宗谷船上における 2.5 Mc/s 空電雑音強度の観測結果

石沢 薫*・若井 登**・長谷川貞雄***・川尻矗大***

MEASUREMENT OF ATMOSPHERIC RADIO NOISE ON 2.5 Mc/s ON BOARD THE ANTARCTIC RESEARCH EXPEDITION SHIP "Soya"

Kaoru ISHIZAWA*, Noboru WAKAI**, Sadao HASEGAWA*** and Nobuhiro KAWAJIRI***

Abstract

Field intensity of atmospheric radio noise on 2.5 Mc/s was measured on board the "SOYA" along the course from Tokyo to Antarctica.

Results of the analysis of the measurements are summarized as follows:

1) The daytime noise intensity which is predominant in the tropical region and near South Africa corresponds well to the meteorological situation.

2) Atmospheric radio noise intensity measured on board the "SOYA" agrees well with the values predicted on the "Noise Map" prepared by CRPL and with the result of measurement at the fixed stations (Singapore and Pretoria).

3) Characteristics of the atmospheric radio noise were examined in connection with the solar zenith angle and the latitude. Both the mode of diurnal variation and the relation between absorption and solar zenith angle very distinctly with the latitude.

4) Decrease in the intensity at midnight towards the south from about 32°S is greater than that of the intensity calculated only from the distance (the so-called unabsorbed field intensity) and smaller than what was predicted on the CRPL's map.

5) Abnormal enhancement of the radio noise was seen when the ship went under the pouring rain, while the noise fell down to zero level with a flash of lightning, and then it rose exponentially with the time constant of the order of 1 minute.

These facts seem to suggest the mechanism how the atmospheric radio noise originates in rain falls. In other words, the precipitation noise due to rainfall occurs in the presence of both raindrops and the static field between the earth and the cell of charged clouds.

1. 緒

言

第1次南極観測以来,毎回宗谷船上で電離層記録に海上散乱が観測され,顕著な日変化の存在 することが観測された.この海上散乱現象の原因について種々の論議がなされたが,Dowden,

^{*} 電波研究所. 第5次南極地域観測隊員. The Radio Research Laboratories. Member of the Japanese Antarctic Research Expedition, 1960-61.

^{**} 電波研究所. 第 2 次南極地域観測隊員, 第 3 次南極地域観測隊越冬隊員. The Radio Research Laboratories. Member of the Japanese Antarctic Research Expedition, 1957-58. Member of the Wintering Party, the Japanese Antarctic Research Expedition, 1958-60.

^{***} 電波研究所. 第5次南極地域観測隊越冬隊員. The Radio Research Laboratories. Member of the Wintering Party, the Japanese Antarctic Research Expedition, 1960-62.

R.L.氏^D 及び BRICE, N.M.氏²⁾ らは、夜間、雑音強度の上昇による受信機の AVC 電圧の 変化、即ち受信機利得の変化に原因すると結論している.それに反して岡本氏³⁾ 及び 平尾氏⁴⁾ は測定時に受信機利得に変化のないことを確かめた上で、その原因が対流圏にあると仮定して 解析を行なった.そこで第5次南極観測に際して海上散乱の日変化の原因と考えられる雑音強 度の変化を調査し、更に未測定地域における雑音の特性を明らかにする目的で、宗谷船上にお いて雑音の連続測定を北緯 25 度から南緯 70 度までの全航路にわたって行なった.この観測に 基づき、今回は雑音強度と気象条件との対応、緯度及び距離特性並びにしゅう雨のときに現わ れる雑音強度の異常増加について解析し、更に CRPL の雑音強度予報値⁵⁾ と比較検討した.

2. 測 定 の 概 要

2.1 測定期間

Fig. 1 の航路に従い 1960 年 11 月 16 日 (北緯 25 度) に測定を開始し, 1961 年 1 月 15 日 (南 緯 70 度) 南極洋まで連続測定を行なった. 但し Singapore 及び Cape Town には約 1 週間滞 在したため,滞在期間中は測定を中止した.

2.2 測定装置

受信空中線:垂直接地空中線(高さ8m)

測 定 器:短波電界強度測定器(局部発信器に水晶を使用)

時 定 数:検波回路 約0.1 msec

時 定 数:記録計 約500 msec

記録紙の引取り速度: 12 cm/hr

空中線利得及び測定器の諸特性について出航前に較正及び測定を行ない,航海中には測定器 の利得較正を毎日1回実施した.

