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Abstract: Noble gas isotopic and elemental compositions of three Antarctic eucrites

Asuka-22*1*,, Asuka-22*10+ and Asuka-22+-22 have been measured by two steps of

heating temperatures (.** and +1/*�C). Cosmic-ray exposure ages calculated from

cosmogenic ,+Ne were ,*./, -,.- and ,3.1m.y. for A-22*1*,, A-22*10+ and A-22+-22,
respectively. Combining the exposure ages with 2+Kr-Kr apparent exposure ages,

terrestrial ages of *.,*, *.,, and *.,-m.y. were derived for A-22*1*,, A-22*10+ and

A-22+-22, respectively. ,..Pu-Xe ages based on fissiogenic Xe isotopes showed that

the Asuka eucrites began Xe retention at around the crystallization age of Angra dos

Reis. Among the Asuka eucrites, A-22*1*, is about ,*m.y. older than the others.

From the noble gas and age data described above, we conclude that A-22*10+ and

A-22+-22 are paired, but A-22*1*, is not.
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+. Introduction

Asuka-22*1*, (A-22*1*,), Asuka-22*10+ (A-22*10+) and Asuka-22+-22 (A-

22+-22), classified as eucrites, have been studied for noble gas concentrations and

isotopic compositions. These meteorites were collected by Asuka wintering party of

,3th Japanese Antarctic Research Expedition (Yanai et al., +33-). They were

recovered as small masses, weighing about ++ g for A-22*1*,, 0/ g for A-22*10+ and +0 g
for A-22+-22 around the So/r Rondane Mountains in Queen Maud Land, East Antarc-

tica (Yanai, +323; Naraoka et al., +33*). The A-22+-22 eucrite is unbrecciated, fine-

grained recrystallized eucrite (Yanai, +33-; Takeda et al., +331) and experienced a

strong thermal metamorphism on the asteroid . Vesta, before the impact event exca-

vated the meteorite (Yamaguchi et al., +331). A-22*10+ eucrite shows a fine-grained

granulitic texture similar to A-22+-22 (Kojima and Imae, ,**,). A-22*1*, also shows

a granulitic texture with some parts of basaltic texture indicated by the presence of

plagioclase laths. This eucrite contains minor minerals such as silica minerals, oxide

minerals and troilite (Kojima and Imae, ,**,). For A-22+-22, a -3Ar-.*Ar age of

...2*�*.**1 b.y. has been reported by Bogard and Garrison (,**-).
A brief report on noble gases of the meteorites has been presented at the ,2th

Symposium on Antarctic meteorites held in the National Institute of Polar Research,

,+-
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Tokyo (Park and Nagao, ,**.). We report here the noble gas concentrations and

isotopic ratios of A-22*1*,, -22*10+, -22+-22. The cosmic-ray exposure ages were

calculated for the ejection history of Asuka eucrites from the parent body; asteroid .
Vesta (Binzel and Xu, +33-). Terrestrial ages calculated from 2+Kr-Kr apparent ages

combined with ,+Ne exposure ages, and ,..Pu-Xe ages are also presented. Paring

between A-22*10+ and A-22+-22 will be revealed from the whole data set.

,. Experimental method

Three eucrites were analyzed by using a mass spectrometric system (modified-VG

/.**/MS-II) with an extraction furnace, purification system and standard gas system at
the Laboratory for Earthquake Chemistry, University of Tokyo. We used considerably

bigger samples than usual analysis, i.e., A-22*1*, (*.+1-. g), A-22*10+ (*.+1+3 g) and
A-22+-22 (*.+0-0 g), because of the measurement of the cosmogenic radionuclide 2+Kr,

whose concentration is as low as �-�+*�+-cm- STP/g in eucrites (e.g., Miura et al.,

+332). The purification line was heated at about ,/*�C for one night to get ultra high
vacuum condition. The samples loaded in a sample holder were also heated at the

temperature of +/*�C to remove atmospheric noble gas contamination. A Mo-crucible

in the extraction furnace was heated at about +2**�C repeatedly for degassing.
Noble gas extraction from the sample was organized at two temperature steps of

.**�C and +1/*�C, separately, in order to extract adsorbed terrestrial gases at the low
temperature step. At the higher temperature of +1/*�C, the sample was totally melted
for the 2+Kr measurement. The gases were purified by using two Ti-Zr getters heated

at about 2**�C. The purified noble gases were separated into four fractions (He-Ne,

Ar, Kr, and Xe), and then measured separately; He and Ar were measured by using a

Daly-multiplier system, and Ne, Kr and Xe by an ion-counting system.

