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Abstract: We measured the concentrations and isotopic composition of the noble

gases He, Ne, Ar, Kr, and Xe in the paired antarctic nakhlites Y***/3- and Y***1.3,
and in the antarctic olivine-phyric shergottite Y32*./3. Furthermore, we analyzed

He, Ne, and Ar in lherzolite NWA+3/*. For the two nakhlite specimens we obtain

Mars ejection times of ++.,�+.,Ma and +,.-�+.2Ma, respectively, in agreement with

those for the four nakhlites dated before. Y32*./3 yields longer cosmic-ray exposure

(CRE) ages based on ,+Ne and -2Ar (,.3 and ,./Ma, respectively) than based on -He,
2+Kr- 2-Kr, and +*Be (+./, +.3, and +.+Ma, respectively).We interpret this di#erence to

be due to an additional cosmogenic component produced by solar cosmic rays. The

Mars ejection time of this meteorite is essentially its CRE age of +.+Ma and agrees with

the ejection times of the four other olivine-phyric shergottites. The ejection time of

NWA+3/* is ..+�+..Ma and lies within the range of the other three lherzolites. In

the two nakhlites and in Y32*./3 we observe e#ects induced by the reaction 13Br (n, g b)
2*Kr. For the nakhlites this 2*Kr was produced in free space during Mars-Earth

transfer; from its concentration we calculate a pre-atmospheric mass of �+1* kg. On

the other hand, a pre-atmospheric size for the Y32*./3 meteoroid can not be derived

from our data. We interpret the occurrence of an excess of 2*Krn to be due to trapping

of this nuclide from the martian atmosphere, as was observed by other workers for

martian meteorite EETA13**+. For Y32*./3 we also find an excess of 1+�+*�2

cm-STP .*Ar/g that originates from trapped martian atmospheric gases. We show

that up to eight impact events in a time span of *.1-Ma to +3.2Ma are responsible for

ejecting the martian meteorites studied until now. Each event occurred in a specific

surface region characterized by the mineralogy of the meteorites blasted o# by these

cratering processes.
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+. Introduction

The meteorites whose parent body is Mars vary considerably in their mineralogical

composition. In his Mars Meteorite Compendium Meyer (,**-) gives the summary of

the modal mineralogy in volume percent for six di#erent types of martian meteorites.
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The major minerals are olivine (ol), pyroxene (px), and plagioclase (plag), partially

converted to maskelynite, the minor ones (never more than a few percent) are chromite,

Ti-rich magnetite, phosphate, and sulfide. Seven types of martian meteorites have been

observed; six of them are characterized e.g. by their ratios of olivine to pyroxene and

plagioclase to pyroxene: +) clinopyroxenites, also called nakhlites (ol/px�*.+2, plag/px
�*.*/); ,) basaltic shergottites (�*.**/, *./); -) lherzolites (+.-, *.-); .) olivine-

phyric shergottites (*.-, *.-); /) dunite, only member Chassigny (+2, *..); and 0)
orthopyroxenite, only member Allan Hills (ALH) 2.**+ (*, *.*+). A seventh type is

represented by the unique meteorite Elephant Moraine (EET) A13**+ that consists of

three main lithologies: lithology A is similar to the olivine-phyric shergottites, lithology

B is basaltic, similar to Shergotty but depleted in rare earth elements, and lithology C is

an assemblage of glass pods and thin interconnecting glass veins.

The martian meteorites were ejected from the surface of Mars by asteroidal or

cometary impact in a number of discrete events (Nyquist et al., ,**+; Meyer, ,**-).
These events are characterized by the time, when they occurred, the ejection time, also

called ejection age (Tej). The Tej is the sum of the cosmic-ray exposure (CRE) age and

the terrestrial age (Tterr), i.e. the time when the meteorite fell on Earth. The CRE age

is identical to the Mars-Earth transfer time in case the meteoritic material was not

pre-exposed to CRs on Mars and did not experience a change of its geometry in space.