2.3 測定周波数

標準電波 2.5 Mc/s の Guard Band は比較的混信も少なく,同時に海上散乱が最も顕著に 観測された周波数に該当しているので,測定周波数として 2497.5 kc/s を選んだ.測定器の通 過帯域幅は -6 db で 550 c/s である.

2.4 測定結果の読取り

測定記録の整理に際しては地方時(船内時間)を使用した.記録を5分毎に区分し,記録紙 上で雑音強度が連続的に描かれている部分の雑音強度の平均値を読み取った.毎0分及び30 分の値を前後15分間の5分間値の中間値から求め,これらを雑音強度の代表値として解析に使 用した. 衝撃性の雑音が記録紙上で5分間に数本から10数本まで含まれ,この強度の最大値が 5分間の平均値より20db以上高い値の場合は,Pの符号を付け整理した. CPRLの雑音強 度の値は実効値で与えられている.第3,2節で述べる固定局⁶⁰の比較で明らかな如く,本読取 り後値と実効値の差は殆んど認められない.従って,本読取り値は CRPL が雑音強度予報値 として表わした実効値と等しいと考えて差し支えないと思われる.

3. 雑音強度測定結果及びその解析

3.1 概 要

本測定の雑音強度は前述した如く記録紙上から読み取られたものであるから雑音強度の大局 的な変化に重点をおいて解析を行なった.更に記録紙上に現われた雑音としては区別できない けれども,各種気象条件との対応,太陽高度による依存,伝播特性等から大別して,近距離に 発生源を持つ空電雑音と遠距離からの伝播によるものに区別されることがわかったので,それ ぞれ局地性雑音,遠距離性雑音と名付けて解析を進めた.即ち測定経路全体にわたって雑音強 度と気象条件とを比較して,雑音発生条件並びに局地性雑音か遠距離性雑音かを考察した.緯 度別に雑音強度と太陽高度との関係を求め、更に局地性雑音の発生が少ないと考えられる南緯 32 度以南について夜間の雑音強度の距離特性を検討した・

しゅう雨による雑音強度の上昇については非常に興味のある現象が観測されたので,それら について解析を行ない発生機構を考察した.

3.2 宗谷船上の測定値と CRPL の雑音強度予報値及び固定局の測定値との比較

記録紙上から読み取られた値が従来から用いられた実効値とどれ位の差があるか問題であ り,他の結果と比較し得るために CRPL の雑音強度予報値及び固定局の測定値と比較検討し た.CRPL の雑音強度予報値は,春(3月,4月,5月),夏(6月,7月,8月),秋(9月,10月, 11月),冬(12月,1月,2月)の各3か月毎に,更に1日は(00^h~04^h),(04^h~08^h),(08^h~12^h), (12^h~16^h),(16^h~20^h),(20^h~24^h)の4時間毎に分けられている.

Fig. 2. Comparison between the average intensity by measurement and the value by CRPL's map every 5° of latitude.

(--- measured value, ···· CRPL's map)

当航海では測定期間が11月~12月にわたるところがあり、測定値と予報値を比較する場合、 11月15日~12月15日の1か月間は CRPL 予報値の秋冬の平均値を使用した.測定値は緯度 5度毎に4時間の平均をとり、これと CRPL の雑音強度予報値との比較を行なった.その結 果を Fig. 2 に示す.

図中の実線は測定値であって,測定器の最低受信可能電界以下の数値を含む部分を斜線で示 してある.図から判るように,測定値と CRPL の雑音強度予報値との強度及び緯度的傾向は, 斜線を施された部分を除いては非常によく一致している.

08^h~16^h の北緯 25 度付近では測定値が 25 db~30 db 程度高い値を示しているが,北緯 25 度付近の測定数が少ないため確実なことは言えない. 20^h~04^h の南緯 35 度以南の予報値が 6 db~10 db 低い.此の点については第 3.5 節に述べる.

固定局として, 航路に近い Singapore Station (1.3°N, 103.8°E) と Pretoria Station (25.8°S, 28.3°E) の2局を選定した. 各固定局⁶⁾の資料は月の中央値で表わしてある.