Blank levels for +1/*�C were +./�+*�+*, -.2�+*�+,, 1.*�+*�3, ,.,�+*�+- and ,.0
�+*�+. cm- STP for .He, ,*Ne, .*Ar, 2.Kr and +-,Xe, respectively. The blank levels for
.He, ,*Ne, .*Ar and +-,Xe were negligibly small, i.e., less than +� of the amount of noble

gases released from the eucrite samples, while the 2.Kr blank level was about ,�.
Blank corrections were applied for all noble gas data.

-. Results and discussion

Noble gas concentrations and isotopic ratios of A-22*1*,, A-22*10+, and A-22+-22
are presented in Table +. Uncertainties of the concentrations are estimated as about

/� for He and Ne and about +*� for the Ar, Kr, and Xe, and the experimental errors

for the isotopic ratios in the table are + s. Released amounts of noble gases at the low

temperature step (.**�C) are much smaller than those at the temperature of +1/*�C.
One exception is the case of He for A-22*10+, where almost half of the total He was
released at the .**�C step. In this case, the sample was dropped into the crucible which

was still hotter than .**�C because of an insu$cient cooling time after pre-degassing
of the crucible. In the following discussion, we will use noble gas data from

+1/*�C extraction step except for He from A-22*10+. Judging from the release

patterns of He for A-22*1*, and A-22+-22, -He/.He ratios of the low temperature
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Table +. Isotopic ratios and concentrations of He, Ne, Ar, Kr and Xe in Asuka eucrites.

Meteorite Temp. (�C) .He -He/ .He ,,Ne ,*Ne/ ,,Ne ,+Ne/ ,,Ne -0Ar -2Ar/ -0Ar .*Ar/ -0Ar

A-22*1*,

.** +3
*4**++,
�*4****/

*4*.3
+4*2+
�*4*-2

*41*-
�*4*+1

*4*+1
*4+3./
�*4**.+

,3-40
� ,4+

+1/* 0/,**
*4**--2
�*4****.

-042
*42-0-
�*4**,*

*413,,
�*4**+/

2421
+4,,/
�*4*+1

+-204/
� ,,4/

A-22*10+

.** ,.,**
n.d.

� *4,1
*421.
�*4*+3

*42+/
�*4*++

*42*
+4-*0
�*4*++

2/,4.
� 24*

+1/* -*-**
*4**1,3
�*4***,+

0-40
*42,22
�*4**-,

*420*1
�*4**+2

,.41
+4..12
�*4**2+

/.343
� ,42

A-22+-22

.** -.
*4**,2,
�*4***++

*4*,,
+4,3/
�*4*-0

*403-
�*4*--

*4*+2
*4-+,
�*4**3

-.*40
� ,4,

+1/* /.+**
*4**1-2
�*4***,.

0*4*
*42-1-
�*4**+1

*421/,
�*4**+3

--42
+4.0/3
�*4**/1

/-04+
� ,4+

He, Ne, and Ar concentration in +*�3 cm- STP/g.

n.d.�not determined.

Asuka Temp. (�C) 2.Kr 12Kr/ 2.Kr 2*Kr/ 2.Kr 2+Kr/ 2.Kr 2,Kr/ 2.Kr 2-Kr/ 2.Kr 20Kr/ 2.Kr

22*1*,

.** *40-
*4**23
�*4**+-

*4*.*,
�*4**/+

n.m.

�
*4+3,*
�*4*+,/

*4+3+*
�*4**3,

*4-*1/
�*4*+10

+1/* 1.43
*4*/+*
�*4***/

*4+.2-
�*4**++

*4**++/
�*4***+0

*4--23
�*4**,3

*4-12,
�*4**,2

*4,202
�*4**+1

22*10+

.** 34+2
*4**1*
�*4***.

*4*.+/
�*4**++

n.m.

�
*4,*-2
�*4**+3

*4,*,,
�*4**-.

