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Abstract: The photosynthesis-irradiance characteristics (P-E curves) and quantum 

yields of natural phytoplankton were investigated in the Southern Ocean off Adelie 

Land, Antarctica, during the austral summer. Data were acquired at eight stations 

during a cruise of T /V Umitaka-Maru III. The photosynthetic P-E curves showed 

low light adaptation of phytoplankton. Mean value (±standard deviation) of the P-E 

curve parameters, a*, and Jk, were 0.014 (.±0.013) mgC (mg chi.a) 1 h 1 (µmol 

photons m 2 s 1) 1 and 76 ( ± 55) µmol photons m 2 s 1, respectively. Although 

phytoplankton were adapted to low irradiance, the phytoplankton in the SCM were not 

fully adapted to the low irradiance prevailing at those depths. P* max in the studied 

region was low (mean of 0.66 (±.0.37) mgC (mg chi.a) 1 h 1) and generally lower 

than the previously reported values in waters near the Antarctic Peninsula. The 

maximum quantum yield varied widely, ranging from 0.001 to 0.038 mol C (mol 

photons absorbed) 1 at the surface and from 0.007 to 0.092 mol C ( mo! photons 

absorbed) 1 near the bottom of the euphotic zone. These values were within the 

range of published data. Comparison of photosynthetic parameters with historical 

data indicated that primary productivity from remotely sensed data for the whole of 

the Southern Ocean, based on these field estimates of photosynthetic parameters, has 

been overestimated. 
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Introduction 

The Southern Ocean covers 20% of the surface of the World Ocean and plays an 

important role as buffer for the atmospheric greenhouse gas CO2. Atmospheric CO2 is 

absorbed into seawater at the air-sea interface, and fixed as photosynthetic carbon by 

phytoplankton using light energy. Marine phytoplankton production has been es­

timated over several decades. Values in the Southern Ocean were once believed to be 

very high because of the high biomass of krill (Holm-Hansen and Mitchell, 1991). 

Measurements in the 1970's showed, however, that the rate of primary production in the 

Southern Ocean is not that high despite the generally high nutrient concentration (e.g. 

El-Sayed, 1970; Holm-Hansen et al., 1977), and studies in the 1980's evidenced high 

spatial and temporal variability of primary production there (e.g. El-Sayed and Weber, 
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1982; Gordon, 1988). 

Several factors have been suggested that might control and reduce primary produc­

tivity in the Southern Ocean, i.e. temperature (Neori and Holm-Hansen, 1982), irradi­

ance (Mitchell et al., 1991), decrease of phytoplankton standing stocks by grazing of 

zooplankton (Smetacek et al., 1990), iron (Martin et al., 1990), vertical mixing of the 

water column (Mitchell and Holm-Hansen, 1991), and their interrelationships. 

Among these factors, the response of primary productivity to irradiance, characterized 

by the photosynthetic characteristics (photosynthesis-irradiance curve) and the quan­

tum yield of phytoplankton, are critical to model and compute primary production from 

remotely sensed data. Several primary production models (e.g. Longhurst et al., 1995) 

are using the field estimates of photosynthetic parameters. Thus, these parameters 

observed at sea directly affect the accuracy of the models. 

Values for the photosynthetic characteristics have been reported for a limited 

region in the Southern Ocean, i.e. the Antarctic Peninsula region, showing low light 

saturation (e.g. Figueiras et al., 1998). To better parameterize and understand the 

process of primary production in the Southern Ocean, and use remotely sensed informa­

tion, better knowledge of the photosynthetic characteristics are needed for this whole 

ocean, especially the Eastern Indian Ocean sector about which we know very little. 

During the 1996 cruise of the Umitaka-Maru III, Tokyo University of Fisheries , 

we carried out a series of measurements to determine the photosynthetic characteristics 

of phytoplankton in the water off Adelie Land, Antarctica. The general features of the 

horizontal distribution of primary productivity in the studied area have already been 

discussed in relation to the upper water mass structure (Chiba et al., 1999). The 

present paper focuses on the photosynthetic parameters and quantum yield during the 

austral summer. 

