# 南極 Victoria Land の Dry Valley 調査報告 1. 南極 Victoria Land の Miers Valley に産する Evaporite について

# 鳥 居 鉄 也\*・村 田 貞 雄\* 吉 田 栄 夫\*\*・小 坂 丈 予\*\*\*・山 県 登\*\*\*\*

# REPORT OF THE JAPANESE SUMMER PARTIES IN DRY VALLEYS, VICTORIA LAND, 1963–1965\*

1. ON THE EVAPORITES FOUND IN MIERS VALLEY, VICTORIA LAND, ANTARCTICA

Tetsuya TORII\*, Sadao MURATA\* Yoshio YOSHIDA\*\*, Joyo OSSAKA\*\*\* and Noboru YAMAGATA\*\*\*\*

### Abstract

Reconnaissance of Lake Miers in the Dry Valley region, Victoria Land was made by a summer party supported by the U. S. National Science Foundation This report summarizes the description of occurrence and characteristics of the crystalline salt deposits found on and beneath the morains on the bottom of the Miers Valley, in this report these deposits are called "evaporites" although the mechanism of the formation of these deposits is still obscure.

The main characteristics of the climate in the Dry Valley are quite arid condition and comparatively high temperatures in summer and strong wind, which are considered to be ascribed chiefly to the low albedo of widely exposed rocks to the insolation in summer and the compressional effect (pseudofoehn phenomenon) of katabatic wind. These circumstances may have a close relation to the mechanism of formation of the evaporites. The Miers Valley was once covered with glaciers and by the retreat of the glaciers the U-shaped valley was formed, the floor of which being widely covered with moraines. The moraines are composed of undifferentiated material of the Koettlitz Glacier origin, which was grouped into four types by BLANK<sup>3)</sup>.

The moraines are quite flat in part, suggesting a levelling action of water (lake water?). Patterned ground is commonly de-

<sup>☆</sup> Supports from the U.S. National Science Foundation and U.S. Naval Support Force Antarctica are gratefully acknowledged. The field party is also indebted to the members of the field party of the Victoria University of Wellington and to Dr THOMAS BERG of University of Wisconsin for their kind suggestions and helps.

<sup>\*</sup> 千葉工業大学. Chiba Institute of Technology

<sup>\*\*</sup> 広 島 大 学 Hiroshima University

<sup>\*\*\*</sup> 東京工業大学 Tokyo Institute of Technology

<sup>\*\*\*\*</sup> 公衆衛生院 The Institute of Public Health.

veloped in the moraines Lake Miers is located at the bottom of the valley and ill-defined old strand lines of the lake can be observed The lake water is not saline probably because of the presence of an outlet stream.

The evaporites can be grouped into three types by the mode of occurrence (1) platelike aggregates of crystals spread over the flat moraines (Sample Nos. 65M60, 65M80, 65M90, 65M1001, 65M1002, Photo 3), (2) cloddy crystal aggregates on the ridge of moraines, some of which lie directly on the core of ice (Sample Nos 65M30, 65M402, 65M401, Photo. 4) and, (3) horizontal layers interbedded with moraines, exposed on the flank of a gorge which was formed by downcutting of an outlet stream (Sample Nos 65 M501, 65M502, 65M503, 65M504, 65M506, Photo 5)

Samples of the deposits were analyzed mineralogically and chemically X-ray dif-

fraction pattern and emission spectrogram were also taken. The result revealed the presence of the following four evaporites gypsum CaSO<sub>4</sub>•2H<sub>2</sub>O, calcite CaCO<sub>3</sub>, mirabilite Na<sub>2</sub>SO<sub>4</sub> · 10H<sub>2</sub>O and thenardite Na<sub>2</sub>SO<sub>4</sub> Some of the deposits were found to be the mixtures of gypsum--calcite or mirabilite+thenardite and some others contained more or less quartz, feldspar and amorphous minerals (Table 4) Chemical analysis of four samples (Table 5) also confirmed that the main components are gypsum, calcite, mirabilite and thenardite Trace impurities in these crystals were detected by spectrographic analysis as shown in Table 6, indicating the presence of strontium in calcium minerals and calcium fluoride and barium in calcite Crystalline mirabilite sample was found extraordinarily pure, showing no indication of impurities other than traces of aluminum, magnesium and calcium