*4-*,3
�*4**/1

+1/* /+4+
*4+13+
�*4**,*

*4/*3*
�*4**/0

*4**-*2
�*4***-2

*42.*0
�*4*++-

+4*10*
�*4*+-,

*4+1*1
�*4**-/

22+-22

.** *430
*4**1.
�*4**+0

*4*..-
�*4**-/

n.m.

�
*4,*2-
�*4**3.

*4,+,/
�*4*+-+

*4-+,*
�*4*+-3

+1/* //4+
*4+3*0
�*4**,/

*4///2
�*4**02

*4**-/3
�*4***.*

*43+/1
�*4**20

+4+00-
�*4*+-/

*4+/*2
�*4**-,

Kr concentration in +*�+, cm- STP/g.

n.m.�not measured.

Asuka Temp.(�C) +-,Xe +,.Xe/+-,Xe +,0Xe/+-,Xe +,2Xe/+-,Xe +,3Xe/+-,Xe +-*Xe/+-,Xe +-+Xe/+-,Xe +-.Xe/+-,Xe +-0Xe/+-,Xe

22*1*,

.** *4*3
*4*,+3
�*4**.3

*4**//
�*4**,3

*4*10.
�*4**0,

+4+/1
�*4*/+

*4+0*
�*4*,,

*42/2
�*4*0.

*4-1+
�*4*,3

*4-,-
�*4*--

+1/* ,-40*
*4*-,,
�*4***/

*4*.2/
�*4***1

*4++/0
�*4***3

*42*+
�*4**2

*4+/+2
�*4**+/

*41-.2
�*4**/-

*4/+,/
�*4**03

*4/*.1
�*4**.2

22*10+

.** /4.3
*4**.0
�*4***/

*4**-3
�*4***0

*4*1,-
�*4**+3

+4**2
�*4*+1

*4+/,
�*4**-

*413*
�*4*+1

*4-22
�*4**1

*4---
�*4**2

+1/* ,/43
*4*.++
�*4**+,

*4*1--
�*4***.

*4+/.0
�*4**+3

+4*+,
�*4**2

*4+20.
�*4**,*

*420+0
�*4**0/

*4.20.
�*4**/*

*4./-/
�*4**.3

22+-22

.** *402
*4**2.
�*4**++

*4**//
�*4**+0

*4*10-
�*4**/0

*4322
�*4*.,

*4+.0
�*4*++

*413.
�*4*+2

*4-13
�*4*+-

*4-,+
�*4*+.

+1/* ,24-
*4*..2
�*4***3

*4*1/0
�*4**+.

*4+0-/
�*4**+*

*431+
�*4*+*

*4+223
�*4**+/

*422.,
�*4**0/

*4.3++
�*4**/+

*4.1,2
�*4**-*

Xe concentration in +*�+, cm- STP/g.
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fractions do not a#ect -He/ .He values of their total He. Hence, in the following

discussion we assume that the -He/ .He ratio of the low temperature fraction from A-

22*10+ is the same as that for +1/*�C and the He concentration of this meteorite is the

sum of the two temperature fractions.

Table + shows some similarities in noble gas concentrations and isotopic ratios

between A-22*10+ and A-22+-22. On the other hand, the concentrations of ,,Ne and
-0Ar in A-22*10+ and A-22+-22 are twice and three times more than those in A-22*1*,.
The observed ,*Ne/ ,,Ne, ,+Ne/ ,,Ne and -2Ar/ -0Ar ratios indicate that Ne is almost

entirely cosmogenic, whereas Ar contains a small contribution of trapped Ar probably

from atmospheric contamination. The isotopic ratio of .*Ar/ -0Ar in A-22*1*, is much

higher than the other two eucrites (.*Ar/ -0Ar�+-20./�,,./ for A-22*1*,, /.3.3�,.2
for A-22*10+, /-0.+�,.+ for A-22+-22). The higher .*Ar/ -0Ar ratio for A-22*1*,
than those for others is mainly due to the lower concentrations of -0Ar in this eucrites as

noted above. The data suggest the paring of A-22*10+ and A-22+-22, although these

three Asuka eucrites were discovered at the same location (Kojima and Imae, ,**,).
Because the noble gases are generally composed of trapped, radiogenic, cosmogenic

and fissiogenic components, we will show how each noble gas component can be

interpreted.