Materials and methods 

Field observation and water sampling 
The study was conducted off Adelie Land, Antarctica, from 20 January to 3 

February 1996, during a cruise of the T/V Umitaka-Maru III (Fig. 1 ). Water temper­

ature and salinity were measured with a CTD (ICTD, PSI): OCTOPUS system 

( OCTO-Parameter Underwater Sensor; Ishimaru et al., 19 84) at 2 7 stations. The 

salinity sensor was calibrated with a salinometer. Primary productivity of 

phytoplankton was determined at 8 stations. The ice edge was defined as 15 % ice 

concentration, based on SSM/I images (Cavalieri et al., 1997). Seawater samples for 

primary productivity were collected using Van Dorn bottles near the sea surface and 

near the bottom of the euphotic zone ( irradiance 1-5 % of that at sea surface). 

However the irradiance at 50 m at Stn. C05 was 21 % of that at the sea surface. 

Additional water samples from several depths were collected using a Rosette multi water 

sampler equipped with an OCTOPUS system, for determination of chlorophyll a 

concentration. 

Chlorophyll a concentration 
Between 200 and 500 ml of water were filtered onto glass fiber filters (Whatman 
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Fig. 1. Maps showing sampling stations. Solid circles: stations where the photosynthetic rate was 
measured. Shaded band and dashed lines: Antarctic Divergence (AD) and ice edge, respectively. 

GF IF, </> 25 mm) for determination of phytoplankton chlorophyll a ( chl.a) and pheopig­
ments. The filters were immediately dropped in N, N-Dimethylformamide (DMF) and 
the pigments extracted in the dark (Suzuki and lshimaru, 1990). Concentrations of 
chl.a were determined fluorometrically with a Turner Designs 10-005R fluorometer 
within a few days of extraction (Parsons et al., 1984). The fluorometer was calibrated 
against spectrophotometric values using pure chl.a (SIGMA) and the concentration of 
the standard solution was calculated using the value of chlorophyll a specific absorption 
coefficient in DMF (Porra et al., 1989). 

Photosynthetically available radiation and euphotic zone 
Photosynthetically available radiation (PAR) was measured with an Ll-190SB air 

quantum sensor and an Ll-192SB underwater quantum sensor (LI. COR Inc.), and 
recorded with an Ll-1000 (LI. COR Inc.) quantum meter. Underwater PAR was 
measured at depths between 1 m and 20 or 30 m. The depth of the euphotic zone (Zeu) 
was defined as the depth of 1 % of sea surface PAR; it was calculated by extrapolating 
logarithmically the value of underwater PAR. 

Photosynthetic activity 
The photosynthetic activity of phytoplankton was determined using the stable 13C 

isotope method (Hama et al., 1983). Water samples were transferred into 1000 ml 
clear polycarbonate bottles. After adding NaH 13C03 (approximately 10% of the total 
carbonate, ISOTEC Inc.), the samples from the two sampling depths were incubated 
during 4 hours in a water bath with controlled temperature corresponding to that at the 
sea surface, under natural light (full sunlight, 46, 21, 11, 6% and, dark). After 
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incubation, the water samples were filtered through glass fiber filters (Whatman GF/F, 
¢ 4 7 mm, precombusted at 450°C for 4 hours). The isotope ratios of 12C and 13C were 
determined by infrared absorption spectrometry (Satoh et al., 1985) with a 13C analyzer 
(EX-130, JASCO). The photosynthetic activity was calculated using the equation of 
Hama et al. ( 1983), and the rate at each depth was calculated on the basis of the 
observed photosynthesis-irradiance (P-E) curve fit to the model of Eilers and Peeters 
( 1988) with a nonlinear curve-fitting minimization method. The equation takes the 
form: 

P* =I/(al2 +bl +c), (1) 

where P* is photosynthetic rate, I is irradiance, and a, b, and c are the fitted parameters. 
Photosynthetic characteristics were calculated as follows: initial slope (a*) 1/c, max­
imum photosynthetic rate (P* max)= [ b + 2(ac )°'5r 1, and intensity of onset of light 
saturation (Jk) =P*maxla*. The irradiance, I, was the mean value to which the sample 
was exposed during the incubation period (Table 1). 