# 1. まえがき

南極 Victoria Land には、広い露岩地域があり、筆者らは、ここに存在するいくつかの 湖について、1963-64、1964-65、1965-66年の3回の夏に、米国国立科学財団 (N. S. F.)の 援助により、地球化学的調査を行なって来た (Fig. 1). このうち 1964-65 年には、Miers Valley を訪れ、Lake Miers を調査するとともに、この谷底の モレーン中に存在するいく つかの塩類の析出物 (Evaporites\*)を採集した (Fig 2). この谷は、いわゆる Dry Valley の1 つてあり、Dry Valley に存在する塩湖の成因に関連して、この塩類の析出堆積物 は興味あるものである. この報告は、これら析出物の性状と産状について述べたものであ る. なお、これらの析出物の存在に関して、1964年1月 Miers Valley を訪れた Wisconsin 大学 Thomas Berg 博士より知識を得た.

<sup>\*</sup> ここて扱う塩須の析出堆積物の成因は、今のところ必すしも明確てないか、少なくとも1部には 古い塩腐の腐水の蒸発によって形成されたものもあると考えている この報告ては、塩須の析出堆積物か広く分布し、かなりの量にのほることをも考慮して、総括的

に Evaporite という語を用いた。従って、狭義の Evaporite と成因的に異なるものも含まれている かもしれない。

## 2. 気候および地形的環境について

a) 気 候 条 件

Victoria Land の露岩地域に おける 通年の 気象観側値は得られていないので,近くにあ る McMurdo 基地(東北東 65km)の観測をみると、Table 1 の通りである.

|                               | Jan. | Feb. | Mar.  | Apr   | May   | June  | July  | Aug.  | Sept. | Oct.  | Nov. | Dec. | Year  |
|-------------------------------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|------|------|-------|
| Air temp.<br>(°C)             | -3.3 | -8.9 | -19.4 | -21.1 | -22.8 | -23.9 | -27.2 | -28.3 | -23.3 | -20.0 | -8.9 | -3.9 | -17.8 |
| Wind<br>speed<br>(knots)      | 10.2 | 12.9 | 15.5  | 12.4  | 12.8  | 13.4  | 12.3  | 10.8  | 13.2  | 11.6  | 10.0 | 10.4 | 12.1  |
| Snow fall<br>(mm of<br>water) | 11   | 12   | 6     | 7     | 10    | 7     | 5     | 9     | 10    | 7     | 5    | 10   | 100   |

Table 1. Climatic data at McMurdo Station, Antarctica.\*

\* Mean values from March 1956 to June 1963 after U.S. Navy Weather Research Faculty.

Dry Valley 地域と、McMurdo 基地とにおける気候要素の違いは大きいものではないと 考えられるが、これまての報告<sup>1,2</sup>や、筆者らの短かい調査期間中の観測から、Dry Valley 地域の気候特性について、2,3の点を指摘することができる.

まず、少なくとも夏季には、広い露岩が日射によって暖められるために気温が上昇し、日 中では地上1.2m て、0°C 以上であることが多く、5°C を越えることもある. Angino によ れば、23.9°C という最高気温が記録されたという<sup>1)</sup>.

気温は、また、大陸から一種の斜面下降風が吹き降ろす際に生ずる昇温によってもやや高 められるらしい. すなわち, 12月末から1月初めの調査では, 西方の大陸氷からの風と, 東 方の Ross 海からの風とでは、明らかに気温と湿度に差が認められ、前者はより湿度が低く 気温は高めであり、後者はその逆であることが多い. Lake Vanda 付近で ことに顕著であ ったが、測定位置が大陸氷からあまり離れていないことを考慮すれば、気温が比較的高いの は,露岩の日射による昇温に由来するほか,吹き降ろしによる昇温が加わっている場合があ るように思われる.かかる"擬フェーン現象 (Pseudo-foehn)"とでもいうべき作用によっ て,相対湿度も低下する.