-.+. Cosmogenic -He, ,+Ne, and -2Ar and cosmic-ray exposure ages

The concentrations of the cosmogenic nuclides -He, ,+Ne, and -2Ar (+*�3cm- STP/

g) are (+) A-22*1*,: ,,+, ,3.*, +*./, (,) A-22*10+: -3*, /..2, -0.., (-) A-22+-22: -3,,
/,./, .3.,, respectively (Table ,). The cosmic-ray exposure ages T-, T,+ and T-2 are

calculated from the concentrations of -He, ,+Ne and -2Ar. Their production rates were

calculated with the formulae for eucrites proposed by Eugster and Michel (+33/) and

the chemical compositions for A-22+-22 (Yanai, +33-). The exposure ages (m.y.) are

+-., (T-), ,*./ (T,+) 0.0 (T-2) for A-22*1*,, ,-.2 (T-), -,.- (T,+), ,,.1 (T-2) for A-

22*10+ and ,-.2 (T-), ,3.1 (T,+), -*.1 (T-2) for A-22+-22. The short -He ages (T-)

compared with the ,+Ne ages (T,+) may have resulted from the di#usion loss of -He.

Because the He mass is lighter than the other noble gases, it is lost at lower temperatures

(e.g., Heymann et al., +302; Shukolyukov and Begemann, +330a). The -2Ar age agrees

with the ,+Ne age for A-22+-22, where the ages were calculated based on the chemical

compositions reported for this meteorite (Yanai, +33-). On the other hand, two

eucrites A-22*1*, and A-22*10+ show short -2Ar ages (T-2) compared with the ,+Ne

ages, for which chemical compositions were assumed to be similar to those of A-22+-22.
Hence, the discordant and short T-2 exposure ages for A-22*1*, and A-22*10+ might

result from chemical heterogeneity of these Asuka meteorites. This may be supported

Table ,. Concentrations of cosmogenic -He, ,+Ne and -2Ar, and cosmic-ray exposure ages.

Meteorite

-He ,+Ne -2Ar P- P,+ P-2 T- T,+ T-2

+*�3 cm- STP/g +*�3 cm- STP/g/m.y. m.y.

A-22*1*,
A-22*10+
A-22+-22

,++
-3*
-3,

,34*
/.42
/,4/

+*4/
-04.
.34,

+/43
+04.
+04/

+4.,
+41*
+410

+40*
+40*
+40*

+-4,
,-42
,-42

,*4/
-,4-
,341

040
,,41
-*41
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by the positive correlation between the T-2/T,+ ratios and
.*Ar concentrations for these

eucrites, i.e., A-22*1*, with the lowest T-2/T,+ (*.-,) has the lowest .*Ar concentration

(+.,�+*�/cm- STP/g) and A-22*10+ has intermediate values between those for A-
22*1*, and A-22+-22. This may suggest low concentrations of target elements for -2Ar

production such as K and Ca in A-22*1*, eucrite. Accordingly, the large discrepancy

between the ,+Ne and -2Ar ages for A-22*1*, could be due to higher Mg and lower Ca
concentrations than the other two eucrites.

Otherwise, it is possible that -2Ar was lost during weathering as pointed out for

E-chondrites by Okazaki et al. (,***) and Patzer and Schultz (,**+). Increase in

terrestrial heavy noble gases with enhanced concentration of Kr is also observed for

ordinary chondrites from hot deserts and Antarctica, which can be attributed to a

terrestrial weathering (Scherer et al., +33.). The 2.Kr concentration for A-22*1*, is
about /*� higher than those for other two eucrites, while the +-,Xe concentrations are

almost identical among them (Table +). Though this might be a result of terrestrial

weathering of this eucrite, the Kr concentration is much lower than the observed values

for ordinary chondrites reported by Scherer et al. (+33.). The relatively small contri-

bution of terrestrial noble gases in the eucrites studied in this work would indicate that

weathering e#ects on these eucrites are minor and the low concentrations of cosmogenic
-2Ar in A-22*1*, and A-22*10+ are due to low concentrations of target elements, such
as K and Ca in these eucrites.

