やまと山脈調査旅行の途次における 人工地震探査

石田 完*

SEISMIC OBSERVATION OF THE YAMATO MOUNTAINS TRAVERSING TRIP

Tamotsu ISHIDA*

Abstract

Refraction and reflection seismic studies were made on the route between from Station No. 102 and Station No. 227 during the trip across the Yamato Mountains (*See* Fig. 1).

We used the seismic equipment with 24 recording channels and geophones having the natural frequency of 20 cps (type M-3), supplied by the Electro-Technical Labs. It was mounted on a caboose hauled by a snow-car, as shown in Figs. 2 and 3. The 12 geophones were placed at intervals of 20 m, straightly along the traverse route. The shots for the reflection shooting ranged from 1 to 2 kg of TNT placed in 2 shot-holes, drilled 1 or 2 m apart at depths between 4 m and 6 m in the center of the 12 geophones.

Velocity variation with depth for P wave was calculated for Station No. 95 using the equation:

$$h = \frac{1}{\pi} \int_{0}^{D} \cosh^{-1} \frac{V_{D}}{V_{x}} dx$$
,

where h = depth at which velocity V_D occurs;

x = horizontal distance; $V_x =$ velocities from travel time curve in Fig. 6. The travel time curve was plotted from the results of refraction shooting at Station No. 95.

Fig. 7 shows variation of the velocity of P wave with depth. Further, from the curve, density variation with depth in névé was deduced by the equation:

$$ho = 2.21 \times 10^{-4} V_p + 0.059$$
,

where ρ is density in g/cm³ and V_p is velocity of *P* wave in m/s. The result is shown in Fig. 12. As is known from the figure the rate of increase of density with depth in this area is larger than in the Ross Shelf and Queen Maud Land.

The reflection shooting was performed at intervals of 10 km on the route of 270 km in total length. Ice thickness profile obtained from the seismic prospecting is shown in Fig. 10. As seen in this figure, 3 deep valleys were detected beneath the traverse route. These may be the sources of the Shirase Glacier.

1960 年 11 月 1 日から 同 年 12 月 15 日迄に行なわれた,やまと山脈調査旅行の途次で,人工地震による大陸氷の調査を行なった.この調査の主な目的が,白瀬氷河の源頭がどの辺に

^{*} 北海道大学低温科学研究所,第4次南極地域觀測隊越冬隊員. The Institute of Low Temperature Science, Hokkaido University. Member of the Wintering Party, the Japanese Antarctic Research Expedition, 1959-61.

第1図 やまと山脈調査旅行ルート図と人工地震の観測線 Fig. 1. Seismic observation route.

あるかを知ることにあったので,観測はだいたい,70°31′S,41°00′Eの地点から71°22′S, 35°39′Eの地点に至る線上で10kmごとに行なった.その結果から得られた氷厚断面図によ って,白瀬氷河の源頭と思われる谷の位置を知ることができた.第1図に観測線と氷厚断面図 から推定された谷の位置を示す.

2. 観 測 装 置

使用した地震探査器は E.T.L. 社製の M-3 型 24 成分のものであるが, 観測に要する時間 をなるべく短かくするため 12 成分のみを用いた. 換震器は同社製の固有振動数 20 cps のもの である. 爆薬は東洋化工の T.N.T. で直径 45mm. 薬量 500g と 1kg のものを用いた. 雷管 は帝国化工の 8 号電気雷管を使った.

発破孔を掘るためのアイス・ドリルは AC 100V のモーター・ドリルで,その電源はガソリ ンエンジンを動力とする携帯型 1KVA 発電機によった.このガソリンエンジン発電機は旅行 中の激しい振動でところどころに故障を生じ,特に配電盤は振動に強い構造でなかったので, いたみがひどかった.また橇編成の都合から発電作業は常に外で行なったので,地吹雪のひど いときはエンジンの吸気口に雪がつまったりなどして,始動に手間どることが多かった.アイ

1

Ċ

Fig. 2. The arrangement of Seismic equipments in a caboose.

第3図 地震探査の橇編成. 後ろはやまと山脈の一部 Fig. 3. Seismic sledge train with a hill of the Yamato Mountains in the background.