All references concerning Tej are given in the caption of Fig. +. The earliest ejection

event is represented by Dhofar (DHO) *+3, an olivine-phyric shergottite, +3.2�,.-Ma.

The only orthopyroxenite, ALH2.**+, has an ejection age of +..1�*.3Ma. It is the

only meteorite from the ancient martian crust (for references see Nyquist et al., ,**+).
The clinopyroxenites (nakhlites) have a common ejection age of +*.2�*.1Ma. The

same impact event may also be responsible for the only dunite (Chassigny) since its

Tej�++.-�*.0Ma. The six basaltic shergottites yield ejection ages in the range of ,.2�
*.-Ma. They consist predominantly of the clinopyroxenes pigeonite and augite and

di#er from the four lherzolites that consist mainly of olivine, orthopyroxene, and

chromite. Lherzolites and the olivine-phyric shergottites were ejected ..+�*..Ma and

+.+0�*.*0Ma ago, respectively. As mentioned above, the ejection age of another

olivine-phyric shergottite, DHO *+3, is +3.2�,.-Ma. Finally, the unique meteorite

EETA13**+ shows an ejection age of *.1-�*.+/Ma.

Since Meyer (,**-) published his compendium some additional martian meteorites

were dated: For the olivine-phyric shergottite Northwest Africa (NWA) +*02 Mathew

et al. (,**-) obtained an average CRE age of ,.*+Ma. The various specific ages vary

from +.+.Ma ( ,+Ne age, T,+) to ,.0*Ma ( +/N age, T+/). According to Marti (pers.

comm.) T+/ is less reliable than T,+, because partitioning of N into the trapped and

cosmogenic components is di$cult and because the N production rate is not as well

known as that for ,+Ne. Thus, we consider the ,+Ne age to be the most reliable age for

NWA+*02. For the basaltic shergottite NWA2/0 Mathew et al. (,**-) gave an average
-He, ,+Ne, -2Ar CRE age of ,.0*Ma, the specific ages being within +*� of this value.

For NWA++3/, an olivine-phyric shergottite, Nishiizumi and Hillegonds (,**.)
reported a CRE age of about +.+Ma without specifying from which nuclide this age was

obtained. The olivine-phyric shergottite Yamato (Y) 32*./3 was studied by several

authors: Okazaki and Nagao (,**.) measured the cosmogenic noble gases and obtained
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a CRE age around ,.+�,./ Ma, confirmed by Christen et al. (,**.) who gave an average

CRE age of ,.0�,.2 Ma. Nishiizumi and Hillegonds (,**.), however, reported a CRE

age of +.+�*., Ma based on the +*Be activity and concluded that the stable cosmogenic

noble gases must be enhanced due to solar cosmic rays or a pre-exposure on the parent

body. This discrepancy of the CRE ages obtained from the di#erent dating methods

Fig. +. Ejection ages (Ma) of the martian meteorites dated until now: EET�EETA 13**+ [Ref. +],
SAU�average for all paired SaU martian meteorites [-], DAG�average for all paried DaG

martian meteorites [+], Y32�Y32*./3 [.], ++3/�NWA ++3/ [.], +*02�NWA +*02 [/],
LA�Los Angeles [-], QUE�QUE 3.,*+ [-], SHE�Shergotty [-], 2/0�NWA 2/0 [,],
.2*�NWA .2* [,], ZAG�Zagami [-], LEW�LEW 22/+0 [-], Y13�Y-13-0*/ [+], A11

�ALHA11**/ [-], +3/*�NWA +3/* [0], CHA�Chassigny [+], NAK�Nakhla [-], LAF

�Lafayette [+], GV�Governador Valadares [+], 2+1�NWA 2+1 [,], Y***�average for

Y***/3-/1.3/2*, [0], A2.�ALH 2.** [-], DHO�DHO *+3 [1].
The error bars represent the , sigma error of the average value for the di#erent individual
CRE age determinations of a given meteorite.