As will be shown, the residence time of the Asuka eucrites on the Earth was as long

as *.,*�*.,-m.y. Since Mg bearing silicate minerals which contain cosmogenic Ne are

relatively resistant to weathering, we adopt T,+ as the exposure age of Asuka eucrites in

the following discussion. A-22*10+ and A-22+-22 show similar cosmic-ray exposure
ages about -*m.y., while that of A-22*1*, is about ,*m.y. This suggests that the two

eucrites A-22*10+ and A-22+-22 would have experienced the same ejection event and
might be one single body before falling onto Antarctica.

Eugster and Michel (+33/) pointed out that the exposure ages reported so far for
eucrites produce / age clusters from 0 to 1-m.y. which may represent multiple ejection
events for HED meteorites from their parent bodies, and that the parent bodies may be

multiple . Vesta-derived objects at the - : + resonance region. Shukolyukov and

Begemann (+330a) applied 2+Kr-Kr method to eucrite falls and also found / clusters of
exposure ages at about 1, +*, +., ,, and -1m.y. The exposure age for A-22*1*,
belongs to the cluster at ,,�,m.y. formed by Millbillillie, Pomozdino, Sioux County
and Vetluga. Though the age of -*m.y. does not belong to any other clusters, some
eucrites such as Chervony, Jonsac, Lakengaon and Medanitos (see Table A3 in Eugster
and Michel, +33/) have ages around -*m.y.

-.,. Cosmogenic Kr isotopes and 2+Kr terrestrial ages

Cosmogenic 2+Kr generally shows high concentration in eucrites compared with

other types of meteorites because they are enriched in target elements such as Sr, Y and

Zr. The 2+Kr and other cosmogenic Kr isotopes give information about the irradiation

condition to cosmic-rays in space. Figure + and Table - show the cosmogenic Kr
isotopic ratios calculated by subtracting trapped Kr isotopes. In this calculation, we

assumed terrestrial Kr isotopic composition and cosmogenic 20Kr/ 2-Kr ratio of *.*+/
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(Marti and Lugmair, +31+). The ratios for A-22*1*,, A-22*10+, A-22+-22 and the
some eucrites, which have been reported previously (Miura, +33/; Eugster and Michel,
+33/; Shukolyukov and Begmann, +330a) indicate variable shielding e#ects. A-22*1*,
seems to have been irradiated at shallow shielding, while Serra de Magé shows very deep

shielding. The yielding curves of A-22*10+ and A-22+-22 show the same shapes, and

are similar to those of other eucrites listed in the Table -. The two Asuka eucrites

Fig. +. Cosmogenic Kr isotopic ratios normalized on 2-Kr. Trapped Kr was subtracted from the measured

ratios assuming ( 20Kr/ 2-Kr)cos�*.*+/.

Data source: Y-13-/1*, Y-13-/.2, Y-13-/.1 and Millbillillie (Miura, +33/); Camel Donga and

Stannern (Eugster and Michel, +33/); Serra de Magé (Shukolyukov and Begemann (+330a).

Table -. Cosmogenic Kr isotopic ratios.

12Kr � 2*Kr � 2+Kr � 2,Kr � 2-Kr 2.Kr � reference

A-22*1*,
A-22*10+
A-22+-22

*4,-2
*4+2+
*4+1.

*4*-2
*4*,0
*4*,/

*4/2.
*4/*,
*4/**

*4++.
*4*1/
*4*1.

*4**0*,
*4**-+0
*4**---

*4**++3
*4***0*
*4***0*

*413*
*41/2
*4101

*4,22
*4+,.
*4+,+

�+
�+
�+

*4-1
*4/*
*4/,

+4*+
*4+2
*4+.

this work#

this work#

this work#

Stannern

Camel Donga

Millbillillie +
Millbillillie ,
Y-1/*++
Y-13-/.1
Y-13-/.2
Y-13-/1*

*4+13
*4+0,
*4+/.
*4+00
*4+2,
*4+2.
*4+2-
*4+2,

*4.3/
*4.21
*4.2
*4.2,
*4/+,
*4/,*
*4/,.
*4/,*

�
�
�
�
�

*4**,0,
*4**,/2
*4**-+-

*410/
*410
*41/
*41/,
*410/
*4100
*4113
*4101

�+
�+
�+
�+
�+
�+
�+
�+

*40-
*40.
*40
*4/2-
*40*1
*4.3.
*4.33
*4.32

+)
,)
,)
-)
.)
-)
-)
-)

#Calculated assuming ( 20Kr/ 2-Kr)cos�*.*+/.
References: +) Marti (+301), ,) Eugster and Michel (+33/), -) Miura (+33/), .) Miura et al. (+33-).
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should have experienced the same radiation hardness at the same shielding depth.

