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Abstract: We investigate e#ects of the stratospheric sudden warming on the temper-
ature in the MLT (mesosphere and lower thermosphere) region by using a general

circulation model up to +/* km height. Cooling of /�+/K at high latitudes of the

upper mesosphere and lower thermosphere occurs during the stratospheric sudden

warming event. The result indicates influences of the stratospheric sudden warming

on the temperature in the MLT region. We investigate mechanisms of the tempera-

ture variation at high latitudes of the upper mesosphere and lower thermosphere

associated with the stratospheric sudden warming event.
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+. Introduction

The stratospheric sudden warming during the mid-winter (SSW, hereafter) is well

known, and is caused by vertical propagation of the amplified planetary wave from the

troposphere (Matsuno, +31+). Features of the general circulation in the stratosphere

during the SSW are reported by many studies (e.g. Dunkerton et al., +32+; Palmer,
+32+).

Labitzke (+31,) showed cooling in the mesosphere during the SSW, and Hirota and
Bernett (+311; HB11 hereafter) showed cooling of +*K at high latitudes of 2* km height

during the SSW by using the Nimbus 0 satellite data. Recently, by using the lidar and

airglow measurements, the temperature in the MLT (mesosphere and lower thermo-

sphere) region has been obtained. Walterscheid et al. (,***) reported cooling of ,/K
during the SSW in February +33- over Eureka, Canada. These results indicate a

connection between the temperature in the polar MLT region and the SSW.

By using a ,-dimensional mechanistic model, Holton (+32-) studied e#ects of the
SSW on the general circulation in the mesosphere. He shows that cooling in the polar

mesosphere is accompanied by warming in the polar stratosphere. He suggests that

cooling in the polar mesosphere is mainly caused by the radiative cooling. However, in

his model, only a single zonal wavenumber is taken into account. The upper boundary

of his model is about 3* km height, so that e#ects of the SSW on the temperature above

the mesopause region can not be studied.
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Because there is only a few temperature measurements at high latitudes of the MLT

region, e#ects of the SSW on the temperature in the MLT region is not well understood.

Mechanisms of the cooling in the mesopause region are not clear. Thus, the purpose of

this study is to investigate e#ects of the SSW on the temperature in the MLT region by

using a general circulation model (GCM) with upper boundary at +/* km height. Heat

balance at high latitudes of the MLT region during the SSW is analyzed in detail. The

descriptions of the GCM used in this study are presented in Section ,. Results are

presented in Section -. Discussions and summary follow in Section ..

,. Model descriptions

In this study, a GCM developed at Kyushu University is used. The GCM is a

global spectral model with the triangular truncation at wavenumber ,+ in the horizontal
direction. The GCM has // vertical levels and contains the region from the ground to

about +/* km height. The detailed descriptions of the GCM are found in Miyoshi

(+333) and Miyahara et al. (+33-), so the description of the GCM is briefly mentioned

here.

The GCM has a full set of physical processes, such as radiation, a boundary layer,

hydrology, moist and dry convection and vertical eddy di#usion. In the troposphere,

stratosphere and mesosphere, the radiation code developed at CCSR, University of

Tokyo (Nakajima et al., ,***) is used. In the lower thermosphere, Fomichev’s

parameterization (+33-) is used for the long wave radiation by CO,. The long wave

radiation by NO is also parameterized by Kockarts’s method (Kockarts, +32*).
Strobel’s parameterization (Strobel, +312) is used for the solar radiation by O,. The

distributions of O-, CO, and NO are climatologically prescribed. In the upper meso-

sphere and lower thermosphere, the density of the atmosphere becomes extremely low,

so that the di#usion of momentum and heat due to the molecular viscosity and

conductivity is introduced. Furthermore, the momentum exchange between the neu-

tral atmosphere and the ionized atmosphere is also taken into account, because the

density of the ionized atmosphere is not negligible. Below 3/ km height, e#ects of
unresolved orographic and non-orographic gravity waves are included. The

parameterization by McFarlane (+321) is used for orographic gravity waves, while the
parameterization by Lindzen (+32+) is used for non-orographic gravity waves. For

Lindzen’s parameterization, a simple wave spectrum consisting of zonal phase speeds *,
�+*, �,* and �-*m/s is taken into account.

The numerical integration is performed over successive . years. The mid-winter

SSW occurs in the second and fourth years. In this study, features of the general

circulation during the SSW in the second year are analyzed.

-. Results

-.+. Temperature

Figure + shows time variation of the zonal mean temperature at 2*�Nof -* km and

.* km. Latitude-height plots of the zonal mean zonal wind for / January (before the
SSW) and ++ January (during the SSW) are shown in Fig. ,. The westerly with the
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maximum speed of /*m/s prevails in the stratosphere and mesosphere before the SSW.