References: [+] Nyquist et al. (,**+), [,] Mathew et al. (,**-), [-] Eugster et al. (,**,);
[.] +*Be age (Nishiizumi and Hillegonds, ,**.), [/] ,+Ne age (Mathew et al., ,**-), typical
error of +/� adopted, [0] this work, [1] Shukolyukov et al. (,***).
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will be discussed below. Finally, one or several of the paired nakhlites Y***/3-,

Y***1.3, and Y***2*, were studied by Okazaki et al. (,**-), Murty et al. (,**-), and

Christen et al. (,**.). The results yield the typical Mars ejection age of about ++ Ma

for the nakhlites (Nyquist et al., ,**+).

In this work we present the final results for the nakhlites Y***/3- and Y***1.3,

and for the olivine-phyric shergottite Y32*./3. Preliminary data had been given in an

abstract by Christen et al. (,**.). Additional data are presented for the lherzolite

NWA+3/*. We will discuss the CRE ages and their relation to the ages of the other

meteorites of the same type. For the nakhlites and the olivine-phyric shergottite we

also present results on the Kr and Xe isotopes. This allows us to determine the

epithermal neutron flux based on neutron produced 2*Kr. As the neutron flux depends

on the geometric characteristics of the meteoroid we will attempt to determine the

pre-atmospheric size of the investigated meteorites. There might be a small contribu-

tion of fission Xe, but lacking precise data on the U concentration the discussion of this

component is not meaningful. Furthermore, radiogenic .He, .*Ar, and +,3Xe are not

discussed. .He is usually depleted due to di#usion loss and only upper limits for the U

and Th concentrations are known. .*Ar and +,3Xe are mixtures of martian atmospheric

and in situ produced radiogenic gases. Their proportions can not be derived from our

data, therefore we will not calculate gas retention ages based on these nuclides.

,. Samples and experimental procedure

The nakhlites Y***/3- and Y***1.3 were collected by the Japanese Antarctic

Research Expedition in ,*** (JARE-.+). These two specimens and Y***2*, are paired

and were distributed to numerous workers for a consortium study (Misawa et al., ,**-).

The recovered masses of Y***/3- and Y***1.3 are +-.1+- kg and +.,2- kg, respectively.

Samples of -// mg and .+3 mg, respectively, were allocated to us. The olivine-phyric

shergottite Y32*./3 (recovered mass 2,..0 g) was also studied in the framework of a

consortium; a sample of ,++ mg was obtained from the National Institute of Polar

Research (NIPR) in Tokyo. Lherzolite NWA+3/* (two stones of .+. g and -2- g)

were found in ,**+ in the Atlas Mountains (Morocco). We purchased a +./ g sample

from B. Fectay (The Earth’s Memory LLC, Aumont, France).

The samples for He, Ne, and Ar analyses (for sample weights see Table +) were

crushed in a stainless steel mortar to pass a 1/* mm sieve. The samples for the Kr and

Xe measurements (Tables , and -) were loaded as uncrushed splits into the extraction

system to minimize adsorption of terrestrial air. The weights of the samples loaded into

the extraction system are given in Tables +�-. The meteorite samples were heated in

vacuum at 3*�C for several days in the storage arm of the extraction system to remove

adsorbed terrestrial atmospheric gases. He, Ne, and Ar were extracted in a single step

at +1**�C. For Y32*./3, Y***/3-, and Y***1.3 we performed two He, Ne, and Ar

analyses: one sample of each meteorite was analyzed using a radio-frequency heated

crucible and our system B, consisting of two mass spectrometers equipped with second-

ary electron multipliers, one mass spectrometer for He and Ne, and the other one for Ar

analyses. A second sample of each meteorite was analyzed using a resistance heated

gas extraction crucible and our system C, consisting of a Mass Analyser Products ,+/�
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/* mass spectrometer with an ion counting system. For NWA+3/* three He, Ne, and