Figure , explains the correlations of cosmogenic ,,Ne/ ,+Ne and cosmogenic 12Kr/
2-Kr, in which A-22*1*,, A-22*10+ and A-22+-22 as well as reported some eucrites

(Miura et al., +332) were plotted. The eucrite correlation line is given by Eugster and

Michel (+33/). Because the production of ,+Ne and 12Kr are more sensitive to shielding

conditions than ,,Ne and 2-Kr, the plot of cosmogenic ,,Ne/ ,+Ne and cosmogenic 12Kr/
2-Kr is a useful indicator for shielding condition. Three Asuka eucrites are located at

slightly higher Kr ratios on the eucrite correlation line. Most eucrites, e.g., Camel

Donga, Millbillillie, Juvinas, and other Antarctic eucrites (Miura et al., +332) plot along
the eucrite correlation line given by Eugster and Michel (+33/). The low ,,Ne/ ,+Ne

and 12Kr/ 2-Kr ratios for A-22*10+ and A-22+-22 might have resulted in larger pre-

atmospheric body than that for A-22*1*,.
Cosmogenic 2+Kr is used for the most reliable cosmic-ray exposure ages of mete-

orites, because only the isotopic ratios of cosmogenic Kr, which can be measured more

precisely than the absolute abundances, are used for the calculation. Moreover, the
2+Kr-Kr method diminishes the uncertainties of shielding e#ects and target element-
chemistry (Marti, +301; Eugster et al., +301). Even though the 2+Kr exposure age

method is di$cult to apply for most chondrites because of their very low concentrations
of cosmogenic 2+Kr (in the range of +*�+. cm- STP/g) and abundant trapped Kr, this

method is useful for the specific types of meteorites such as eucrite (Nagao and Ogata,

+323). If the 2+Kr-Kr method is applied to meteorites of long terrestrial age, the

Fig. ,. Plot of cosmogenic 12Kr/ 2-Kr versus ,,Ne/ ,+Ne for A-22*1*,, A-22*10+ and A-22+-22.
Eucrite correlation line, ( 12Kr/ 2-Kr)c�*./* ( ,,Ne/ ,+Ne)c�*..,, is given by Eugster

and Michel (+33/).
� Camel Donga, � Millbillillie, � Juvinas, � Antarctic eucrites. (Miura et al.,

+332).
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obtained age becomes longer than the real exposure age due to radioactive decay of 2+Kr

in the meteorite during its residence time on Earth. However, the “apparent exposure

age” can give terrestrial age by combining with the “real exposure age” (Schultz, +320;
Freundel et al., +320). The apparent ages T2+ (appa� (m.y.) for A-22*1*,, A-22*10+ and

A-22+-22 are -1.-�1.., 0-.0�+,.* and /3./�+*.1, respectively (Table .). The for-

mula from Eugster et al. (+301) and Marti (+301) was used for the T2+ (appa� calculations.

Production rate ratios P2+/P2- used in the calculation were based on the cosmogenic
2*Kr/ 2-Kr and 2,Kr/ 2-Kr ratios, but the ratios based on cosmogenic 12Kr/ 2-Kr (e.g.,

Marti and Lugmair, +31+) are identical with the former ones within error limits. This

indicates no e#ect of neutron capture by 13Br and 2+Br on the cosmogenic Kr isotopic

compositions in the meteorite samples. The 2+Kr-terrestrial ages Tt (m.y.) were calcu-

lated as *.+32�*.*2,, *.,,.�*.*2* and *.,-*�*.*11 for A-22*1*,, A-22*10+ and A-

22+-22, respectively, by the equation (see caption of Table .) from Freundel et al.

(+320). The terrestrial ages of the Asuka eucrites (range around *.,*�*.,-m.y.) are

in the range (*�*.-/m.y.) reported for Antarctic eucrites (e.g., Schultz, +320; Nagao

and Ogata, +323; Miura et al., +33-). The obtained ages for two A-22*10+ and A-

22+-22 eucrites are in good agreement within experimental errors, suggesting that they

are paired.