Absorption coefficient 
The absorption coefficient of particles was determined using the quantitative filter 

technique (Mitchell and Kiefer, 1984). The optical density, OD (A) between 400 and 
750 nm was measured with a spectrophotometer (UV365, Shimadzu) equipped with an 
integrating sphere. The absorption coefficient was calculated from OD(A) as described 
by Mitchell ( 1990). The absorption coefficient of phytoplankton, aph(A ), was deter­
mined by the methanol extraction method of Kishino et al. (1985). The chi.a specific 
absorption coefficient, a* ph (A), was derived by dividing aph (A) by the chi.a concentra­
tion; its units are m2 ( mg chi.a) -- 1• 

Maximum quantum yield 
The maximum quantum yield, ¢m (mol C (mol photons)- 1), was computed as 

follows: 

a* c/>m
=0.02315 -=-;-, (2) 

a ph 

where the constant (0.02315) converts grams to moles and hours to seconds. a\h is the 
spectrally averaged chi.a specific absorption coefficient ( m2 ( mg chi.a) - 1): 

-• 

a ph = 

700 

f a* rh ( A ) • I ( A ) • dA 
400 

(3) 
700 

J:
00 

l(A) • d). 

where I (A) is spectral irradiance at the sea surface measured with a spectroradiometer 
MER-2020A (Biospherical Instrument Inc.). 
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Results and discussion 

Hydrographic structure, light penetration and chlorophyll a distribution 

The vertical distributions of isotherms and isohalines in the 0-200 m layer along 

four transects (A, B, C and D in Fig. 1) are shown in Figs. 2 and 3, respectively. 

Although it is not clear in the upper water mass structure between O and 200 m, Chiba 

et al. (1999) showed in the structure between O and 4000m that there was upwelling of 

warmer ( > l.0
°
C) and higher salinity ( > 34.5 PSU) water at around 64.0-64.5

°
S, that 

formed the Antarctic Divergence (AD). The water column was well stratified between 

30 and 125 m, where a mass of cold water ( dichothermal layer) existed that vertically 

separated the water column. South of the AD, there was indication of a sinking water 

mass, which may be a major source of Antarctic Bottom Water (Chiba et al., 1999). 
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Fig. 2. Vertical distribution of isotherms 
(°C) along transects A, B, C and 
D. 
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Fig. 3. Vertical distribution of isohalines 
(PSU) along transects A, B, C 
and D. 
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In the upper 50 m, warm ( > l.5°C) and relatively high salinity ( > 33.8 PSU) water 
extended from the northeast to southwest of the studied region. 

The vertical distribution of chlorophyll a isopleths is shown in Fig. 4. The 
concentrations varied from 0.03 to 1.92 mg m-3. The highest concentrations in surface 
waters were observed close to the AD on each transect, and near the ice edge on transect 
A. There was a south-north gradient with the boundary at the AD, simultaneously 
with an east-west gradient corresponding to that of water masses (Chiba et al., 1999). 
The area was also characterized by a distinct subsurface chi.a maximum (SCM). The 
depth of the SCM, the mixed layer depth (MLD) and euphotic zone depth (Zeu) are 
shown in Fig. 5. In the present study, the depth and the dispersion of the SCM were 
determined from the Gaussian Curve fit of Lewis et al. (1983) and Platt et al. (1988) as 
modified by Matsumura and Shiomoto (1993), and the MLD was defined as the upper 
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Fig. 4. Vertical distribution of chi.a con­
centration isopleths (mg m 3) along 
transects A, B, C and D. Concent­
rations> 0.4 mg m 3 are shaded. 
The square shows the sampling 
depth. 

depth where the temperature is l .0
°
C less than that at 10 m (Rao et al., 1989). The 

peak depth of the SCM ranged from 35 to 127 m, except at Stn. 29 (5 m). In most 

cases, the depth of the SCM coincided with the depth of the dichothermal water, as 

already reported by Yamaguchi et al. (1985). Furthermore, the SCM corresponded to 

low irradiance, as observed by El-Sayed (1988) and Holm-Hansen et al. (1994). 