Ar analyses were performed with system B. Kr and Xe were extracted by resistance

heating in two temperature steps (2**�C and +1**�C) and then analyzed with our system

C. Details of blank and background corrections and of the analytical procedure are

described by Busemann and Eugster (,**,) and Eugster et al. (+33-). The results are

given in Tables +�-. The errors correspond to a 3/� confidence level (,s) and include

the statistical errors of the ratio measurements, as well as the uncertainties of the

concentration determination and of the blank and isotope fractionation corrections.

Inspection of Table + shows that for some of the analyses instabilities of the mass

spectrometer occurred. The respective data were too unreliable to be considered for

calculating average values.

-. Partitioning of the noble gases

The noble gases in the investigated meteorites are a mixture of CR produced, c,

Table +. Results of He, Ne, and Ar measurements.

Meteorite
(system, sample
weight)

.He ,*Ne .*Ar

+*�2cm- STP/g

.He
-He

,*Ne
,,Ne

,,Ne
,+Ne

-0Ar
-2Ar

.*Ar
-0Ar

Y32*./3,/3
(B, ,+.1-mg)

,2.-
�-.*

*.122
�*.*3*

3-..
�..*

++.,
�*.3

* * +.,,
�*.*/

*

Y32*./3,/3
(C, +.1.*,mg)

* *.01
�*.*1

* ++.-
�*..

*.2.3
�*.*+1

+.+3
�*.*/

+.**
�*.*,

,32
�0

Y32*./3,/3
(average)

,2.-
�-.*

*.1,3
�*.*0*

3-..
�..*

++.-
�*..

*.2.3
�*.*+1

+.+3
�*.*/

+.++
�*.0

,32
�0

Y***/3-,+*-
(B, ,*..-mg)

3/,
�-*

,..*
�*.+,

++2-
�.*

.1.3
�*.2

* +.,.
�*.++

*.1/.
�*.*+*

1-1
�,*

Y***/3-,+*-
(C, ,3,.,-mg)

* +.2+
�*.,*

* 0-./
�,.*

*.2-1
�*.*+*

+.,,
�*.*1

* //-
�,/

Y***/3-,+*-
(average)

3/,
�-*

,.+*
�*.-*

++2-
�.*

//.1
�2.*

*.2-1
�*.*,*

+.,-
�*.*-

*.1/.
�*.*+*

0./
�3*

Y***1.3,0+
(B, ,+.,2mg)

2*0
�,/

,.+0
�*.+2

+,2*
�.*

-3.1
�*.0

*
�*.+**

*
�*.,-

*.1.,
�*.*+,

21*
�,*

Y***1.3,0+
(C, -,1./,mg)

* ,.+,
�*.,*

* * *.2.1
�*.*+*

+.,.-
�*.*,/

* ..1
�,*

Y***1.3,0+
(average)

2*0
�,/

,.+.
�*.*1

+,2*
�.*

-3.1
�*.0

*.2.1
�*.*+*

+.,.-
�*.*,/

*.1.,
�*.*+,

0/2
�,**

NWA +3/*
(B, -*.,,mg)

-+.*
�+.*

+.++
�*.*.

+.,.,
�/.*

..0/
�*.+*

*.2.2
�*.*,*

+.,/2
�*.*+/

+.+3+
�*.*-*

/+/
�,*

NWA +3/*
(B, /+.-/mg)

-*.0
�+.*

+.*3
�*.*.

+,3.2
�/.*

..1,
�*.+*

*.200
�*.*,*

+.,/,
�*.*+/

+.*02
�*.*-*

/+2
�,*

NWA +3/*
(B, +*+./+mg)

-+.+
�+.*

+.*0
�*.*.