-.-. Fissiogenic Xe isotopes and ,..Pu-Xe ages

Isotopic ratios corrected for cosmogenic component are presented in Table /,
where cosmogenic isotopes were subtracted by assuming that measured +,0Xe and +-*Xe

are mixtures of cosmogenic and trapped components; ( +,0Xe/ +-*Xe)c�+ (e.g., Miura et

al., +332) and ( +,0Xe/ +-*Xe)t�*.*,+2 (atmospheric Xe; Ozima and Podosek, ,**,).
Cosmogenic +-*Xe amounts -*�.*� of the total +-*Xe. Plot of +-.Xe/+-*Xe versus +-0Xe/
+-*Xe in Fig. - clearly demonstrates the presence of ,..Pu-derived fission Xe for the

Table .. Apparent exposure and terrestrial ages.

Meteorite
T2+ (appa� � Tt �

m.y.

A-22*1*,
A-22*10+
A-22+-22

-14-
0-40
/34/

14.
+,4*
+*41

*4+32
*4,,.
*4,-*

*4*2,
*4*2*
*4*11

The apparent exposure ages, T2+ (appa� were calculated by 2+Kr-Kr

method (see text), and the terrestrial ages were by the formula, Tt

�(+/l) ln (T2+/T,+), where l (�-.*-�+*�0 y�+) is decay constant

of 2+Kr, a half life of 2+Kr�*.,,3�+*0 y. (Baglin, +33-).

Table /. Heavy Xe isotopic composition corrected for cosmogenic Xe (+-*Xe�+).

Meteorite +-*Xe +-+Xe � +-,Xe � +-.Xe � +-0Xe �

A-22*1*,
A-22*10+
A-22+-22

+
+
+

/4.,
/4*,
/4+0

*4*0
*4*1
*4*0

34++
24*,
24*1

*4++
*4+*
*4*2

.420

.4+-

.4,,

*4*1
*4*-
*4*/

.40,
-42/
-430

*4+*
*4*-
*4*/
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Asuka eucrites. Three Asuka eucrites are exactly plotted on the mixing line between
,..Pu-derived fission Xe and the terrestrial atmospheric Xe or trapped meteoritic Xe

(e.g., Q-Xe) with the typical eucrites (e.g., Millbillillie and Camel Donga, etc.; Miura

et al., +332). Contribution from ,-2U-fission is negligibly small as will be shown later;
+-0Xe (U-fiss)/ +-0Xe (total excess)�+*�. It is distinctive that A-22*10+ and A-22+-22
plot almost at the same position, while A-22*1*, shows more excess of ,..Pu contri-

bution.
,..Pu-Xe ages for A-22*1*,, A-22*10+ and A-22+-22, relative to the Angra dos

Reis (ADOR) were calculated by using the method of Shukolyukov and Begemann

(+330b) (Table 0). The followings are the modified formulae in Miura et al. (+332) :

Table 0. Concentrations of cosmogenic +,0Xe, ,..Pu-derived +-0Xe, and ,..Pu-Xe ages for Asuka eucrites.

Meteorite
[+,0Xe]c [+-0Xe]excess [+-0Xe]Pu

,..Pu DTA-ADOR � T+-0 �

+*�+, cm- STP/g ppb m.y. b.y.

A-22*1*,
A-22*10+
A-22+-22

+4++
+42+
,4*3

04+*
/4+,
/43*

/41/
.411
/4//

*43*
*41.
*420

1

�,*

�,2

+/
+/
-,

.4/0/

.4/-2

.4/-*

*4*+/
*4*+/
*4*-,

Concentration of +-0Xe from ,-2U-fission was calculated as *.-/�+*�+, cm- STP/g assuming +** ppbU and

../ b.y. retention age. Concentrations of +-0Xe from ,..Pu-fission were obtained by subtracting the
,-2U-fission Xe from the +-0Xeexcess. Concentrations of ,..Pu at the onset of Xe retention were calculated

based on the branching ratio of +.,/�+*�- and +-0Xe fission yield of /.0� (Ozima and Podosek, ,**,).