Although relatively high biomass of phytoplankton in the SCM may make efficient use 

of input resources such as nutrients and iron from deep water, irradiance at the SCM 
depth was only between 1 and 12% of the incident irradiance. Therefore, 

phytoplankton in the SCM could not take advantage of location in the deeper water 

without adaptation to the low irradiance. 
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Photosynthetic parameters 
The photosynthesis-irradiance curves (P-E curves) at each station and their 

parameters are shown in Fig. 6 and Table 1, respectively. The initial slope (a*) was 
generally high, whereas the maximum photosynthetic rate (P* max) and the onset of light 
saturation (Jk) were generally low, the mean values (+standard deviation) of a*, P*max 

and Jk being 0.014 ( +0.013) mg C (mg chi.a )-1 h-1 (µmol photons m -2 s-1 )-1, 0.66 ( 
0.37) mgC (mg chl.a)- 1 h 1 and 76 (+55) µmol photons m 2 s - 1, respectively. The 
relatively high values of a* and low values of Jk indicate that phytoplankton were 
adapted to low irradiance. The higher values of a* (0.019 mgC (mg chl.a)- 1 h- 1 

(µmol photons m-- 2 s-1)-1) and lower values of Jk at depth relative to the surface suggest 
that the phytoplankton in the SCM had high productivity. The irradiance intensity in 
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Fig. 6. P-E curves at each station. Solid circles and open circles show the 
data at the sea surface and near the bottom of the euphotic zone, 
respectively. 

the SCM, computed using the average value of incident light during the cruise (332 µmol 
photons m- 2 s - 1) was, however, lower than Jk, Thus, the phytoplankton in the SCM 
were not fully adapted to the low irradiance prevailing at those depths. 

The highest P* max values were observed at the sea surface of Stn. C23, near the AD 
( 1. 57 mgC ( mg chi.a )- 1 h - 1), and at 65 m of Stn. C 10, the southernmost station ( 1.24 
mgC (mg chi.a)·· t h 1). The lowest P*max values were observed at Stn. C3 l, at the 
surface (0.07) and at 145 m (0.16 mgC (mg chl.a)- 1 h- 1). Comiso et al. (1990) 
showed enhanced phytoplankton standing stocks associated with ice retreat, from the 
CZCS (Coastal Zone Color Scanner) satellite imagery. We also observed the highest 
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Table 1. Photosynthetic characteristics of the P-E curves and maximum quantum 
yield. 

Station Depth I ( ± S.D.) a* P*max h 
¢,m 

(m) a b C d e 
�--------�------· -------------------·-· - ··------ ----- ------- ----------- ---- ------- · · -------- - - - ------- --- ··-· - ---

Sea surface 
cos 0 426 . 9  ( 176. 5) 0 . 004 
cos 0 406 . 3  (75 .4) 0 . 0 17 
ClO  0 832 . 2  ( 162 . 9) 0 . 0 1 1  
Cl  1 0 974 . 9  ( 145 . 8) 0 . 020 
C13 0 332 . 0  (72 . 5) 0 . 002 
C23 0 1058 . 1 ( 138 . 0) 0 . 0 16 
C27 0 478 . 5  ( 133. 2) 0 . 007 
C31 0 286 . 9  (54 . 8) 0 . 001 

- - - - -·· - -· - - - - - -

Mean 599 . 5 0 . 0 10 
S.D. 306 . 2  0 . 007 

Near the bottom of the euphotic zone (except C OS) 
cos 

cos 

C l O  
C l  1 
C13 
C23 
C27 
C31 

50 426 . 9  
50 406 . 3  
65 832 . 2  
45 974 . 9  
75  332 . 0  
70 1058 . 1 
85  478 . 5  

145 286 . 9 
- - - - -- - - - - - - - --

Mean 599 . 5  
S.D. 306 . 2  

Mean 
S.D. 