++..-
�/.*

..2+
�*.+*

*.2-3
�*.*,*

+.,/3
�*.*+/

+.*..
�*.*-*

.10
�,*

NWA +3/*
(average)

-*.3
�+.*

+.*3
�*.*.

+,2.2
�/.*

..1-
�*.+*

*.2/+
�*.*,*

+.,/0
�*.*+/

+.+*+
�*.*-*

/*-
�,*

* Instability of mass spectrometer occurred; unreliable data obtained.
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(spallation and secondary neutron reactions), radiogenic, r, ( .*K, +,3I, ,-/, ,-2U, and ,-,Th

decay), fissiogenic, f, (,-/, ,-2U, ,..Pu), and trapped, tr, components. In the following

the assumptions for the partitioning of the noble gas components are given. For

references see Terribilini et al. (+332) and Okazaki et al. (,**-).
Helium: - and .Hetr�* and ( .He/ -He)c�0.,.
Neon is almost entirely cosmogenic. For the correction of a small Netr contribution we

assumed Ne of terrestrial atmospheric composition.

Argon: ( -0Ar/ -2Ar)tr�...�+.+. This includes martian atmospheric and mantle Ar.

Furthermore, ( -0Ar/-2Ar)c�*.0/.
Krypton: Krtr was assumed to have the isotopic composition of terrestrial atmospheric

Kr. E. g. for the +1**�C fractions of Y***/3- and Y***1.3 the 2*Krtr component is

,,� and .*�, respectively, of total 2*Kr. Only the +1**�C fractions of these analyses

show the signature of an additional cosmogenic Kr component.

Xenon: Figure , shows that Xe is a mixture of cosmogenic and trapped Xe. +,3Xe

contains an additional contribution of radiogenic +,3Xe from +,3I decay. From our data

we cannot determine the isotopic composition of the trapped component. In this paper

we do not focus on the Xe components but refer to the comprehensive work on nakhlites

and shergottites of Mathew et al. (,**-). All data on Kr and Xe not discussed in this

Table ,. Results of Kr measurements.
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Meteorite 86
Kr 

78
Kr 

80
Kr 

81
Kr 

82
Kr 

83
Kr 

84Kr 
(sample 

10-12 cm3S1P / g 86
Kr 

86
Kr 

86Kr 
86

Kr 
86

Kr weight) 86J<r 

Y980459,59; 800°C 28.5 0.0238 0.148 0.735 0.737 3.61 
(147.02 mg) ±6.0 ±0.0030 ± 0.018 ±0.070 ±0.080 ± 0.25 

1700°C 8.3 0.0374 0.228 0.0069 0.786 0.744 3.37 
± 1.7 ±0.0070 ±0.025 ±0.0025 .:t0.120 ± 0.080 ±0.25 

total 36.8 0.0269 0.166 0.00156 0.747 0.739 3.56 
±7.0 ±0.0030 ±0.018 ±0.00060 ±0.070 ±0.080 ± 0.25 

Y000593,I03; 800°C 30.2 0.0164 0.127 0.0003 0.655 0.630 3.20 
(292.23 mg) ±6.0 ± 0.0012 ±0.008 ±0.0002 ±0.045 ±0.040 ±0.12 

1700°C 5.9 0.192 0.590 0.0125 1.286 1.464 3.89 
± 1.2 ±0.015 ±0.040 ±0.0016 ±0.080 .:t0.090 ±0.20 

total 36.1 0.0451 0.203 0.00229 0.758 0.766 3.31 
±7.0 ± 0.0035 ± 0.014 ±0.00030 ±0.050 ±0.050 ±0.13 

Y000749,61; 800°C 21.8 0.0167 0.120 0.0011 0.694 0.650 3.35 
(327.52 mg) ±4.0 ± 0.0018 ± 0.012 ±0.0002 ±0.060 ±0.030 ± 0.20 

1700°C 10.4 0.0899 0.319 0.0070 0.927 0.971 3.29 
±2.0 ±0.0090 :::0.025 ± 0.0008 ±0.070 ±0.070 ± 0.20 

total 32.2 0.0403 0.184 0.0030 0.769 0.754 3.33 
±6.0 ±0.0040 ± o.ois ::: 0.0004 ±0.060 ±0.040 ± 0.20 



Table -. Results of Xe measurements.

