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Abstract: We simulated the three-dimensional (-D) propagation of a shock wave

caused by a coronal mass ejection (CME) on November +-, ,**-. The -D simula-

tions were performed using a high-resolution adaptive mesh refinement (AMR)

technique. The AMR technique enabled us to resolve near the sun with (*.*0R��)--

sized cells and to resolve the entire shock front with (*.,.R��)--sized cells in an

interplanetary simulation within a (/**R��)--sized computational box. The solar

wind was measured by an imaginary spacecraft positioned at point L+ in the simula-

tions. A model fitted for solar wind density fluctuations observed by the ACE

spacecraft was employed, and models in which some CME parameters were changed

were employed for comparison. The relationships between the CME parameters and

the solar wind fluctuations were also investigated, and the results were compared with

the solar wind data observed at point L+ by the ACE spacecraft.
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+. Introduction

Fast coronal mass ejections (CMEs) cause shock waves in interplanetary space.

The shock waves may continue to fluctuate strongly when they arrive at Earth, leading

to space weather phenomena in the Earth’s magnetosphere and ionosphere.

Three-dimensional (-D) simulations of interplanetary shock wave propagation are

di$cult to perform in one simulation box spanning the orbit of Earth as long as a regular

mesh structure is used because of limitations in computational resources (CPU power

and memory capacity). The use of a spherical mesh is one e#ective solution to this

problem. Odstrcil and Pizzo (+333) and Odstrcil et al. (,**.) used a fan-shaped

spherical mesh to investigate CME-caused structures within a streamer belt. However,

a spherical mesh cannot resolve CME-caused shock waves with a high resolution once
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the shock waves are distant from the sun. The use of an adaptive mesh refinement

(AMR) technique (Khokhlov, +332) is an excellent solution to this problem. The

AMR technique dynamically adapts the meshes to suit the physical state. Running

structures can be monitored using fine meshes and coarse meshes can be allocated to

quiet regions. This feature makes it possible to simulate interplanetary shock wave

propagations with high resolution. Manchester et al. (,**.) performed AMR simula-

tions of interplanetary CME propagation, but they localized their fine meshes for the

CME to a narrow region along a sun-to-earth line.

We used a -D AMR hydrodynamic code to simulate an interplanetary shock wave

caused by a CME that occurred at *3-*UT on November +-, ,**-. The CME was

observed by SOHO/LASCO with a velocity of ++.+ km/s (see the SOHO LASCO CME

Catalog available on the SOHO web page). We selected this CME because it produced

a clear shock wave on a quiet solar wind. The relevant shock wave was observed by the

ACE spacecraft about .-.2 hours after the detection of the CME. In our simulations,

the plane of the shock wave was processed using small cells, and a high resolution was

maintained throughout the simulation.

,. Simulation

Simulations of CME-caused shock waves were performed using our -D AMR code.

With the AMR technique, the areas, positions, and shapes of the regions of fine meshes

can be adapted to suit the physical state in progress. This makes it possible to monitor

the shock wave structure using fine meshes and to monitor the ambient solar wind using

coarse meshes, enabling high-resolution simulations to be performed using available

computer resources.

The equations for the system are
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where r, u, g, e, P, g, and Q are mass density, velocity, gravitational acceleration, total

energy density, pressure, specific heat ratio, and heating function, respectively. We set
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where G, M	� , r, and r
�r� are the gravitational constant, the solar mass, the position

vector from the solar center, and the distance from the solar center, respectively. And

we set the heating function as
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where T, r, and R�� are temperature, distance from the sun, and the solar radius,

respectively. We choose s*�../ R��, which was the minimum value used by Manches-

ter et al. (,**.) and
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to reproduce the density and the velocity of the solar wind observed by the ACE

spacecraft at point L+. We set the density at the inner boundary to r�+.-�+*0

protons/cm-. The above parameters were used to reproduce the velocity and the

density of the solar wind in the pre-shock region.

The equations were then rewritten into di#erence equations that can be solved using
the Roe-MUSCL algorithm (Roe, +32+; Van Leer, +311, +313; Fujii, +33.). The size

of the computational box was (/** R��)
-. The sun was positioned at the conter of the

box. The inner boundary was set at +.+ R��. The cell size was (*.*0 R��)
- near the sun,

(*.,. R��)
- in the area of the shock wave, and (1.2 R��)

- for the maximum cells. We first

obtain a steady-state solar wind and then inputted the model CME into the inner

boundary. The CME model is described in the next section.