三稜石や砂堆の存在(とくに Wright Valley 周辺において 著しいが)によって示される 風の作用も、また、この地域の気候的特性の1つである.夏季の多い日射とそれによる地表 付近の気温の上昇、擬フェーン現象による乾燥化、強風は、この地域を支配して、とくに夏 季には氷雪の蒸発,昇華に効果的に働き, Dry Valley の維持に大きく寄与しているといえよう.

b) 地形的環境

Koetthtz Glacier の北方, Royal Society Range の東側には, いくつもの U 字谷かあ る. これらの I つが Miers Valley てある. Miers Valley は, かつては Koetthtz Glacier から分流する氷河や, Royal Society Range から東流する氷河によって占められており,そ の後の氷河の後退とともに, 花崗岩や結晶片岩などからなる基盤岩石て構成された谷壁斜面 下部から谷底にかけて賦存する大量のモレーンを露出せしめるに至った 西方へ後退した氷 河は, 現在その停滞した氷舌を, Miers Glacier および Adams Glacier として残しており, それらの氷河の夏季の融氷水は, 谷底の I 部にたたえられた氷河湖 Lake Miers を涵養し ている (Photo. I). 大きな Koetthtz Glacier もまた後退して, 現在ては Miers Valley の河口付近においては, 毎上に氷舌を浮べて, Ross Ice Shelf に接合しているにすぎな い.

谷底は Lake Miers より河口付近まて 構造士の発達した モレーンに覆われ, 見盤岩石は ほとんど露出していない. 谷はゆるく西から東に傾き, 氷蝕谷に特徴的な, 基盤岩石の突出 による逆傾斜の形成(いわゆる riegel and basin)は認められない。この地域のモレーンは, BLANK<sup>3</sup> によれは, undifferentiated moraine とされたもののほか, 時期的に4つに区分 された Koettlitz Glacier のモレーンからなっていて、 Miers Valley 地域ては、 上流の undifferentiated moraine, 中流の  $M_2$ , 下流の  $M_4$  および小面積の  $M_3$  からなるという. Koetthtz Glacter に由来する M₂ および M₄ の表面には, 著しく 火山岩の礫か多い – M₂ の表面は、平坦てあるところがかなり広く (Photo. 2), 小さい起伏を有したところと対照 的て,氷河以外の営力によって切られて平坦化されたような形態を示している。かかる営力 は、河川あるいは毎のような水の営力てある可能性が強い。今のところミイラ化したカニク イアザラシのほかは、 毎てあったという証拠は得ていない 地形的にみて、 今のところ、 一 応古い湖による平坦化と考えておく. 部分的には,河川の作用も加わっているてあろう. な お、平坦面の上方の、起伏を有するモレーンの頂部を連ねると、これもかなり平坦てあって、 一つの地形面を想定し得る. M. とされるものは、Miers Valley 下流に発達し、M₂に比し てより起伏に富んている 大小の他沼をなしたケトルホールもあり,大部分は内部に氷核を もったモレーン (ice-cored moraine) てあるらしい.  $M_2$  とされているものの中には, 表 層より 1m 下に氷があるものがある ここは地形的には M₂に入り,氷核の点て M₄に似て いるのて、 $M_2 \ge M_4$ の中間の時代に入るかも知れない なお、 $M_2$ 、 $M_3$ 、 $M_4$ は、Koet-

4



Fig. 2-1. Miers Valley. After the geologic map by BLANK et al (1963), slightly modified by the authors.