ス・ドリルのビットは長さ 1m のものを 継いで使うが、その着脱装置が工合悪く 手間どったり、穿孔中に継目がはずれて 下に残ったビットを掘り出すのに多くの 時間を費やしたりした。普通、発破孔の 穿孔作業に3人、換震器とケーブルの設 置作業に2人の人員で行なって、作業が 順調にいったときは、調査隊が停止して 1回の地震探査を終り発進する迄の時間 は40分位であった、ところが一たび穿孔 作業に故障が起こると、1回の観測に数

時間も費やすことがたびたびあった.結局,今回の地震探査では穿孔作業に1番の弱点があったので,今後ビットの改良とか,雪上車に穿孔装置を付属させることなどが望まれる.

地震探査器,電源バッテリー,充電機,ケーブル,写真現像用暗箱などはカマボコ型テント 付橇(カブース)に設置し,雪上車で索引した.カブース内の配置図とその外観を第2図,第 3 図に示す.カブースは床面積が 1.5m×2.5m という比較的小さなものだったので,第2 図 のように地震探査器の増幅器とオッシログラフは高さ 0.6m の台の上に乗せた.この台は,あ りあわせの 4cm 鉄アングルを脚として組み立てたものであるが,旅行の行動中,雪面の凹凸 のため橇が激しく振動し,基地を出発してから 4 日目で脚の 1 本は折れてしまった.それか らは台をテントの U 型骨からナイロンロープで吊り下げた.最後には脚は 4 本とも折れたの であるが,このような激しい動揺に対しても,観測器機には殆んど故障が起こらなかった.

3. 観 測 の 方 法

調査旅行の主な目的がやまと山脈の位置を観測し、その地形、地質を調査することにあった

. .

第 1	表
Table 1.	Mixing

Trace	1	2	3	4	5	6	7	8	9	10	11	12
Mixing	1	1-2	2 - 3	3 - 4	4 - 5	6	7	8 - 9	9 -10	10-11	11–12	12
Rate		$\begin{array}{c c} 1 & 1\\ \hline 2 & 2 \end{array}$	$\boxed{\frac{1}{2} - \frac{1}{2}}$	$\frac{1}{2}$ $\frac{1}{2}$	$\frac{1}{2}$ - $\frac{1}{2}$			$\frac{1}{2}$ - $\frac{1}{2}$	$\frac{1}{2}$ - $\frac{1}{2}$	$\frac{1}{2}$ - $\frac{1}{2}$	$\frac{1}{2}$ $-\frac{1}{2}$	

ので, 地震探査による氷厚観測は前に記したように, やまと山脈から約 270km の間に限った. 観測点はル ート沿いに 10km ごとにとったが, 往路においては, 山地へなるべく早く到着するために 30km ごとに観 測し,帰路で途中抜かした観測点をうめていった.氷 厚の観測には反射法を用い, 12 個の換震器は 20m の 間隔で常にルート沿いに配置した・発破点は測線の中 央, 換震器 6 番と 7 番との間に, 普通 4m の深さで 1m 間隔に2個, 測線に沿って設け, 1kg ずつの爆薬 を用いた.

換震器の出力信号には、第1表のような mixing を 行なった.

増幅器のフィルター特性は第4図に示すようなもの

第5図 観測点 No.95 における屈折波の観測記録 Fig. 5. Refraction shooting records at Station No.95.

を用いたが、これで良好に反射波を捕えることができた.

4. 大陸氷中の弾性波の速度

大陸氷中での P 波の速度の垂直分布を求めるために、 観測点 No. 95 (氷厚測定を開始した 観測点 No. 102 より 14km 北の地点)で屈折波の観測を行なった、実際の記録の 1 部を第5

Fig. 6. P wave velocity measurements on inland ice (Seismic Station No. 95), 1400m above sea level. 図,これから得られた走時曲線を第 6 図に示 す.1回の測線距離は 220m なので,震源の位 置を3回変えて測定した.第6図に示すように P波は震央距離 250m 以上で 3830m/s の直線 上にのる.初動の後,最も顕著な波が現われる が,その走時線は第6図に示すように,震源か ら始まる直線となる.この速度は 1020m/sで, 表面を伝わる直接波と思われる.その後は第5 図に見られるように,次第に速度の分散した波 が続くが,S波の相を明瞭につかむことはでき なかった.