Fig. -. Plot of +-.Xe/ +-*Xe vs. +-0Xe/ +-*Xe. The isotopic ratios have been corrected for

cosmogenic Xe. Three Asuka eucrites are plotted on the mixing line between

trapped (Earth atmosphere) and ,..Pu-fission Xe.

The errors of +-.Xe/ +-*Xe and +-0Xe/ +-*Xe are within the symbols of Asuka

eucrites (see Table /).
Data source: Earth Atmosphere (Ozima and Podosek, ,**,); Q-Allende (Wieler
et al., +33,).
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In the formulae l,.. (�2..1�+*�3 y�+) is the decay constant of ,..Pu, [ +-0Xe]Pu
concentration of +-0Xe derived from ,..Pu-fission, [ +,0Xe]LREE spallogenic +,0Xe from

light REE (La�Ce�Nd), [ +,0Xe]c measured concentration of cosmogenic +,0Xe pro-

duced from Ba and LREE, Texp exposure age, PBa/PLREE production rate ratio for

cosmogenic +,0Xe from Ba to LREE, and [Ba] and [LREE] are the concentrations of

Ba and LREE, respectively. Though U concentrations for the Asuka eucrites studied

in this work are not yet available at present, the concentrations reported for non-

cumulate eucrites are in the range from 22 ppb (Ibitira) to +3* ppb (Pomozdino) with

average of +,/�-/ ppb for +/ eucrites, while the concentrations for cumulate eucrites

(,1 and +- ppb for Moore County and Serra de Magé, respectively) are much lower than

those for noncumulate ones (Kitts and Lodders, +322). The ,-2U-fission +-0Xe was

calculated with the U contents of +** ppb and ../ b.y. as a retention age. The assumed

retention age of ../ b.y. would be valid because of the presence of fissiogenic Xe from the

short lived ,..Pu in these eucrites. Branching ratio and production yield for +-0Xe from
,-2U-decay are /../�+*�1 and 0.-�, respectively (Ozima and Podosek, ,**,). Con-

centration of +-0Xe from ,..Pu-fission was calculated from the excess +-0Xe by subtracting
+-0Xe from ,-2U-fission, which amounts 0�1� of the total concentration of excess +-0Xe.

Concentrations of ,..Pu at the onset of Xe retention were calculated based on the

branching ratio of +.,/�+*�- and +-0Xe fission yield of /.0� (Ozima and Podosek,

,**,). Obtained ,..Pu concentrations of *.1.�*.3* ppb are in the reported range for

eucrites (Miura et al., +332).
For the PBa/PLREE ratio, +.2,�*.-- (Hohenberg et al., +32+; Shukolyukov and

Begemann, +330b; Miura et al., +332) was adopted. Because chemical compositions

including REE have not been reported for the Asuka eucrites, we used the [Ba]/

[LREE] ratio of , (e.g., Shukolyukov and Begemann, +330b; Miura et al., +332). For

the cosmic-ray exposure age Texp, the values T,+ in Table , were used in the calculation.

Concentrations of cosmogenic +,0Xe, fissiogenic +-0Xe from ,..Pu and ,-2U are given in

Table 0. Though there seem to be large ambiguities in the adopted values, calculated
,..Pu-Xe ages relative to that of Angra dos Reis (ADOR) became as 1�+/, �,*�+/
and �,2�-,m.y. for A-22*1*,, A-22*10+ and A-22+-22, respectively (negative age

means later onset for Xe retention relative to ADOR). The ages belong to the

Pasamonte-Juvinas group with old ages close to that of ADOR (Shukolyukov and

Begemann, +330b). The absolute ,..Pu-Xe ages in Table 0 are calculated based on the

reported Pb-Pb age of ..//12 b.y. for ADOR (Lugmair and Galer, +33,). The ages of

A-22*1*,, A-22*10+ and A-22+-22 are ../0/�*.*+/, ../-2�*.*+/ and ../-*�*.*-,
b.y., respectively. The absolute age of A-22+-22 is older than the -3Ar- .*Ar age of

and
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...2*�*.**1 b.y. (Bogard and Garrison, ,**-), probably due to higher retentivity of Xe
compared with Ar.

On the basis of noble gas data and ages data presented above, A-22*10+ and A-
22+-22 are paired, but A-22*1*, is not. This is supported by the textural similarity

between A-22*10+ and A-22+-22 reported in Kojima and Imae (,**,).
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