Fig. 2-2. Longitudinal profile of the Miers Valley

#### 鳥居・村田・吉田・小坂・山県

| St No        | Depth(m) | K   | Na | Ca   | Mg   | Cl   | $SO_4$ |
|--------------|----------|-----|----|------|------|------|--------|
| Inflow water |          | 1 0 | <1 | 15.2 | 0.6  | 3. 5 | 2.0    |
| Lake waters  |          |     |    |      |      |      |        |
| Ml           | 8.5      | 2.5 | 3  | 16.6 | 23   | 5.6  | 3.1    |
| Ml           | 12.5     | 2.4 | 3  | 16.7 | 2. 7 | 5.5  | 4.1    |
| Ml           | 17       | 2.6 | 2  | 28.8 | 2.3  | 6.3  | 2.9    |
| Ml           | 19.5     | 3.4 | <1 | 40.0 | 2.9  | 6.5  | 1.7    |
| M2           | 8.5      | 2.6 | 3  | 16.6 | 16   | 68   | 5.3    |
| M2           | 11.5     | 2.5 | 3  | 15.6 | 1.8  | 45   | 3.1    |
| M2           | 15       | 2.4 | 3  | 17.7 | 2.0  | 4.8  | 3.3    |
| M2           | 16       | 2.6 | 2  | 24.7 | 2.1  | 5.0  | 3 1    |
|              |          |     |    | _    |      |      |        |

Table 2. Chemical components of the lake and inflow waters (mg|l)

thtz Glacier が後退しつつ,順次形成した堆積物てあるとされているか,1 部では少なくと も $M_4$  より古い ( $M_2$  もしくは さらに 古いかも知れない) モレーンの上に, $M_4$  か重なる関 係にあるものと推定される

Lake Miers は、かかる谷底の低所にある氷河湖てあるが、深さはさして深いものてはない (New Zealand 隊のボーリング地点て、16.5m および 20.5m という値が得られている). 不明瞭な旧汀線も認められる これが前述の湖成らしい平坦面とどういう関係にあるかは確かめられていない. 湖の西縁には、融氷水によって、デルタ状の融氷河河流堆積物が形成されている 湖から下流へは、小河川がモレーンを切っており、調査時は表面水はほとんど認められなかったか (1部雪に覆われていたこともあって)、水位の変化に応じて地表および地下を通じて排水が行なわれるものと思われる 恐らくはこれに 起因して、Dry Valley の他の氷河湖に比して、湖水中の塩類は著しく少ない (Table 2)

この排水河川(Miers River と仮称)は、谷底のモレーンに切り込んて小さい谷をつくり、 狭い谷底に河流堆積物を運搬している 谷壁の高さは下流に向かって高まり、下流ては15m を越えるようになって、小さい峡谷を形成する 調査時期には南岸の谷壁斜面のところどこ ろに堆雪があって、雪蝕を行なっており、谷壁は非対称をなしている.河流堆積物の表面や、 雪蝕を受けている斜面の部分ては、構造土はほとんど発達していないが、1部てその初期の ものが認められた

この地域の高度は、 BLANK<sup>3)</sup> らの地質図に 示された 気圧高度計による値(湖西縁近くて 800ft.)を基準とすれは、我々の測定から Fig. 2 のようになるが、 この高さは真の値より40 ~50m 高い可能性か強い

## 南極 Victoria Land の Dry Valley 調査報告

## 3. 塩類析出物 (Evaporites) について

a) 産 状

得られた析出物は、いずれも谷底のモレーン中に存在するものであって、採集地の産状は、 三種に分けられる. 第1は, M<sub>2</sub>に属する平<u>坦</u>化されたモレーンの表層にみられるものであ って、モレーンの礫の間に板状の結晶の集合体が散乱し、あるいは突きささった形て分布す る (Photo. 3). 65M60, 65M80, 65M90, 65M1001, 65M1002 がこれに属する. 第2は低 い山稜や小さいピークをなすところに、かなり厚く賦存するもので、著しい場合には、モレ ーンの礫が少量であるため、塩類析出物の集積しているところは灰白~灰褐色の小山稜とし て,遠方から識別し得るほどである (Photo. 4). 65 M30,65 M401,65 M402 がそれに属す るが,興味あることには,65M402の採集場所ては表層から80cm ほどの析出物の下に,モ レーンの氷核と考えられる氷が直接接して存在することである. 前述のように, このモレー ンは、氷核をもつ点て M4 に似ているが、 M4 よりやや古いかも知れない. 第3は、モレー ンの内部に賦存するもので、 下流の Miers River がモレーンを 刻んで形成した谷壁の、河 床から l5m ほど上のところに露出していたものである (Photo. 5). 65M501~65M504がそ れである.水平的な層状をなして,結晶の集合体が存在し,その層全体もまた,見かけ上4 層もしくはそれ以上に分けられる.この層の直下および直上には,かなり細かい黄色を帯び た砂,シルト(石英と長石からなる)が認められた.この層より上方のモレーンの厚さは明 確にし得なかったが,さして厚いものではないらしい.恐らく,この層を含むモレーン(M。 ? )の上に,新しいモレーン (M₄) が重なっているものとみられる. 65M70 は,河道近く のモレーンに露出していた赤色の沈澱物で、Evaporite とは呼ぶことができないものてある.

