australian sector and poleward to Vostok, while cooling took place at Roi Baudouin and Syowa until the end of October. In November, the warming spread out to the South Pole, eastward to the South Pacific sector and again westward to the Indian Ocean sector, establishing the summer stratospheric regime in the middle of November.

Table 1 shows some statistical results of the total ozone amount, temperature, wind and height at 100 mb surface.

In September, the stratosphere over Syowa was still in the polar vortex and the 50 mb temperatures were below -70 °C. The ozone changes were rather small, even for the large variations of S-N wind components. This might be a result of a small horizontal gradient of ozone in the vortex, although the poleward transport of ozone by northerly wind was only significant in winter as shown by the  $\Omega: v$  correlation.

The ozone and temperature correlated positively from September through November. In December the small temperature change and the weak steadiness

Table. 1. Standard deviations of total ozone  $\Omega$ , temperature T, southerly component of wind v, and geopotential height H, and correlation coefficients between them, and steadiness of wind (the ratio of vector mean to scaler mean speed). All data except  $\Omega$  are the values at 100 mb surface.

| 1966               | Sep.  | Oct.  | Nov.  | Dec.  |
|--------------------|-------|-------|-------|-------|
| Stand. Dev.        |       |       |       |       |
| arOmega (matm-cm)  | 18.2  | 37.2  | 29.2  | 22.1  |
| T (°C)             | 3.1   | 4.9   | 9.6   | 1.1   |
| v (m/s)            | 10.2  | 6.0   | 7.0   | 4.0   |
| $H~(\mathrm{gpm})$ | 204   | 161   | 272   | 94    |
| Steadiness (%)     | 85    | 97    | 86    | 55    |
| Corr. Coef.        |       |       |       |       |
| arOmega : $T$      | +0.64 | +0.69 | +0.76 | +0.38 |
| $\Omega$ : v       | -0.52 | -0.29 | -0.28 | -0.15 |
| $\Omega$ : H       | -0.09 | +0.33 | +0.58 | -0.64 |

of wind indicated the summer stratospheric regime, and the rather rapid decrease of ozone as shown in Fig. 2 resulted in the poor correlation between ozone and temperature. The relation between ozone and contour height system is not clear from the correlation of  $\Omega: H$ , but it may be said that the ozone amount is larger at troughs and smaller at ridges in winter and summer regimes, but, in the transitional season from winter to summer, the ozone amounts increase with the poleward contraction of higher altitude contours at a specified pressure level.

#### Acknowledgements

The ozone observations at Syowa were supported by many people as mentioned below. Mr. H. IKEDA and his staff at the Tateno Aerological Observatory examined and recalibrated the Dobson spectrophotometer. Two meteorologists, Mr. Z. SEINO and Mr. K. ISHIDA, and other members of the 7 th Japanese Antarctic Research Expedition led by Dr. A. MUTO collaborated with the author and encouraged him in observation. Mr. Y. MORITA, the former chief of the Antarctic Observation Office, and the staff of the Aerological Section of the Japan Meteorological Agency also encouraged the author and helped his task. Here the author gratefully acknowledges these practical and mental supports given by these people.

#### Masayoshi Shimizu

#### References

- DOBSON, G. M. B. (1957 a): Observers handbook for the ozone spectrophotometer. Ann. IGY, 5, 44-89.
- DOBSON, G. M. B. (1957 b): Adjustment and calibration of the ozone spectrophotometer. Ann. 1GY, 5, 90-114.
- PHILLPOT, H. R. (1964): The springtime accelerated warming phenomenon in the Antarctic stratosphere. Int. Antarct. Analys. Cent. Tech. Rep., No. 3.
- SEINO, Z., T. SAEGUSA, N. SUZUKI and T. SAKAGUCHI (1963): General report of meteorological section in JARE V 1960-62 (in Japanese with English abstract). Antarctic Rec., 17, 1431-1447.

(Received October 25, 1969)

### ANNEX

#### Tables of Total Amount of Ozone

The following tables give the representative daily values of total amount of ozone observed at Syowa (69°00'S, 39°35'E), Antarctica, in February, March, September to December 1966 and January 1967.

YY Greenwich Day of the month on which the observation is made.

- GG Greenwich Mean Time in "hour", closest to the observation time.
  - $\lambda$  Wavelength used, reported according to a code system. In this report, only the code "0" is used which stands for "wavelength *AD*, ordinary setting".
  - S Kind of observation, reported according to the following code:

0-on direct sun

1-on direct moon

2-on blue zenith sky

3-on zenith cloud (uniform stratified layer of small opacity)

4- " " (uniform or moderately variable layer of medium opacity)

- 5- " " (uniform or moderately variable layer of large opacity)
- 6- " " (highly variable opacity, with or without precipitation)

7- " " (fog)

8-on hazy zenith

9-on sun through thin cloud, fog or haze.

(The definitions for "8" and "9" are used only in Japan.)