( 176. 5) 0 . 029 
(75 . 4) 0 . 0 18 

( 162. 9) 0 . 0 1 1  
( 145 . 8) 0 . 0 10 

(72 . 5) 0 . 053 
( 138 . 0) 0 . 005 
( 133. 2) 0 . 025 

(54. 8) 0 . 004 
- -- - - - - - - - - -

0 . 0 19 
0 . 0 16 

-· - ·- - -� - - --- - - - - -

0 . 0 14 
0 . 0 13 

0 . 80 
0 . 82 
0 . 69 
0 . 58 
0 . 27 
1 .  57 
0 . 84 
0 . 07 

0 . 7 1  
0 . 45 

0 . 68 
0 . 54 
1 . 24 
0 . 54 
0 . 72 
0 . 45 
0 . 57 
0 .  16 

0 . 6 1 
0 . 31 

0 . 66 
0 . 37 

193 0 . 007 
47 0 . 031  
63  0 . 0 19 
29 0 . 038 

176 0 . 003 
98 0 . 030 

125 0 . 0 12 
96 0 . 00 1  

103 0 . 0 18 
59 0 . 0 14 

23 0 . 043 
30 0 . 032 

1 10 0 . 0 16 
56 0 . 025 
14 0 . 092 
93 0 . 009 
23 0 . 048 
41  0 . 007 

- -- - -- - - -· ·-

49 0 . 034 
35 0 . 028 

76 0 . 026 
55 0 . 023 

• mean irradiance to which the sample was exposed during incubation period (µmol 
photons m · 2 s 1 ) 

b initial slope ( mgC ( mg chi.a) 1 h 1 (µmol photons m 2 s 1 ) 1 ) 

c maximum photosynthetic rate (mgC (mg chl.a f 1 h 1 ) 

ct intensity at the onset of light saturation (µmol photons m 2 s 1 ) 

e maximum quantum yield (mol C (mol photons absorbed) 1) 

37 

surface chi.a concentration near the ice edge (Stn. COS), together with evidence of 

reduced surface water salinities ( < 33 .8) indicating sea-ice melting. However, the 

photosynthetic rate of phytoplankton was not high there. 

Chiba et al. ( 1999) showed an east-west gradient in the horizontal distributions of 
chi.a concentration and dominant phytoplankton taxa, that corresponded to a water 

mass gradient. The photosynthetic characteristics of phytoplankton are related not 

only to irradiance, temperature and nutrient conditions, but also to taxonomic factors 

(Platt et al., 1983) .  In the present study, only a* at the sea surface showed a significant 

difference (p = 0.0093, t-test) between north and south of the AD; a* values were lower 

north than south of the AD. At the surface, warm ( > l .5°
C) and relatively high 
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Table 2. Historical photosynthesis-irradiance curve parameters in the Southern Ocean. 

Source 

Jacques (1983) 

Yamaguchi et al. (1985) 
Sakshaug and 

Holm-Hansen (1986) 
Tilzer et al. ( 1986) 

Holm-Hansen and 
Mitchell ( 199 1) 

Cota et al. ( 1992) 
Figueiras et al. ( 1994) 

Boyd et al. ( 1995) 
Figueiras et al. (1998) 

Moline et al. ( 1998) 

This study 

Date Area a* P* max 

Mar. 1977 /1980 Indian Ocean Sector O. 005-0. 034 0 .  5-5. 2 1 3. 8-46 . 0 
(South of the Antarctic 
Convergence, West of 
Kerguelen Is.) 

Indian Ocean Sector 
(Continental shelf 
near Kerguelen Is.) 

Jan./Feb. 1984 Off Adelie Land 
Feb./Mar. 198 1 Scotia/Weddell Seas 

Oct./Nov. 1983 Scotia Sea and Bransfield 
Strait (South of PF) 

Dec. 1986- Bransfield Strait 
Mar. 1987 

Jun./ Aug. 1988 Weddell-Scotia Sea (MIZ) 

Dec. 1988- Weddell, Elephant Is. -
Jan. 1989 South Orkney Is. 

Nov./Dec. 1 992 Bellingshausen Sea 
Jan. 1994 Bransfield-Bellingshausen 

Bransfield-Weddell 
Ice-Edge (Bransfield Strait) 
Weddell-Scotia Confluence 

Spring / Summer Antarctic Peninsula shelf 
199 1- 1994 

Jan./Feb. 1996 Off Adelie Land 

0 .0 17-0 . 023 1 . 0-2 . 0  

1 . 01 ,  0 .  73 
0. 0094--0. 049 0. 7 5-4 .4  

0 . 0074 1 .  92 

0 . 06 1 .  1 

0. 056 0. 23 
0. 058 1. 94 

0.00 1 -0. 048 0. 09- 1. 07 
0. 019 1 . 60 
0. 017 1 . 4 1  
0 . 022 1. 63 
0 . 007 0.79 
0. 043 2. 99 

0 .014 0 . 66 

46 . 0- 1 19 . 6  

38- 190 

69 

18 

9. 8 
35 

< 20-90 
84 
88 
82 

100 
78 . 44 

76 

salinity ( > 33 .8 PSU) water extended from the northeast to southwest of the studied 

region (Figs. 2 and 3). Decline of photo-chemical response of phytoplankton in this 

water mass is suggested. However, there were no significant spatial differences in the 

photosynthetic parameters in the studied area. This may be due to a combination of 

several factors such as water mass structure, penetration of irradiance and dominant 

phytoplankton taxa among stations. 