b) 試料の状況と実験方法

検討に供した試料は Table 3 に示す 16 種であった. なかには砂, 泥を主成分とするもの, 或いはこれを含むものもあったが,多くは比較的混在物の少ない結晶の集合体てあった そ の色や形は,白色または黄白色,粗粒,鱗片状結晶の集まりである 65M30,65M402,65M80, 65M90,同じく白色,粗粒で塊状をなしている 65M41 と 65M1002,純白色,細粒で板状 または層状をなしている 65M60,色は灰褐色であるが,同じく平板状を呈しており,やや硬 い 65M1001 および 65M1002 の 1 部など種々のものがある. また,このほか 65M504,65 M503,65M502 などは粗粒,半透明,粒状て その表面は褐色に よごれた結晶粒子の集合か らなり,また,同じ層の上部の 65M501 などは白色微粉末状の小結晶のみよりなり,同じ層 中の 65M506 などは上記粉末状と粗粒状の結晶の混合よりなっている.65M70 は赤褐色,

| Sample<br>No | Locality and occurrence                                                           | Locality<br>11 F1g.2 | Colour                             | Grain<br>size   | Crystal<br>aggregates |
|--------------|-----------------------------------------------------------------------------------|----------------------|------------------------------------|-----------------|-----------------------|
| 65M2S        | Bottom sediment collected at<br>Hole M–2, L. Miers                                | Ι                    | gray                               | fine            | muddy                 |
| 65M 30 )     |                                                                                   | D                    | white                              | coarse          | scaly                 |
| 65M401 }     | Evaporites on a small ridge of                                                    | Е                    | white                              | coarse          | cloddy                |
| 65M402 J     | noranic                                                                           | Е                    | white,<br>yellowish gray           | coarse          | scaly                 |
| 65M501       | A seam of evaporites on the flank                                                 | Н                    | white                              | fine            | finely powdered       |
| 65M502       | of the valley wall 15m above the valley floor. The seam is divided                | н                    | white                              | fine            | cloddy                |
| 65M503       | apparently into four layers,<br>namely 1,2,3,4 from upper to                      | Н                    | white, semi-<br>transparent        | coarse          | granular              |
| 65M504       | lower                                                                             | н                    | brownish gray                      | coarse          | granular              |
| 65M505       | Fine sand and silt layer upon<br>a seam of evaporites                             | н                    | yellowısh<br>gray, white           | fine            | powdered              |
| 65M506       | A block of a seam of evaporites                                                   | Н                    | brownish gray,<br>whitish gray     | fine,<br>coarse | cloddy                |
| 65M 60       | Evaporites on the flat surface of moraine                                         | G                    | white                              | fine            | platy                 |
| 65M 70       | Reddish brown deposit on the<br>flat surface of moraine near the<br>outlet stream | F                    | reddish brown                      | fine            | powdered              |
| 65M 80       |                                                                                   | В                    | pure white                         | coarse          | scaly                 |
| 65M 90       | Evaporites on the flat surface                                                    | Α                    | white                              | coarse          | cloddy                |
| 65M1001      | of moraine                                                                        | С                    | brownish gray                      | fine            | platy                 |
| 65M1002 )    |                                                                                   | C                    | yellowish gray,<br>yellowish white | fine,<br>coarse | platy                 |

Table 3 Description of the evaporites found in the Miers Valley.

微粉末状の沈澱物よりなっている.