During the SSW, the broad region of the easterly appears in high latitudes of the

stratosphere and mesosphere. Figures -a and -b show the zonal mean temperature for

/ January and ++ January. It is clearly seen that the temperature at high latitudes

of the stratosphere rises during the period from / January to ++ January. Thus, a

major sudden warming occurs around +* January. These features are similar to the

observed features. Weak warmings also occur at .* km height around ,/ January and

/ February.

E#ects of the SSW on the temperature at high latitudes of the mesopause region are

examined. Figure .a shows time variation of the zonal mean temperature at 2*�Nof 2*
km and 3* km. At 2* km height, cooling of +*K occurs around +* January, and the

Fig. +. Time series of the zonal mean temperature at 2*�N of -* km
(solid line) and .* km (dotted line). Units are K.

Fig. ,. (a) Latitude-height plot of the zonal mean zonal wind on / January. Contour interval is

+*m/s. Solid and dotted lines represent westerly and easterly, respectively.

(b) As in Fig. ,a bur for on ++ January.

(a) (b)
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(a) (b)

(c)

Fig. -. (a) Latitude-height plot of the zonal mean

temperature on / January. Contour

interval of thin lines is +*K.
(b) As in Fig. -a bur for on ++ January.
(c) Latitude-height plot of the zonal mean

temperature di#erence between / Janu-
ary and ++ January. Contour interval

is /K. Solid and dotted lines repre-

sent warming and cooling, respectively.

Fig. .. (a) Time series of the zonal mean temperature at 2*�N of 2* km (solid line) and 3* km
(dotted line). Units are K.

(b) Time series of the temperature at 2/�W, 2*�N of 2* km. Unit is K.

(a) (b)
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cooling rate is ,./K/day. Weak coolings occur around ,/ January and / February.
It is clearly seen that time variation of the temperature at 2* km is negatively correlated
with the temperature variation at -* km. The cooling during +* January does not occur
at 3* km. The reason why cooling does not occur at 3* km will be discussed at Section
-.-.

Here, the global distribution of the temperature di#erence between the pre-SSW
period and the SSW period is examined. Figure -c shows the zonal mean temperature
di#erence between / January and ++ January. Warming at high latitudes of the

stratosphere is accompanied by cooling at high latitudes of the mesosphere. The

cooling region extends up to 3* km height. The cooling in the lower mesosphere is

consistent with Labitzke (+31,). Cooling of +*K at high latitudes of 2* km height

during the SSW event is consistent with HB11 obtained by the Nimbus 0 satellite data.
Waltersheid et al. (,***) performed numerical simulation for the SSW in February

+33- by using the TIME-GCM. They also showed cooling of +*K in the polar

mesopause region during the SSW. Furthermore, in their paper, the lidar and airglow

measurement recorded cooling of ,/K at the mesopause over Eureka, Canada (2/�W,
2*�N) during the SSW event in February +33-, which is larger than the results obtained
by HB11 and this study. Figure .b shows time variation of the simulated temperature
at 2/�W, 2*�N of 2* km height (over Eureka). The temperature over Eureka simulated

by the GCM shows cooling of ,*K during the SSW, and this cooling is comparable to
the observed cooling over Eureka. This result suggests that cooling of the zonal mean

temperature in February +33- is smaller than ,/K cooling.
Above +** km height, cooling occurs at all latitudes of the northern hemisphere.

At high latitudes of +*/�+-* km, cooling of +*�+/K is seen. Figures /a and /b show

(c)

(a) (b)

Fig. /. (a) Time series of the zonal mean tem-

perature at 2*�N of ++* km height.

Unit is K.

(b) As in Fig. /a bur for +,/ km height.

(c) Time series of the zonal mean tem-

perature at -*�N of ++* km (solid

line). Thick solid line is --day

running mean of the zonal mean

temperature at -*�N. Units are K.
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time variation of the zonal mean temperature at 2*�N of ++* km and +,/ km, respective-

ly. In the lower thermosphere, the temperature variation with time scales of a few

days is dominant. Cooling more than +*K around +* January is significant, and is

accompanied by the SSW event. Thus, this result indicates that the temperature at high

latitudes of the lower thermosphere is influenced by the temperature variation in the

stratosphere.

Next, we investigate time variation of the zonal mean temperature at middle

latitudes of ++* km height (Fig. /c). Cooling of 1K appears around +* January, and

weak coolings occur around ,1 January and / February. These coolings are ac-

companied by coolings at high latitudes. Thus, these results indicate a correlation

between the temperature at ++* km height and the stratospheric temperature.

