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Abstract: A magnetic mirror e#ect on the field-aligned acceleration of plasma flow
is discussed for anisotropic plasma conditions by incorporating double adiabatic

equations of state. In a non-uniform distribution of the field magnitude along the field

lines, it is found that the field-aligned acceleration is toward higher field intensity region

for the fluid of low thermal energy, while the acceleration is toward lower field intensity

region for the fluid of high thermal energy. We infer that perpendicular pressure

would cause such an energy-dependent behavior of the field-aligned acceleration

through the magnetic mirror force.
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+. Introduction

MHD waves in space plasmas are categorized as Alfvén, fast mode and slow mode

waves. The Alfvén wave has an incompressible nature. It carries a curl of the

cross-field plasma displacement, x� (Southwood and Kivelson, +33+), which is the
reason why the Alfvén wave has been suggested to carry field-aligned currents. On the

other hand, the fast and slow mode waves can carry the divergence of the cross-field

plasma displacement x� (e.g., Kadomtsev, +310). For this reason, the fast and slow
mode waves are referred to as a compressible mode. For those compressible modes, a

spatial gradient of divx� along the field line would result in a field-aligned inertial force.

Such a force would drive the plasma flows along the field lines. In anisotropic plasma

where the perpendicular and parallel pressures di#er, the magnetic mirror force av-
eraged over the particles and the net field-aligned force associated with the changing

area along the flux tube are added (Comfort, +322).
In this report, we examine the field-aligned acceleration of plasmas in anisotropic

fluid pressure.
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,. An equation of motion for field-aligned plasma acceleration

We examine field-aligned flow acceleration by assuming anisotropic plasma pressure

condition (P��Pz). Here,� and z denote “perpendicular” and “parallel” to the field

lines.

We start with the field-aligned acceleration of the plasma flow by the following

equation (e.g., Parks, +33+).
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Here, b is unit vector of the magnetic field B, r is mass density, Vz is field-aligned

component of the fluid velocity V. The second term of the right-hand side of the

equation can also be written as�[(Pz�P�)/B]
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Equations of motion perpendicular to the field lines in anisotropic plasma can be given

by the equation (e.g, Parks, +33+)

r
dV�
d t
�j�B�

D

�P���Pz�P���b�

D

�b� (,)

Here, j is current vector.

From the field equation, (B/(t�

D

�(V�B), we can relate field and plasma

displacement x as,

B�
D

��x�B�� (-)

In addition, double adiabatic equations of state are given by (e.g., Parks, +33+)
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We examine first order perturbations of eqs. (+) through (/) assuming uniform

background field geometries and uniform distribution of background plasma density,

pressure. The pressure is however anisotropic. Those are expressed as,
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Here, the su$x “*” and “+” indicate the background and perturbed quantities. We

assume no background flow, V* and no background currents, J*. To derive the eq. (,�),
we assumed that the force balance across the field lines is maintained primarily by the

diamagnetic condition where the inertial currents in the left-hand side of the equation

and centrifugal term ((b�

D

)b�n/R, n is unit vector normal to the field lines, R is
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radius of the field line curvature) in the last part of the right-hand side of the eq. (,) are
neglected. Such conditions can be justified when field variations are slow to be able to

neglect the inertial force as compared to the pressure gradient force and when scale

length of the pressure gradient across the field lines is smaller than the radius of the field

line curvature.

From the eq. (-�) we can calculate the first order perturbation of the field line
vector B+��B*divx��(B*�

D

)x� (Kadomtsev, +310). Here, x� is plasma displace-

ment across the field lines. The first order quantity of the field magnitude can be

obtained by the following relation.
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Substituting B+��B*divx��(B*�

D

)x� into the above relation, we have the following

expression.
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The left-hand side of the eq. (,�) may be expressed as (Kadomtsev, +310),
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We again neglect the centrifugal term in the equation. Then, pressure perturba-

tions in the right-hand side of eq. (,�) may be written as,
P+��r*CA

,�divx�� (,�)
Here, CA is Alfvén velocity defined by B*/����� , m* is the magnetic permeability in

vacuum. Because the term “divx�” in the eqs. (,�) and (-�) is common for both the
perturbations B+ and P+�, the field-aligned gradient of the pressure and field magnitude

along the flux tube can be related as,
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Substituting eq. (0) into (+�), we obtain
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Substituting (,�), (-�), (.�) and (/�) into eq. (1), we have
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We define the pressure anisotropy, a, and the ratio of field and fluid energy density,

g by the equations,
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Here, N* is number density, E* is total fluid energy define by the following relations,

N*E*�P*, and P*�P*��P* z�
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Substituting above relations into (2), we have
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The field-aligned acceleration is in the parallel/anti-parallel direction of (B+/(z as

the total fluid energy is above/below the critical value, E*c defined by
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-. Discussion

The magnetic mirror force is force acting on a single particle. It is a multiple of

a perpendicular kinetic energy and gradient of the field magnitude. When the magnetic

mirror force of individual particle is averaged over the particles in a volume element, it

can be written by �(P�/B)

D

z B. In addition, a net parallel pressure associated with

the changing area along the flux tube can be shown as (Pz/B)

D

z B (e.g. Comfort, +322).
Therefore the second term of the right-hand side of the eq. (+�) consists of the magnetic

mirror force averaged over the particles and net parallel pressure force, though the field

gradient is in a first order quantity. The direction of magnetic mirror force is opposite

to both the pressure gradient force of fluid perturbation in the first term and the net

parallel pressure force. When the background perpendicular pressures exceed that of

the parallel pressures, the magnetic mirror force might exceed the sum of the remaining

forces. Then, it is apparent that field-aligned acceleration would show two di#erent
behaviors as the anisotropy of fluid pressure varies. Because the fluid pressure can be

expressed by the thermal energy of fluid, the field-aligned acceleration is a function of

the pressure anisotropy and thermal energy. In our calculation, the field-aligned flow

acceleration and (B+/(z are oppositely directed, when the fluid energy was above E*c.

This means that the fluid energy above E*c is accelerated toward weaker field intensity

region, if the field intensity changes along the field lines. Substituting typical plasma

sheet parameters, B*�+* nT, N*�+*�+cm�-, E*c is estimated to be +0.2 keV when the

pressure anisotropy a is 1.*. The fluid energy E*c decreases to ..* keV at a�+*.*.
There appears no upper limit in E*c when a is below 0.*. It asymptotically approaches

to zero as a increases.

In the present study, we examined the pressure anisotropy e#ect on the field-aligned

flow acceleration by assuming the diamagnetic condition where inertia force and the

centrifugal term are neglected. The results presented here are valid when

D

�P��
r((V�/(t) and

D

��+/R, R is radius of the field line curvature.
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