-. CME model

Once a steady-state solar wind was produced, we inputted a model CME into the

inner boundary. We focused on a CME that occurred at *3-*UT on November +-,
,**-. The speed of the CME was measured as ++.+ km/s by SOHO/LASCO. We

modeled the CME as follows:
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where VCME is the radial velocity of the input CME, Vmax is the maximum of VCME, rSW
is the density of the pre-CME solar wind, rCME is the additional density of the input

CME, and x, x*, tr, and td are the angle to the axis of the CME cone, the angular radius

of the CME, the stand-up time, and the duration of the CME, respectively (Odstrcil and

Pizzo, +333). We adopted x*�+/
 and tr�+ hour; these values are the ones used by
Odstrcil and Pizzo (+333). And we set Vmax as the observed CME velocity. The Joint
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USAF/NOAA Report of Solar and Geophysical Activity reported that the CME appeared

to erupt o# an east limb. We therefore assumed that the CME occurred on the east side

of the equator. The longitude, together with the rCME and td, were adjusted as a

temporal plot of the solar wind density at point L+ to fit the ACE data. These fitted

values were used in model +, shown in Table +. For comparison, we simulated three

other models that deviated from the fitted point. Model , was the same as model +
except for the direction of the eruption of the CME. Model - had a higher density and
the longitude was adjusted so that the density peak at point L+ agreed with the observed
value. Model . had a longer duration time and the same longitude as model +. The

density of model . was adjusted so that the density peak at point L+ agreed with the
observed value. These models are summarized in Table +.

.. Results

The density distributions of model + on the solar equator plane at ,. and /, hours
after the CME are shown in Fig. +. An imaginary spacecraft placed at point L+ in a
simulation box was used to observe the time variations of the solar wind. The density

and velocity of model + are plotted in Fig. ,, together with the ACE data. The density

of models ,, -, and . are plotted in Fig. -, while the velocities of these models are shown
in Fig. .. The upper-left panels of Figs. - and . are the same as the left and right panels
of Fig. ,, respectively. These plots were adjusted so that the rise time of the simulated

shocks coincided with the observed one. Shock waves were detected in each model.

The arrival times of the shock waves in each model were /+.0, .1.,, /*.,, and /+.0 hours
after the beginning of the CME input. A shock wave was seen in the ACE data .-.2
hours after SOHO/LASCO detected a bright loop. Of note, the data were measured at

the center of the cell nearest to point L+, not just at point L+. This method produced

apparent discontinuities in the temporal plots when the cell size was changed. For

instance, the jumps in the post-shock region seen in Figs. ,, -, and . are not real
discontinuities. Such jumps were small near the shock front well because the size of the

cells near the shock front was small. The density plot of model + agreed with the
observations, but the peak was somewhat higher. The velocity of model + had a
somewhat lower peak and was di$cult to decrease. Model , was the same as model +,
but the erupting direction was turned toward Earth. The density plot of model , had
a higher peak and a subsequent second peak. The velocity of model , was +*+ km/s

higher than that of model +. Model - erupted a larger mass directed away from Earth.
The density peak of model - moved backward from the shock. The velocity plot of

Table +. Density, duration, position, and mass of the CME in each of the models.

Model rCME (cm
�-) td (hour) Longitude Mass (g)

+
,
-
.

+4*�+*0

+4*�+*0

,40�+*0

*4/�+*0

.

.

.
+*

E ,/�
E +/�
E -*�
E ,/�

+4+�+*+/

+4+�+*+/

-42�+*+/

+41�+*+/

rCME, density; td, duration. All other parameters were fixed, as described in

the text.
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Fig. ,. Density plot (left) and velocity plot (right) for model + compared with the ACE data. The unit of the horizontal axis is Day of

Year. The units of the vertical axes in the two panels are cm�- (left) and km/s (right), respectively. The simulated results were

adjusted so that the rise time coincided with the observed one.

Fig. +. Density distributions of model + on the solar

equator plane at ,. (left) and /, (right) hours

after the occurrence of the CME. The logarithm

of the density is expressed by the gray scale. The

unit of length is the solar radius. The sun is

located at the center (*,*,*). The horizontal axis

faces the direction of the CME eruption. The earth

is located at (+3/,3+,*).
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Fig. -. Density plot of model + compared with the ACE data (upper left) and density plots of models ,�. compared with that of model +
(upper right, lower left, and lower right). The units of the horizontal and vertical axes are Day of Year and cm�-, respectively.