-.,. Heat balance

We consider the temperature change on the basis of the quasi-geostrophic trans-

formed Eulerian mean (TEM) thermodynamic equation in log-pressure coordinates

using standard notations (Andrews et al., +321):

(T
(t

�
��H

R
N,w��� JJ

Cp

�
�

The first term and the second term of the right hand side denote the contribution of

vertical motion and diabatic heating, respectively. In the middle atmosphere, the

diabatic heating is almost equal to the radiative heating. Figure 0 shows the contribu-

tion of vertical motion and radiative heating at 2*�N of 2* km height. Before the SSW,

the temperature rises, because heating due to the downward motion exceeds cooling due

to the radiation. On the other hand, during the SSW, the contribution of vertical

motion is small. The weak upward motion takes place on +* January to +, January,

and cooling due to the vertical motion appears. The cooling during the SSW is mainly

due to the radiative cooling. After the SSW event, the enhancement of heating due to

the downward motion occurs, and the temperature rises again.

Fig. 0. Time series of heat balance at 2*�N of 2* km. Thin solid line and

dotted line represent the contribution of vertical motion and the

contribution of radiation, respectively. Thick solid line represents the

contribution of vertical motion plus the radiation. Units are K/day.
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Figure 1 shows the contribution of vertical motion and radiative heating at 2*�N of

++* km height. Features of heat balance at ++* km are similar to those at 2* km.

During the SSW, heating due to the downward motion becomes weak. The tempera-

ture falls because cooling due to the radiation exceeds heating due to the downward

motion. Thus, time variation of the temperature is closely related with the strength of

the vertical motion.

Figure 2 shows the residual mean meridional circulation before the SSW and

during the SSW. During the SSW, the strong downward motion at high latitudes of the

stratosphere is accompanied by the very weak vertical motion in the polar mesosphere.

The weak upward motion appears at 2*�N of the upper mesosphere. At high latitudes

Fig. 2. (a) The residual mean meridional circulation averaged over . January through 0 January.

The unit vectors shown at the right side bottom represent the poleward wind of +* m/s and

the upward motion of / cm/s.

(b) As in Fig. 2a but for averaged over 3 January through ++ January.

Fig. 1. As in Fig. 0 but for ++* km.

(a) (b)
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above +** km height, the downward motion during the SSW is weaker than that before

the SSW.

-.-. Wave drag

We consider time variation of the vertical motion on the basis of the TEM equation.

It is well known that the wave drag (the E-P flux divergence) is responsible for

maintaining the residual circulation (Andrews et al., +321):

�f v�� �G
��

G
�
is the wave drag, which in the middle atmosphere is mainly due to the planetary wave

and the gravity wave. In the winter hemisphere, the poleward wind is driven by

easterly acceleration by the wave drag. The GCM used in this study is a T,+ model, so
that the wave drag due to the zonal wavenumber up to ,+ is resolved. The wave drag

due to the smaller scale gravity wave is estimated by the gravity wave drag parameteriza-

tions (McFarlane, +321; Lindzen, +32+). Figure 3a shows a latitude-height plot of the
wave drag due to the resolved waves and the small-scale gravity waves before the SSW.

As a result of the strong easterly acceleration due to the wave drag at 0* to 2* km height,

the poleward wind at middle latitudes and the downward motion at high latitudes are

strong at 0* to 2* km height. Above +** km height, easterly acceleration due to the

wave drag appears, and this easterly acceleration also induces the poleward and

downward winds. At 3* to +** km height, the wave drag is weak, and this is a reason

why the meridional and vertical winds are weak. Because the downward motion at the

polar region of 3* km remains quite small during the whole period, time variation of the

temperature at 3* km is small during the SSW.

Figure 3b shows a latitude-height plot of the wave drag during the SSW (averaged

over 3 January through ++ January). Figure 3c shows the di#erence of the wave drag
between the pre-SSW period and the SSW period. The enhancement of easterly

acceleration at high latitudes of the stratosphere and lower mesosphere is accompanied

by the reduction of easterly acceleration at high latitudes above 0/ km height. Thus,

during the SSW, the reduction of easterly acceleration makes the downward motion

above 0/ km weaker.

Next, e#ects of the gravity wave drag on the meridional circulation are examined.
Figure +*a is the di#erence of the wave drag due to the gravity wave drag parameteriza-
tion between the pre-SSW period and the SSW period, while Fig. +*b is the di#erence
due to the planetary wave (the zonal wavenumber + to -). The di#erence of the wave
drag due to waves whose zonal wavenumber is . to ,+ is negligibly small. At /* to 3/
km height, easterly acceleration due to the gravity wave drag during the SSW is weaker

than that before the SSW. Before the SSW, the westerly jet prevails at high latitudes of

the stratosphere and mesosphere, so that upward propagation of westward-moving

gravity waves occurs easily. However, during the SSW, due to the easterly wind at

high latitudes, upward propagation of westward-moving gravity waves is prohibited.