試料は双眼顕微鏡を用いて,できるだけ結晶部分のみを注意深く選別してから粉砕して以 下の測定に供した. 試料のうちには後述のように細粉にすると急速に脱水するものもあるの で,それらは結晶のまま取り扱い,必要があれば側定直前に粉末にするようにした

選別された試料は偏光顕微鏡による検定ののち、X線粉末回折法によりその鉱物種の同定 を行ない、そのうちから主要なるものをえらんて化学分析と分光分析を行なった.それぞれ の測定方法と要目は次の通りてある.

粉末 X 線回折法は, Cu-target, Ni-filter, 35KVP, 15mA, slit: 1°-1°-02mm, scale factor: 16, multipler 1, time constant 4 sec. て行なった.

化学分析には前述の如く不純物はてきるだけ除くようにつとめたが、なお混在する少量の ものを除くため、試料はすべて水(水溶性のもの)または5%塩酸(Cl 側定以外のもの)と10 %硝酸(Cl 測定用)て溶解し、不純物は、不溶性残渣とした.この溶液について、Ca, Mg は EDTA 滴定法, Na, K は炎光分析法, Fe は  $\alpha$ ,  $\alpha' ジ ビ リ ジ ル による比色定量法, SO<sub>4</sub>$ は硫酸バリウムによる重量法ならびにアリザリン S による塩化バリウム滴定法, Cl は硝酸銀滴定法または P ダン水銀による比色法, CO<sub>2</sub> は微量拡散法によった. また, 分光分析による微量成分の測定は上智大学南研究室において行なったもので, 島津 QF-60 型中型分光器, 陽極層連続弧光法, 直流 350V, 5Amp., 中間結像方式, スリット巾 6/1000mm, 露出5秒, プロセスパンクロ乾板て側定した

| Group | Locality                                                   | Identified minerals                                                                                                                                                                                   |  |  |  |
|-------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1     | Evaporites on the flat<br>surface of a levelled<br>moraine | Gypsum CaSO <sub>4</sub> •2H <sub>2</sub> O (65M60, 65M80, 65M90, 65M1002)<br>Calcite CaCO <sub>3</sub> (65M1001)                                                                                     |  |  |  |
|       | Reddish brown deposit<br>near the outlet stream            | Gypsum + Quartz + Feldspar + Limonite + Amorphous<br>minerals (65M70)                                                                                                                                 |  |  |  |
| 2     | Evaporites on a ridge<br>of a moraine                      | Gypsum (65M30, 65M402)<br>Gypsum+Calcite (65M401)                                                                                                                                                     |  |  |  |
| 3     | A seam of evaporites on<br>the flank of the valley<br>wall | Thenardıte $Na_2SO_4$ (65M501, 65M502, 65M506 powder)<br>Mırabılıte $Na_2SO_4 \cdot 10H_2O$ (65M506 crystal, 65M504)<br>Mırabılıte+Thenardıte (65M503)<br>Quartz+Feldspar+Amorphous minerals (65M505) |  |  |  |
| 4     | Bottom sediment of<br>Lake Miers                           | Quartz+Feldspar+Amorphous minerals (65M2S)                                                                                                                                                            |  |  |  |

Table 4. Mineralogically identified evaporites in the Miers Valley.

c) 実 験 結 果

X線などによる同定の結果,主要な鉱物は次の5種類と,その混合物よりなることが判明 した.即ち,

1) 65M30, 65M40, 65M60, 65M80, 65M90, 65M1002 など、平坦なモレーン面上 または moraine ridge 上の結晶は 比較的粒状の白色結晶が多かったが、これらは Table 4 にも示すごとく、いずれも主として Gypsum (CaSO<sub>4</sub>・2H<sub>2</sub>O) よりなっており、 なかには、 1, 2の不純物を狭雑しているものがあることも判明した.

n) 65M1001の平板状の試料は,主として Calcite (CaCO<sub>3</sub>)の結晶よりなっている. なお,65M401という moraine ridge の表層の結晶は Gypsum (CaSO<sub>4</sub>·2H<sub>2</sub>O)と Calcite (CaCO<sub>3</sub>)の両者が混合したものであり、また、65M1001、65M1002が同一層の上下の位 置になっていることからも、この地域では、これら両鉱物の間には密接な関係があるものと 考えられる.