Historical photosynthetic parameters in the Southern Ocean are summarized in 

Table 2. Most of these data were collected from waters around the Antarctic Peninsu­

la such as Bransfield Strait and the Weddell-Scotia Seas. Values of a* and Jk in the 

present study are in the range of those previously published, but P* max is lower than 

values in waters around the Antarctic Peninsula during the austral summer that 

frequently exceed 1. 5 mgC ( mg chi.a) - t h 1 • Although high P* max was reported by 

Jacques ( 1983) in water near Kerguelen Island, P* max in the water off Adelie Land is 

generally lower than in water near the Antarctic Peninsula. 

The duration of incubation in the present study ( 4 hours) is likely to be long. 

Because of the rapid and large changes in ambient light to which the samples are 

exposed, phytoplankton have a remarkable capability for photoacclimation (Dubinsky et 

al., 1995). The acclimation of the photosynthetic apparatus during incubation may 
cause P-E curve variability (Sakshaug et al. , 1997). Moisan and Mitchell (1999) 

suggested that photophysiological acclimation may contribute to the ecological success 
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of a prymnesiophyte, Pheochystis antarctica, in polar regions . Since the results in this 

study cannot explain the photoacclimation during the incubation period, further studies 

of the acclimation of phytoplankton in polar regions with various durations of incuba­

tion are required to reveal the relationship between photosynthesis and the mixing rate 

of the water column. 

Quantum yield 

The values of maximum quantum yield, </>m , are shown in Table 1. These varied 

widely, from 0 .001 to 0.038 mol C (mol photons absorbed) 1 for surface water and 

0.007 to 0.092 mol C (mol photons absorbed) 1 near the bottom of the euphotic zone. 

At the surface, values > 0. 03 mol C (mol photons absorbed) 1 were observed at Stns . C 

08, C l l and C23, near the AD. Near the bottom of the euphotic zone, values > 0.04 

mol C (mol photons absorbedr 1 occurred at Stns . C05, C l3  and C27, near the AD (or 

the northernmost stations). 

Our <l>m , except for the lowest ( < 0.01), were in the range of values from previous 

field studies in temperate waters (e .g. Kishino et al., 1986). Smith et al. ( 1996) 

computed <l>m values in the Antarctic Peninsula region from historical a* data . Al­

though the computation method was slightly different from that in the present study, our 

values are generally within the range of these values (0.002-0 .094 mol C (mol photons 

absorbed) - 1) .  

Conclusions 

Off Adelie Land, Antarctica, the maximum photosynthetic rate of phytoplankton 

was lower than values in the waters near the Antarctic Peninsula, but maximum 

quantum yield was in the same range as in waters near the Antarctic Peninsula . 

Therefore, the difference of photosynthetic rate between the two regions cannot be 

explained by the difference in the activity of the components of electron transfer . The 

present study was carried out in the declining period of the Antarctic phytoplankton 

(El-Sayed, 1984) as well as the period studied by Yamaguchi et al. (1985). Studies 

near the Antarctic Peninsula have generally focused on the period of phytoplankton 

bloom during December and January. It is suggested that the difference of the period 

was one of the factors in the difference of P* max between the two regions . 

Some primary production models on the global/regional scale using satellite data 

have been developed recently (e.g. Platt and Sathyendranath, 1988; Morel, 1991; Platt 

et al., 1991; Longhurst et al., 1995; Antoine et al., 1995; Behrenfeld and Falkowski, 

1997; Arrigo et al., 1998). Some of these models use the P-E parameters and quantum 

yield observed at sea. Such field data for the Southern Ocean have so far been 

concentrated in the region near the Antarctic Peninsula . Thus, primary productivity 

for the whole of the Southern Ocean based on these field estimates of photosynthetic 

parameters is likely overestimated. 
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