Moreover, upward propagation of eastward-moving gravity waves is allowed. At high

latitudes of the upper mesosphere, westerly acceleration due to the gravity wave drag is

seen (not shown). At 0/ to 3* km height, the reduction of easterly acceleration in

Fig. 3c is caused by the reduction of easterly acceleration due to the gravity wave drag.
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Thus, the reduction of easterly acceleration due to the gravity wave drag weakens the

meridional circulation at the poleward of 0*�N at 0/ to 3* km height.

Holton (+32-) investigated the behavior of the gravity wave during the SSW by

using a ,-dimensional mechanistic model. He showed that the meridional circulation

in the mesosphere was a#ected by the reduced gravity wave drag during the SSW. His

result is consistent with our result.

Above +*/ km height of high latitudes, the wave drag due to the planetary wave

during the SSW period is weaker than that during the pre-SSW period (Fig. +*b).

Before the SSW, the quasi-stationary planetary wave with the zonal wavenumber +
appears above +*/ km height of high latitudes (Fig. ++a). This is due to upward

propagation of the planetary wave from the stratosphere into the lower thermosphere,

because the weak easterly wind exists only at -* to 0*�N near the mesopause. On the

(a) (b)

(c)

Fig. 3. (a) Latitude-height plot of the wave drag

due to the resolved waves and the gravi-

ty wave parameterization averaged over

. January through 0 January. Contour

interval is +* m/s/day. Solid and dotted

lines represent westerly acceleration and

easterly acceleration, respectively.

(b) As in Fig. 3a but for averaged over 3
January through ++ January.

(c) Di#erence of the wave drag between Fig.

3a and 3b. Solid and dotted lines repre-

sent the enhancement of easterly accel-

eration and the reduction of easterly

acceleration during the SSW, respec-

tively. Contour interval is /m/s/day.
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other hand, during the SSW, the amplitude of the planetary wave above +*/ km is weak,

because upward propagation of the planetary wave is inhibited by the easterly wind in

the stratosphere and mesosphere. Thus, the reduction of easterly acceleration due to

the planetary wave during the SSW weakens the poleward wind and downward motion

above +*/ km.

(a)

Fig. +*. (a) As in Fig. 3c but for the di#erence of the wave drag due to the gravity wave drag.

(b) As in Fig. 3c but for the di#erence of the wave drag due to the planetary wave

(the zonal wavenumber +�-).

(b)

(a)

Fig. ++. (a) Latitude-height plot of the amplitude of the zonal wavenumber + component averaged over -
January through 1 January. E#ects of tidal waves are excluded. Contour interval is +**m.

(b) As in Fig. ++a but for averaged over 3 January through +- January.

(b)
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Above +*/ km height, the di#erence of the planetary wave amplitude between the
pre-SSW period and the SSW period is small as compared with that in the stratosphere.

The di#erence of the magnitude of the downward motion between the pre-SSW period

and the SSW period is also small above +*/ km height. However, changes of heating

rate during the SSW are large (Fig. 1). The buoyancy frequency in the lower thermo-

sphere is very large, so that small changes of the magnitude of the downward motion

produce large changes of heating rate during the SSW.

.. Discussions and summary

In this study, e#ects of the SSW on the general circulation in the upper mesosphere

and lower thermosphere are investigated by using a GCM. The results are as follows.

�Cooling of �+*K at high latitudes of the upper mesosphere occurs during the SSW,

while cooling of /�+/K occurs at high latitudes of the lower thermosphere.

�The cooling during the SSW is mainly caused by cooling due to the radiation.

�The reduction of easterly acceleration due to the gravity wave drag during the SSW
weakens the downward motion at high latitudes of the upper mesosphere. In the

lower thermosphere, the reduction of easterly acceleration due to the planetary wave

during the SSW makes the downward motion at high latitudes weaker.

�Time variation of the temperature around 3* km height at high latitudes is small

during the SSW. This is due to weak wave drag around 3* km height.

These results show that the temperature in the MLT region is influenced by the SSW.

Labitzke (+321) investigated interannual variability of the SSW. She showed that

more major stratospheric mid-winter warmings occurred in the easterly phase of the

stratospheric Quasi-Biennial Oscillation (QBO, hereafter), and the relatively few major

mid-winter warmings observed in the westerly phase of the QBO took place only when

the sunspot number was high. These results suggest that the QBO influences the

cooling in the polar MLT region associated with the SSW. There may be a correlation

between the QBO and interannual variability of the temperature in the polar MLT

region. However, only a few observations about the temperature in the polar MLT

region have been reported. Interannual variability of the temperature in the MLT

region is not well understood. Model studies for interannual variability in the MLT

region will be required.

The results in this study show that the SSW event influences the temperature above

+-* km height. The upper boundary of our GCM is +/* km height, so that e#ects of the
SSW on the temperature variation above +/* km can not be simulated. Numerical

simulation by a thermosphere general circulation model is necessary to investigate

thermospheric responses of the SSW.
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