 $\Omega\Omega\Omega$  Total amount of ozone in "matm-cm", thickness of all ozone in a unit vertical column reduced to 0°C and 1013mb.

## Masayoshi Shimizu

## Total Amount of Ozone

| Year<br>Month | 1966 Feb. |    | 1966 Mar.            |    | 1966 Sep. |                      |    | 1966 Oct. |                      |    |    |                                                                                                                 |
|---------------|-----------|----|----------------------|----|-----------|----------------------|----|-----------|----------------------|----|----|-----------------------------------------------------------------------------------------------------------------|
| YY            | GG        | λS | $\Omega\Omega\Omega$ | GG | λS        | $\Omega\Omega\Omega$ | GG | λS        | $\Omega\Omega\Omega$ | GG | λS | $\Omega\Omega\Omega$                                                                                            |
| 01            |           |    |                      | 09 | 05        | 302                  |    |           |                      | 09 | 00 | 330                                                                                                             |
| 02            |           |    |                      | 07 | 05        | 323                  |    |           |                      | 10 | 00 | 309                                                                                                             |
| 03            |           |    |                      | 12 | 05        | 327                  |    |           |                      | 10 | 04 | 315                                                                                                             |
| 04            |           |    |                      | 06 | 00        | 326                  |    |           |                      | 10 | 00 | 317                                                                                                             |
| 05            |           |    |                      | 10 | 05        | 337                  |    |           |                      | 10 | 05 | 342                                                                                                             |
| 06            |           |    |                      | 06 | 04        | 333                  |    |           |                      | 07 | 05 | 378                                                                                                             |
| 07            |           |    |                      | 10 | 00        | 335                  |    |           |                      | 11 | 05 | 383                                                                                                             |
| 08            | 08        | 00 | 331                  | 10 | 00        | 340                  |    |           |                      | 10 | 09 | 365                                                                                                             |
| 09            |           |    |                      |    |           |                      |    |           |                      | 09 | 00 | 360                                                                                                             |
| 10            |           |    |                      | 06 | 05        | 356                  |    |           |                      | 08 | 05 | 399                                                                                                             |
| 11            | 10        | 05 | 322                  |    |           |                      |    |           |                      |    |    | at the second |
| 12            | 06        | 00 | 332                  | 10 | 00        | 345                  | 09 | 09        | 322                  | 08 | 05 | 375                                                                                                             |
| 13            | 13        | 05 | 366                  | 10 | 00        | 325                  | 09 | 09        | 269                  | 10 | 06 | 344                                                                                                             |
| 14            | 13        | 05 | 339                  | 09 | 00        | 330                  | 11 | 04        | 320                  | 09 | 09 | 337                                                                                                             |
| 15            | 12        | 00 | 346                  | 09 | 06        | 333                  |    |           | —                    | 08 | 00 | 340                                                                                                             |
| 16            | 13        | 00 | 337                  | 10 | 00        | 334                  | 10 | 09        | 359                  | 09 | 00 | 361                                                                                                             |
| 17            | 10        | 00 | 315                  | 09 | 03        | 323                  | 10 | 04        | 341                  | 09 | 00 | 370                                                                                                             |
| 18            | 06        | 00 | 304                  | 09 | 05        | 365                  | 10 | 05        | 319                  | 11 | 00 | 399                                                                                                             |
| 19            | 07        | 00 | 309                  | 10 | 06        | 344                  | 11 | 05        | 314                  | 10 | 04 | 453                                                                                                             |
| 20            | 10        | 00 | 309                  | 10 | 00        | 337                  | 09 | 04        | 323                  | 09 | 00 | 454                                                                                                             |
| 21            | 10        | 00 | 316                  | 10 | 05        | 339                  | 09 | 09        | 312                  | 09 | 00 | 409                                                                                                             |
| 22            | 13        | 05 | 328                  | 10 | 05        | 335                  | 10 | 00        | 327                  | 09 | 05 | 398                                                                                                             |
| 23            | 10        | 00 | 323                  | 11 | 00        | 318                  | 10 | 04        | 339                  |    |    |                                                                                                                 |
| 24            | 06        | 00 | 331                  |    |           |                      | 11 | 05        | 355                  | 10 | 00 | 392                                                                                                             |
| 25            | 10        | 05 | 331                  |    |           | -                    | 10 | 04        | 324                  | 09 | 06 | 352                                                                                                             |
| 26            | 09        | 05 | 296                  | 09 | 05        | 360                  | 09 | 02        | 303                  | 10 | 00 | 333                                                                                                             |
| 27            | 11        | 04 | 302                  | 10 | 05        | 340                  | 10 | 04        | 350                  | 11 | 00 | 329                                                                                                             |
| 28            | 10        | 05 | 302                  | 10 | 05        | 317                  | 10 | 05        | 331                  | 10 | 09 | 361                                                                                                             |
| 29            |           |    |                      | 10 | 05        | 343                  | 09 | 00        | 334                  | 10 | 00 | 353                                                                                                             |
| 30            |           |    |                      | 10 | 05        | 322                  | 11 | 00        | 332                  | 08 | 00 | 350                                                                                                             |
| 31            |           |    |                      | 10 | 06        | 318                  |    |           |                      | 10 | 09 | 320                                                                                                             |
| Mean          |           |    | 323                  |    |           | 334                  |    |           | 326                  |    |    | 363                                                                                                             |