震央距離 x で表面に達する波が最も深く入った所の P 波の速度を V_x とすると, 距離 D で表面に達する波が最も深く進入する深さ h は

$$h = \frac{1}{\pi} \int_0^D \cosh^{-1} \frac{V_D}{V_x} dx$$

で与えられる. V_x を第 6 図の各距離における走時線の傾斜から求めて, h を計算すると, 第 7 図のような P 波の速度の垂直分布が得られる.これは観測点 No. 95 における値である が,反射法の観測を行なった他の観測点, No. 35, No. 102, No. 240 における初動の走時曲線 を併せて記入すると,第 8 図に示すように 震央距離の小さい所では 差があるが,距離が大き くなると共に全て同じ傾斜の直線に近付く.他のどの観測点でもだいたいこの範囲内に入るの で,P 波速度の垂直分布は,今回観測した地域内では,浅い所は場所により多少異なるが,第 7 図のように深さ 50m 以上では全て 3830m/s の速度に達すると考えられる.

第7図から深さ 50m に達する P 波の走時を計算すると 18.9msec になる、今回観測した うちで最も短い反射波の走時は観測点 No. 107 の 288msec であるが、表面 50m 層迄の速度 分布を考慮して計算した深さ 529m に対し、表面から底迄一様な速度 3830m/s として計算し た深さは 552m となり約4% の誤差を生ずる. これより長い反射波の走時に対しては、表面 層の速度分布を考慮しなくても、当然誤差は更に小さくなる.

第8図で観測点 No. 240 の走時線だけは震央から直線となっている.この観測点はやまと山

脈の風下側の裸氷地帯で,表面に密度 0.88 程度の氷が露出している.すなわち,ここでは他の 地域の névé の 50m 下の層が表面に出ているものと思われる.

今回行なった névé の温度の測定は例が少なかったが,発破孔を利用してサーミスタ温度計で測定した結果は,第9図のように場所,日時にかかわらず4mの深さで約-20°Cと一定になっている.

1	222	1500	Dec	. 7,	1960
2	137	1340	"	11,	"
3	132	1620	"	//	"
4	117	1230	"	12,	"
5	112	1510	"	//	"

5. 反射波による氷厚測定

第1図に示した観測線において反射波の観測から求 めた氷厚断面図を第10図に示す.人工地震波の実際 の記録は第11図に示すようなもので,多くの場合2 回の反射波が観測された.névé 表面の高度は2台の アルチメータを用い,一応昭和基地における気象観測 資料によって気圧変動の補正を行なって求めたが,あ まり精度はよくない.従って,前節に述べた理由にも より,大陸氷中の弾性波速度は全て3830m/sとして 氷厚の計算を行なった.観測点 No.132では観測操作 を誤り,記録が得られなかった.第10図を見ると,観 測点 No.122, No.137, No.172 あたりに谷が有るこ とが判り,その位置を地図の上に記入すると第1図の

Fig. 10. Ice thickness profile with a vertical exaggeration of 25 times.

6. Névé の密度の垂直分布

Névé の密度とそれを伝わる P 波の速度との関係にはいろいろな実験式が導かれているが、 ここでは $\operatorname{RoBIN}^{11}$ の

第12図 第7図から計算された névéの密度の垂直分布

Fig. 12. Density variation with depth in Seismic Station No.95. The curve has been deduced from the velocitydepth curve given in Fig. 7, using the equation:

 $\rho = 2.21 \times 10^{-4} V_p + 0.059.$

$\rho = 2.21 \times 10^{-4} V_p + 0.059$

を用いて, 第7 図の深さと P 波速度との関係から, névé の密度の深さによる変化を求めて見ると第12 図 のようになる.この図には, Ross Ice Shelf²⁾ と Queen Maud Land³⁾ における実測値を併せて記入 してある.これを見るとこの地域の névé では,他の 2 つの地域に比較して,深さに対する密度の増し方が 大きい.このことの定性的な解釈の1つとして,前に 述べたように,やまと山脈の風下側には裸氷地帯があ ること,また,やまと山脈の人部分が氷河に覆われて いた形跡があることなどと考え合わせると,この地帯 の大陸氷は,更に大陸内部から流動してきたものであ り,かって abrasion の時代が長く続いて次第に表面 層が消失し,その後再び accumulation が勝って現在 に至っていると考えれば,この密度の比較的小さな névé の層が薄いことを説明できよう.

7. 大陸氷のポアッソン比

やまと山脈風下側の裸氷地帯の観測点 No. 240 における地震波の記録は第13 図に示すもの

	And the second s		
Shot		Historia Lateria de altas de a ←→→ 0.1 sec.	nnninninning allada dada dad 1 Ra

第 11 図 観測点 No. 182 における反射波の観測記録

	1 1 when we
T Shot	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$

第 13 図 観測点 No. 240 における観測記録 Fig. 13. Seismic record at Station No. 240. であるが,これから判るように爆破後約 0.35sec で反射波が現われ、その後 0.55sec から顕著 な波が現われる・同じような相は 2.05sec, 2.27sec, 2.47sec にもある. 0.55sec と 2.05sec の 間にも同様の相があると思われるが、ノイズに消されて明瞭ではない.この相の走時線を書い てみると、いずれも直線となり、その傾斜から、この波の速度は 1754m/s と求められる.そ の大きさは S 波の程度である。そこでこれらの波は、最初の爆破によって震源の所の氷に大き な塑性変形が起こり、そこに蓄えられた反抗力が間歇的に解放される結果として生ずるものと 考えられる.この場合、応力の緩和時間が 2sec にも達するというのは、氷についての今迄の 実験で知られたものに比べると大き過ぎるように思われるが、これと類似の衝撃により間歇的 な反抗力を示す現象は密度 0.4 以上の積雪に認められることを木下⁴⁰が報告している。またこ の際、最初の爆破による点対称的な衝撃と異なって、最初の爆破でそこに一様でない破壊が起 こるとすれば、以後は非等方的な震源となるため S 波が顕著に現われるであろう。今これを S .波として、この地点の P 波の速度 3846m/s とからポアッソン比を求めてみると 0.37 となる.

以上のような波は他の névé 地帯の観測点においても得られた例があるが,反射波の観測の際には,各 trace 間に mixing をかけており,発破孔も 2 個用いているので,この相を明瞭には検出できなかった.裸氷地帯の観測点 No. 240 の場合は,たまたま mixing なしで発破 孔も 1 個であったため特に顕著に現われたものと思われる.

8. む す び

観測例が少なかったが,屈折波と反射波との観測から,一応やまと山脈付近の大陸氷の状態 を知ることができた.特に密度の垂直分布にこの地帯の特異性が認められたが,地震波による 密度の推定には,いくつかの仮定が含まれているので,更に堅坑による密度の実測が望まれる 所である。なお,この地帯の大陸氷の資料を低温科学研究所に持ち帰っているので,その物性 等につき今後研究を進めたい.

終りに、この観測作業に従事された鳥居鉄也隊長をはじめ、木崎甲子郎、景山孝正、佐藤和郎、吉田 栄夫、深瀬一男の各調査旅行隊員の諸兄に厚く御礼申しあげます.

文 献

- 1) G. De Q. Robin: Seismic Shooting and Related Investigations. Norwegian-British-Swedish Antarctic Expedition, 1949-52. Scientific Resalts, 5.
- James H. Zumberge, Mario Giovinetto, Ralph Kehle and John Reid: Deformation of the Ross Ice Shelf near the Bay of Whales, Antarctica. IGY Glaciological Report Series No.
 3 (May, 1960).

 4) Seiiti Kinosita: Break-Down of Snow by Impulsive Force III. Low Temperature Science, Ser. A, 16 (1957). (1961 年 10 月 23 日受理)

^{3) 1)} と同じ.