Fig. ,. +,.Xe/ +-,Xe versus +-0Xe/ +-,Xe for the investigated meteorites.
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Meteorite 132xe 124xe 126Xe 12sXe l29xe 130xe 131Xe 
134xe 136Xe 

(sample weight) 10-12cm3STP I g 132xe 132xe 132xe 132xe 132xe 132xe l32xe 
132Xe 

Y980459,59; 800°C 56.7 0.0032 0.0027 0.0716 1.027 0.149 0.777 0.388 0.280 
(147.02 mg) ± 11.0 ±0.0006 ±0.0004 ±0.0070 ±0.070 ±0.010 ±0.050 ±0.025 ± 0.030 

1100°c 15.0 0.0051 0.0048 0.0810 1.115 0.147 0.800 0.355 0.320 
±3.0 ±0.0017 ±0.0012 ± 0.0140 ±0.120 ±0.018 ±0.080 ±0.025 ± O.D40 

total 71.7 0.0036 0.0031 0.0736 1.045 0.149 0.782 0.381 0.288 
± 14.0 ±0.0008 ::t:0.0006 ±0.0080 ± 0.080 ±0.010 ::t:0.060 :=0.025 ± 0.040 

Y000593, 103; 800°C 37.7 0.0027 0.0029 0.0715 1.010 0.155 0.809 0.396 0.339 
(292.23 mg) ±8.0 ±0.0006 ±0.0004 ±0.0060 ± O.D35 ±0.008 ± 0.030 ±0.014 ±0.025 

1100°c 24.0 0.0107 0.0223 0.101 1.146 0.173 0.835 0.376 0.311 
± 5.0 ±0.0045 ±0.0060 ±0.005 ±0.D40 ±0.010 ± O.D35 ±0.016 ±0.030 

total 61.7 0.0058 0.0104 0.0830 1.063 0.162 0.819 0.388 0.328 
± 12.0 ±0.0017 ±0.0020 ±0.0050 ±0.040 ±0.010 ±0.030 ±0.015 ±0.030 

Y000749,61; 800°C 29.9 0.0025 0.0026 0.0704 1.026 0.152 0.802 0.385 0.343 
(327.52 mg) ±6.0 ±0.0006 ±0.0004 ± 0.0030 ±0.040 :r0.004 ±0.030 ±0.015 ::: 0.025 

1100°c 22.3 0.0117 0.0215 0.1124 1.157 0.173 0.836 0.381 0.298 
±4.5 ±0.0020 ±0.0025 ± 0.0035 ± 0.040 ± 0.006 ±0.020 ±0.014 ± 0.020 

total 52.2 0.0064 0.0107 0.0889 1.082 0.161 0.817 0.383 0.324 
± 10.0 ±0.0013 ±0 0016 ±0.0030 ± 0.040 ± 0.005 ±0.020 ±0.015 ±0.020 

0.016 

Y000749 

0.008 
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work will be presented in a forthcoming publication in the context of martian trapped

noble gases.