Station : Syowa 89532 (Antarctica)

## Total Amount of Ozone

| Year<br>Month | 1966 Nov. |    |                      | 1  | 966 D | ec.                  | 1  | 1967 Jan. |                      |  |  |
|---------------|-----------|----|----------------------|----|-------|----------------------|----|-----------|----------------------|--|--|
| YY            | GG        | λS | $\Omega\Omega\Omega$ | GG | λS    | $\Omega\Omega\Omega$ | GG | λS        | $\Omega\Omega\Omega$ |  |  |
| 01            | 10        | 04 | 371                  | 10 | 00    | 376                  | 13 | 00        | 322                  |  |  |
| 02            | 09        | 05 | 334                  | 10 | 00    | 403                  | 10 | 09        | 319                  |  |  |
| 03            | 09        | 09 | 335                  | 10 | 05    | 388                  | 10 | 04        | 323                  |  |  |
| 04            | 09        | 05 | 350                  | 10 | 05    | 368                  | 09 | 09        | 312                  |  |  |
| 05            | 09        | 00 | 367                  | 10 | 05    | 381                  | 10 | 09        | 308                  |  |  |
| 06            | 09        | 00 | 388                  | 13 | 05    | 355                  | 10 | 00        | 301                  |  |  |
| 07            | 13        | 05 | 393                  | 10 | 00    | 332                  | 10 | 00        | 302                  |  |  |
| 08            | 13        | 09 | 386                  | 14 | 00    | 319                  | 08 | 00        | 327                  |  |  |
| 09            |           |    |                      | 09 | 00    | 340                  | 10 | 00        | 338                  |  |  |
| 10            | 10        | 05 | 395                  | 09 | 00    | 353                  | 09 | 00        | 343                  |  |  |
| 11            | 13        | 09 | 400                  | 09 | 00    | 355                  | 10 | 00        | 330                  |  |  |
| 12            | 09        | 00 | 396                  | 11 | 00    | 366                  | 09 | 03        | 337                  |  |  |
| 13            | 09        | 00 | 432                  | 14 | 00    | 379                  | 10 | 09        | 312                  |  |  |
| 14            | 10        | 09 | 422                  | 10 | 00    | 367                  | 13 | 05        | 305                  |  |  |
| 15            | 10        | 04 | 437                  | 10 | 00    | 367                  | 09 | 06        | 306                  |  |  |
| 16            | 10        | 04 | 396                  | 11 | 00    | 361                  | 10 | 04        | 315                  |  |  |
| 17            | 09        | 05 | 418                  | 10 | 04    | 335                  | 10 | 00        | 324                  |  |  |
| 18            | 13        | 09 | 382                  | 14 | 00    | 349                  | 10 | 04        | 317                  |  |  |
| 19            | 10        | 09 | 420                  | 09 | 09    | 352                  | 09 | 00        | 326                  |  |  |
| 20            | 09        | 00 | 423                  | 14 | 00    | 343                  | 10 | 00        | 320                  |  |  |
| 21            | 09        | 05 | 450                  | 10 | 00    | 328                  | 11 | 05        | 300                  |  |  |
| 22            | 10        | 09 | 423                  | 14 | 00    | 330                  | 08 | 09        | 334                  |  |  |
| 23            | 10        | 00 | 434                  | 08 | 00    | 327                  | 08 | 09        | 306                  |  |  |
| 24            | 13        | 05 | 442                  | 09 | 00    | 336                  | 08 | 09        | 299                  |  |  |
| 25            | 12        | 04 | 413                  | 10 | 05    | 358                  | 10 | 00        | 319                  |  |  |
| 26            | 11        | 00 | 421                  | 10 | 05    | 365                  | 08 | 00        | 302                  |  |  |
| 27            | 09        | 04 | 415                  | 09 | 00    | 348                  |    |           |                      |  |  |
| 28            | 10        | 05 | 409                  | 10 | 05    | 360                  |    |           |                      |  |  |
| 29            | 10        | 00 | 388                  | 10 | 05    | 339                  |    |           |                      |  |  |
| 30            | 10        | 00 | 374                  | 14 | 00    | 324                  |    |           | —                    |  |  |
| 31            |           |    |                      | 09 | 00    | 303                  |    |           |                      |  |  |
| Mean          |           |    | 400                  |    |       | 352                  |    |           | 317                  |  |  |

Station : Syowa 89532 (Antarctica)