雑音強度の平均日変化について, Singapore Station と船上での測定値との比較を Fig. 3-a に示す.

測定期間が11月~12月にわたるので Singapore Station は11月と12月の2か月の値を示

3-a) Comparison between the atmospheric noise intensity measured (—) and that at Singapore (-- Nov. 1960, Dec. 1960).

してあり,測定値は北緯10度から0度間の平均値を用いた.測定値と固定局を比較すると雑音 強度の日変化の傾向及び強度はよく一致している.

Fig. 3-b は Pretoria Station と測定値の比較を示す.測定値は南緯 20 度から南緯 30 度間 の平均値を用いた.図から容易に判るように, Pretoria Station が航路から約 100 Km 隔たっ ていることを考察に入れれば,雑音強度及びその日変化の傾向はよく一致していると言うこと ができる.

Fig. 4. Comparison between the meteorological data and the atmospheric noise intensity measured on board the SOYA.

これらの結果より本測定及び読取り方法がかなり信頼されるということが言えよう。

3.3 雑音強度と気象条件の関係

航路に沿って4時間毎の平均雑音強度と、その時刻における気圧、気温、下層雲、直展雲、 天気等の気象条件との比較を行なった。

この関係は Fig. 4 で示してある. 気圧,気温は3時間毎の測定値で,雲及び天気は3時間毎 の頻度を表わしている. 低緯度における日中の雑音強度は,夜間の雑音強度に比較して緯度的 に強度の変化が大きい. 例えば北緯21度,北緯5度から北緯7度付近,南緯25度及び南緯32度 で日中の雑音強度がかなり高いことを示している. これらの位置と気象条件を比較すれば北緯 21度では前々日の 1022 mb より 1015 mb へと気圧が低い方へ進みつつあり,積乱雲が現われ しゅう雨を伴っている. 北緯5度から北緯7度付近では気圧の谷に入り,積乱雲の発生も当航 海では最高に達した. 更にしゅう雨と雷の発生も伴い気象の悪条件を示している. 南緯25度 及び南緯32度も気圧の谷で積乱雲も現われ下層雲もかなり発達し,雨,しゅう雨,雷も加わっ た気象条件である.

これらを総合すると低緯度における図中の雑音強度上昇は、気圧の低下並びに下層雲、直展 雲の発達に加えてしゅう雨や雨が伴うことが原因と思われ、雑音源として雲間放電、落雷、降 水空電等⁷⁾が考えられる。即ち、低緯度で日中の雑音強度上昇は遠距離から伝播して来るので はなく、局地的雑音であると思われる。低緯度の夜間雑音強度の変化は、約14 db で日中の変 化に比較して緯度的に変化は少ないが、日中雑音強度の高い付近は夜間も雑音強度は高い。中 緯度から高緯度にかけ夜間の雑音強度は徐々に低下し、気象の悪い条件でも低緯度でみられる 雑音強度の上昇は認められない。この原因は気温の低下に伴って積乱雲の発達が妨げられるこ とにあると思われる。

3.4 雑音強度の緯度特性

Fig. 5 は各緯度における雑音強度の平均日変化曲線である. 図中に各緯度における日出,日 没時刻を破線で示してある. これによると雑音強度は日出時刻の付近より逐次減少し,正午頃 には最低値となる. 午後,強度は上昇しつつ日没に入り夜間の高い強度に移行する. 即ち雑音 強度の日変化を太陽高度について整理してみると,**Fig.6** で示すようになる. この図から明ら かなように北緯 5 度と南緯 25 度,南緯 35 度の各緯度で午前より午後が高い値を示している. これらの緯度は前節に述べた局地性雑音の発生が高い所である. 更に日中,雷雨の平均発生類 度が午後に高い⁸⁰ 点を考慮するならば,午前より午後に雑音強度の高いという事実は局地性雑 音によるものと判断して差し支えないと思われる. これは北緯 5 度で 14^h00^m (Cos $x \neq 0.73$), 南緯 25 度及び南緯 35 度では 14^h10^m (Cos $x \neq 0.85$) 及び 16^h00^m (Cos $x \neq 0.58$) で強度が 高く,雷雨の平均発生頻度の最大値と一致しているという事実によっても首肯される.

Fig. 5. Diurnal variation of the atmospheric noise intensity in different latitudes.