The simulated results were adjusted so that the rise time coincided with the observed one.
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Fig. .. Velocity plot of model + compared with the ACE data (upper left) and velocity plots of models ,�. compared with that of model +
(upper right, lower left, and lower right). The units of the horizontal and vertical axes are Day of Year and km/s, respectively.
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model - was similar to model +, but a bit higher. Model . erupted a low density for a

long duration. The density plot of model . had a flat profile. In these plots, some

discontinuous profiles with small jumps were observed. These apparent variations were

caused by switching from fine cells to coarse cells at point L+, since the merging of the

cells implies the movement of the observation point of the imaginary spacecraft, which

was placed at the center of the cell nearest to the point L+.

/. Conclusions and discussion

We simulated an interplanetary shock wave caused by a CME that occurred at *3-*
UT on November +-, ,**-. A model with a temporal variation in the solar wind

density at point L+ was fitted to the observations, and three other models were employed

for comparison. Plots of the temporal variations in density and velocity at point L+
were then compared with the ACE data. The travel time of the shock wave in model

+ was /+.0 hours, +2� longer than the observed value of .-.2 hours. Our AMR code

allocated (*.,. R��)
--sized cells to the region of the shock. This cell size corresponded

to a resolution of +/,*.2, making it possible to reproduce steep gradient of physical

quantities for the shock. While a regular interval mesh of ,*.2- requires 2.0�+*3 cells,

our simulation only used +.2�+*1 cells. The elapse time of our simulation was about

++ hours, which is much shorter than the actual travel times of CME-caused shock

waves. In the present paper, we showed that our simulation was able to characterize an

interplanetary shock wave sharply and to reproduce the density fluctuations at point L+.
Our AMR code also has the potential to predict the passage of a CME-caused shock wave.

Of note, the travel time in simulation was measured from the beginning of the CME

input into the inner boundary, while the SOHO/LASCO data detected a CME when a

bright loop appeared in the field of view. In general, a time lag of several tens minutes

to a few hours May exist between these two measurements. However, the data in the

LASCO CME Catalog suggested that the time lag of the CME was only about half an

hour. This lag cannot explain the di#erence between the simulated travel times and the

observed ones. Although the Joint USAF/NOAA Report states that the CME

appeared to erupt o# an east limb, the SOHO LASCO CME Catalog states that the

CME was a partial halo with a di#use angular width of ,+1 degrees. These records that

the actual width of the CME was larger than Odstrcil and Pizzo’s (+333) value of x*�
+/�, which we used in this study, and that the CME was located at a larger longitude in

the east than our best fit value of E,/�. A larger longitude and a wider di#usion value

for the CME may account for the di#erences in the travel times. However, the location

and di#usion of a CME are di$cult to derive from observations. We believe that these

parameters should be adjusted so that the solar wind variation at point L+ agrees with

the observations.

The density plot of model + agreed well with the observations. On the other hand,

the velocity plot of model + was flatter than the observations. We adopted a CME

model that was similar to Odstrcil and Pizzo’s model (Odstrcil and Pizzo, +333).
However, we placed the inner boundary at +.+ R��, very close to the sun surface, while

Odstrcil and Pizzo placed the inner boundary at -* R��, distant from the sun. A

di#erent CME may be required when the inner boundary is set close to the solar surface.
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The CME model should be improved to reproduce both density and velocity plots more

accurately. Furthermore, the solar magnetic field may influence the evolution of

CMEs. CME observations show a nearly constant velocity of the shock front from

about - R�� to ,1 R�� (see the SOHO LASCO CME Catalog). The magnetic e#ects on

the shock front of the CME seem to be small, but they may a#ect the post-shock region.

The e#ects of the solar magnetic field will be examined in our next study. Odstrcil and

Pizzo (+333) and Odstrcil et al. (,**.) demonstrated that interactions between a

CME-caused shock wave and the ambient solar wind distort the shock front. In the

present paper, we selected a CME that had a quiet pre-shock solar wind to allow this

e#ect to be ignored. In general, a structured solar wind should be modeled in a

simulation of an interplanetary shock wave propagation. In the future, we hope to

introduce a realistic model of a solar magnetic field through which the solar wind

structure can be reproduced.
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