ni) また, 65M504 のような Miers River の河床より 15m も上に露出している塩類層の







1v) さらに同一層の上層附近の試料 65M501, 65M502 などは  $Na_2SO_4$  の無水物てある Thenardite てあった. また, この両者の中間層に あたる 65M503 の試料は Mirabiliteと Thenardite の両者の混合物で ある ことも 判明した. Mirabilite ( $Na_2SO_4 \cdot 10H_2O$ ) は室内て側定の ため,粉砕するだけてもかなりの脱水が行なわ れることか判明したのて (Fig. 3),現地におい ても,その上層近くのものに無水物が多いこと は容易に想像されることてある.

v) Miers River の河流の近くに堆積した
赤褐色の沈澱物 65M70 はその大部分か非晶質
なものてあるが、Gypsum、Quartz、Feldspar
などが少量混在している。

v1) Miers 湖の底泥 (65M2S)は灰白色,泥 土て,X線的には Quartz, Feldspar その他 か認められるか,大部分は低結晶質のものてあ った.また 65M50 の層に 含まれる fine sand もこれと大差ない結果てあった.

化学分析は Table 5 に示した4 種につき 行なった. Table 5 から 65M402 は Ca, SO<sub>4</sub>,

 $H_2O$ を主としたほとんど純粋な Gypsum (CaSO<sub>4</sub>•2H<sub>2</sub>O) でこれにわずかの Na を促じて おり、また、65M1001 は Ca と CO<sub>3</sub>を主成分とし、若干の Mg, Na, Fe を含む Calcute (CaCO<sub>3</sub>) よりなっており、また、65M506(結晶部分)と 65M506 (白色粉末部分) とはわ ずかの不純物を含むものの、それぞれ Mirabilite Na<sub>2</sub>SO<sub>4</sub>•10H<sub>2</sub>O およびその無水物てあ る Thenardite Na<sub>2</sub>SO<sub>4</sub> てあった. なお、Thenardite にも若干の水分か含まれているよう であるか、これは結晶水でなく湿分と考えてよいてあろう. 65M1001 と 65M506 とは、か なりの量の不溶残査が含まれているが、これはこの両試料とも結晶粒かこまかい微粉未状て あるのて、その精選か困難て、細砂等の梶入物がとりのけられなかったためと考えられる.

分光分析の結果は Table 6 に示す通りて、これによりさきに述べた主成分以外の成分に

## No. 27 1966] (2119)

| Sample No     | 65 <b>M</b> 402 | 65 <b>M</b> 1001 | 65M506<br>crystal | 65M506<br>powder |
|---------------|-----------------|------------------|-------------------|------------------|
| Ca wt %       | 23.08           | 32.81            | tr                | tr               |
| Mg            | 0.00            | 0.47             | 0.00              | 0.00             |
| Na            | 0.17            | 0.64             | 13.38             | 26.29            |
| K             | tr.             | 0.20             | 0.00              | tr               |
| Fe            | 0.02            | 0.75             | 0.00              | 0.00             |
| Cl            | tr.             | 0.04             | 0.06              | 0.40             |
| $SO_4$        | 55.26           | 0.00             | 28.89             | 55 <b>.</b> 95   |
| $\rm CO_3$    | 0.15            | 48.85            | _                 | —                |
| $H_2O$        | 20.95           | 1.84             | 55.44             | 9.83             |
| Insol res.    | 0.03            | 12.58            | 0.21              | 9.23             |
| Ca mol. ratio | 1.00            | 1.00             | _                 | _                |
| Mg            | 0.00            | 0.02             | 0.00              | 0.00             |
| Na            | 0.01            | 0.03             | 2.00              | 2.00             |
| K             |                 | 0.00             | 0.00              | _                |
| Fe            | 0.00            | 0.02             | 0.00              | 0.00             |
| Cl            | _               | 0.00             | 0.00              | 0.02             |
| $SO_4$        | 1.00            | 0.00             | 1.04              | 1.02             |
| $\rm CO_3$    | 0.04            | 1.00             |                   |                  |
| $H_2O$        | 2.02            | 0.13             | 10.58             | 0.96             |

Table 5 Chemical composition of the evaporites found in the Miers Valley.