Fig. 6. Variation of the noise intensity in various latitudes versus solar zenith angle. $(---A. M., \cdots P. M., \downarrow \text{ less than})$

以上の結果から局地性雑音が少ないと思われる午前中について, 2.5 Mc/s における雑音電波 が電離層の減衰を受けて来ると仮定し,太陽天頂角に対する減衰量の変化が

で与えられとる看做すならば、緯度に対する n 及び A の変化は Fig. 7 に示すようになる. 但し、 Γ については一応夜間の強度を無減衰値として、この値から決めたものである。n 及び Aの値が緯度が高くなるにつれて減少する傾向は、垂直投射による減衰特性から求められた結 果とも一致する。

3.5 夜間における雑音強度の距離特性

短波帯の電界強度計算法がある程度確立^{90,100} されているが,短波帯における雑音強度の予報

としての計算式は未だ確立されていない実情にある.この意味で,雑音電波が距離に対して, 夜間如何程に減衰を受けて伝播するかを解析した.雑音強度の距離特性を求めるに当たり,雑 音電波は普通の電波と違い送信点となる雑音源が地域的に分布して移動し,更に輻射電力が変 動すると考えられるので,これらの点を充分考慮しなくてはならない.

第3.3 節の解析から局地性雑音の少ない地域,即ち中緯度及び高緯度での雑音度強について 考察する.前述した如く夜間南緯32度に雑音強度の最大値がみられ,中緯度から高緯度にか け強度は徐々に減少している.

夜間には南緯 32 度 ±2 度付近の雑音強度の変化は ±1.5 db 以内で強度は非常に高く,且つ 安定しているので,この緯度(南緯 32 度)を雑音源と仮定した.南緯 32 度を起点とし,高緯 度に向かって距離をとり,距離に対する雑音強度の特性を求めたのが Fig. 8 である.図中測 定値を黒点で,距離のみを考慮した所謂無減衰値を実線で,更に夜間減衰⁹⁾を考慮した電界強 度を破線で,又 CRPL の予報値を鎖線で示してある.

図から明らかなように, 雑音強度の距離特性と夜間減衰を考慮した電界強度の距離特性は, 他の曲線に比べて非常によく一致している.即ち夜間における東経15度から東経 50 度で, 南緯 32 度から南緯 70 度間の雑音強度の変化は, 南緯 32 度を雑音源と仮定し, 距離及び夜間減衰を 考慮するとよく説明できる.更に距離特性から中緯度及び高緯度で発生する局地性雑音が少な いことをも証明している. CRPLの予報値も中緯度から高緯度へと緯度的に減少の傾向を示し ているが, 測定値より高緯度での減衰量が若干多いように思われる.

低緯度における夜間の雑音強度について考察してみる.北緯5度から北緯7度付近(Figs.2, 3参照)と南緯25度及び南緯32度の強度は,赤道から南緯20度間の強度に比べて高い値を示 している雑音強度の高いこれらの緯度を雑音源と看做すならば,赤道から南緯20度間の雑音強

- Measured values
- Unabsorbed field intensity including the absorption at night
- --- Field intensity predicted by C. R. P. L.

度は距離及び夜間の減衰を考慮しても尚且つ高い値を示している.即ち夜間,低緯度で雑音の 発生が多いことを意味する.

3.6 しゅう雨に伴う雑音

低緯度でしゅう雨の発生中,特殊な雑音強度の上昇 (Fig. 9) が観測された. 雑音の受信された ときは積乱雲に激しい雨が伴う気象条件であった. しゅう雨にあっても必ずしも受信されると は限らないが,一般に空中線がしゅう雨の中に入ると雑音強度は逐次上昇し徐々に降下する. この強度の継続時間 (Fig. 10-a) は約6分のものが最も多く,強度の最大値に対する頻度分布

Fig. 9. Examples of records of precipitation noise in rain shower.
※ Noise enhancement by rain shower △ Lightning discharge

(Fig. 10-b) では 10 db の値が多い. しゅう雨に伴う雑音強度の上昇中, 閃光放電と同時に Back Ground Noise 迄急激に下るのが屢々観測された.

10-a) Relation between the duration and the number of occurrences. 10-b) Relation between $E_n(max)$ and the number of occurrences.