Table 6. Qualitative analysis of the evaporites by spectrographic method

| Sample No. | 65M402 | 65 <b>M</b> 1001 | 65M506<br>crystal | 65M506<br>powder | 65M70 |
|------------|--------|------------------|-------------------|------------------|-------|
| Na         | ±      | +                | +++               | +++              | ++    |
| Ca         | +++    | +++              | +                 | +                | +     |
| Mg         | ++     | +++              | ±                 | - <u>+</u> -     | ++    |
| Al         | ±      | ++               | ±                 | +                | ++    |
| Sı         | +      | ++               | _                 | +                | +++   |
| Fe         | _      | +                | _                 | _                | ++    |
| Mn         | [      | +                | _                 | ±                | +     |
| В          | _      | ±                | —                 | _                | +     |
| Sr         | ++     | ++               | —                 | 土                | +     |
| Nı         | _      | ±                | —                 | —                | +     |
| Tı         | -      | +                | —                 | ±                | +     |
| Cu         | _ ±    | +                | —                 | ±                | +     |
| Ba         | _      | +                | _                 | _                | _     |
| CaF        | ± ±    | ++               | -                 | —                | —     |

 $+++, ++, +, \pm, -$ , represent the intensity of spectral lines in the decreasing order.

つきあげると、 $65M402 \ge 65M506$ (粉末)には S1, Al, Mg を混じ、65M1001, 65M70など不溶分の多い試料には S1, Al, Fe, Mg, T1, Mn など岩石中に多く含まれる元素が 混入しているほか、特に、B, Cu などが含まれ、また前者ては CaF, Ba が、後者ては N1 が認められた また、Sr は 65M506(結晶)を除く残りの試料からはいずれも検出された、 65M506(結晶)の試料は Al, Mg の痕跡を除いては、ほとんど不純物が認められなかった

以上の結果を前章の産地別にとりまとめると Table 4 のようになる. すなわち, 各 basınの 平坦なモレーン層および ridge の peak の上に堆積する析出物の大部分は Gypsum CaSO<sub>4</sub>・  $2H_2O$  であり, その1 部は Calcite CaCO<sub>3</sub> てあった また, Miers 谷壁の中段にモレーン にはさまれて露出する析出物は, 上層が Thenardite Na<sub>2</sub>SO<sub>4</sub>, 下層が Mirabilite Na<sub>2</sub>SO<sub>4</sub>・  $10H_2O$  であることが判明した. 砂, 泥質の堆積物は大部分が Quartz, Feldspar および非 晶質の鉱物よりなり, 水酸化鉄を多量に含むものもあった.

本研究は、米国国立科学財団南極計画局の後援のもとに行なわれた.現地調査に当って米 国南極観側隊ならびに毎軍支援隊の協力をいただいた また野外ては New Zealand の Wellington, Victoria 大学調査隊員の諸氏から助言を受け、さらに、Wisconsin 大学 THOMAS BERG 博士から、この堆積物の賦存についての情報を与えられた 分光分析ては、 上智大学化学教室の南 英一先生に大変御世話になった.記して感謝の意を表する.

## 文 献

- 1) ANGINO, E. E., K. B. ARMITAGE and J. C. TASH AIR temperatures from Taylor Glacier, Dry Valley, Victoria Land Polar Rec, 11, 283-284, 1962.
- 2) CLARK, R.H. The oases in the ice Antarctica, ed by T Hatherton, p. 325, 1965
- BLANK, H. R, R. A. COOPER, R. H. WHEELER and I. A. G. WILLIS Geology of the Koettlitz-Blue Glacier Region, Southern Victoria Land, Antarctica Trans R Soc N Z, Geology, 2, 79-100, 1963.
- 4) A.S.T.M, X-ray diffraction card

(1966年9月7日受理)

12