このしゅう雨雑音強度の変化について考察すると、t時刻の受信雑音電圧 E を

で表わすならば, 雑音源の時定数 τ は

で与えられる. 但し t_1 における雑音強度 E_1 , $2t_1$ における雑音強度 E_2 とする.

(3) 式から $\log\left(\frac{E_2}{E_1}-1\right)^{-1}$ と t_1 の関係を Fig. 11 で示す.この図で明らかな如く $\log\left(\frac{E_2}{E_1}-1\right)^{-1}$ と t_1 は完全に比例する. 即ちしゅう雨による雑音強度は指数函数的に上昇しているというこ とが言える. 各記録について, 雑音源の時定は 25 秒から 6 分 41 秒の広い幅を持っているが, 雑音源の時定数 τ に対する頻度分布を示すと, Fig. 12 より明らかな如く時定数 τ は約 1 分値 が多い. 以上を綜合してしゅう雨雑音は雨滴と地上静電場が共存する場合に発生し, 雑音源の 等価的時定数は約 1 分であると言うことができる.

4. 結 論

第5次南極地域観測に際し,宗谷船上で観測した 2.5 Mc/s の空電雑音強度について,以上 述べた解析結果を要約すると次の通りである.

1) 局地性雑音の発生は気象条件に左右される.

2) 日中の雑音強度は,一般に太陽天頂角が小さくなるにつれ指数函数的に減少するが,局 地性雑音の発生の高い所は指数函数的に減少せず高い値を示す.即ち空電は局地性雑音を除き, 太陽天頂角の影響を受ける.

Fig. 11. Relation between $(E_2/E_1-1)^{-1}$ and t_1 .

3) 夜間低緯度では局地性雑音の発生が高く、中及び高緯度では低い.

4) 緯度による n 及び A (第3.4 節参照)の特性は中緯度から高緯度へと減少の傾向を示す.

5) 夜間で局地性雑音の発生の低い地域(南緯 32 度以南)における雑音強度の距離特性は, 距離と夜間の減衰を含めた電界強度の距離特性に等しい.

Fig. 12. Number of times of occurrence of τ .

6) しゅう雨に伴う雑音強度の異常上昇の傾向は指数函数的である。しゅう雨雑音は雨滴と 地上静場電が共存する場合に発生し、雑音源の等価的時定数は約1分であると言うことができ る。

謝 辞

本研究を取りまとめるにあたり,種々御指導を賜わった当所の上田所長,青野次長,糟谷企画課長,田 尾主任研究官,福島電波気象研究室長及び石田第2観測係長,資料整理に有益なる助言をいただいた沢田, 渡辺両技官に対し深甚なる謝意を表する.

References

- 1) Dowden, R. L.: J. Atmosph. Terr. Phys., 11, 111.
- 2) Brice, N. M.: Note on short range echoes on ionospheric recorders. Journal of Atmospheric and Terrestrial Physics, 13, pp. 179 (1958).
- 3) 岡本裕允, 会田一夫, 大瀬正美: 短波の海上散乱について. 電波研究所季報, 4, No. 14, pp. 16-19 (1958 年1月).
- 平尾邦雄: 宗谷船上で観測された短波海上散乱について. 南極資料, No. 11, pp. 184-190 (1961 年1月).
- 5) C.C.I.R.: Documents of the IX the Plenary Assembly. Section G: Propagation, Reports No. 65, pp. 223-256 (1959).
- 6) Crichlow, W. Q., Disney, R. D. and Jenkins, M. A.: M.B.S. Technical note, No. 18-8-9 (Nov. 1960-Jan. 1961).
- 7) Hatakeyama, H. and Kawano, M.: Atmospheric Electricity (in Japanese) (1955). 畠山久尚・川野 実: 気象電気学 (1955 年).
- 8) Kimpara, A.: Atmospheric and methodes of elimination (in Japanese) (1937). 金原 淳: 空電並に其除去法 (1937年).
- 9) Wakai, N.: Non-Deviative absorption at night. Journal of the Radio Research Laboratories, 8, No. 37 (May, 1961).
- Miya, K: "The Journal of the Institute of Electrical Communication Engineers of Japan", 33, No. 1, pp. 3-14 (1950).

宮 憲一: 短波の新しい電界強度計算法. 電気通信学会雑誌 (1950 年1月).

(1962年3月3日受理)