.. Cosmogenic noble gases and CRE ages

Dating of the ejection events from Mars allows us to determine the source crater

pairing of meteorites. The ejection time is calculated from the CRE age and the

terrestrial age (see Introduction). The CRE age is obtained from the stable cosmogenic

noble gas isotopes and, for short CRE ages, from +*Be. The terrestrial age is calculated

from radioactive nuclides such as +*Be, +.C, ,0Al, -0Cl, /-Mn, and 2+Kr (cf. Nishiizumi,

+321; Jull, ,**/).
Tables . and / give the concentrations and isotopic ratios of the cosmogenic

nuclides. In order to calculate a CRE age we have to determine the production rates

for the specific nuclides. The production rates were calculated according to the

procedure of Eugster and Michel (+33/) using the chemical abundances given in Table

0. For the shielding correction of the ,+Ne production rate we adopted the formula for

diogenites for NWA+3/*, that for eucrites for the two nakhlites, and that for howardites

for Y32*./3. The resulting production rates and CRE ages are given in Table 1. For

calculating the 2+Kr- 2-Kr CRE age (T2+) the terrestrial age (Tterr) has to be known in

order to correct for the decay of 2+Kr on Earth. Nishiizumi and Hillegonds (,**.)
reported a Tterr of *.*//�*.*,*Ma for the Y***/3-/***1.3/***2*, nakhlites based on
+.C and .+Ca concentrations. Adopting a 2+Kr half-life of ,,3*** years (Baglin, +33-)
the apparent T2+ has to be corrected by a factor of *.2.0. For Y***/3- we obtain T2+

�+*.2�,.*Ma, almost the same age as that reported by Okazaki et al. (,**-) if we

correct their value also by a factor of *.2.0. Furthermore, these authors use the old

value for the 2+Kr half-life of ,+-*** years (Eastwood et al., +30.) instead of the new

one of ,,3*** years (Baglin, +33-). With these corrections T2+ of Okazaki et al.

(,**-) becomes +*.1Ma. For the Y***1.3 specimen we obtain T2+�1.1�,.*Ma.

We do not know why this age is considerably lower than the ages obtained by the other

methods, but on unrecognized interference on mass 2+ might explain a low 2-Kr/ 2+Kr

ratio and consequently a low T2+ value.

The olivine-phyric shergottite Y32*./3 yields CRE ages from the various cosmo-

genic nuclides that vary in the range of +.+ to ,.3Ma (Table 1). Ages based on -He

(T-) and +*Be (T+*) are lower than those based on ,+Ne (T,+) and -2Ar (T-2).

Nishiizumi and Hillegonds (,**.) obtained a +*Be CRE age of +.+�*.,Ma and inter-

preted the higher ,+Ne and -2Ar ages to be due to (+) a pre-exposure on Mars before

Y32*./3 was ejected or (,) an addition of solar cosmic-ray (SCR) produced nuclides.

These authors observed a higher concentration of ,0Al in the near-surface sample

indicating SCR exposure. Explanation (+) is supported by the presence of neutron

produced 2*Kr as given in Table 2 and observed by Okazaki and Nagao (,**.). 2*Krn

may have been produced under relatively high shielding conditions in the martian

regolith, where also ,+Ne and -2Ar were accumulated. The low -He CRE age may be

explained by -He di#usion loss that, however, has not been observed for the other

olivine-phyric shergottites Sayh al Uhaymir (Park et al., ,**+), Dar al Gani (Nyquist

et al., ,**+), and NWA+*02 (Mathew et al., ,**-). If such a pre-exposure on Mars
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Table .. Cosmogenic, trapped, and radiogenic He, Ne, and Ar (+*�2cm-STP/g).

Table /. Cosmogenic Kr and Xe.

Table 0. Chemical abundances (weight�) of elements relevant for this work.

Ref Na Mg Al Si K Ca Ti Cr Mn Fe Ni Th

ppm

U

ppm

Y32*./3

Y***/3-/1.3

NWA +3/*

[+, ,]

[,�/]

[0]

*4.-

*4.2

*4--

++42

04./

+/43

,413

+4*-

+4.3

,,42

,,4.

,*4/

*4*+1/

*4+--

*4*,,

.4-2

+*4,

,42,

*4-,

*4,02

*4,,

*4/+

*4+20

*40+

*4-3

*4.,

*4-1

+-42

+040

+/40

*4*,//

*4*+

*4*-

�*4+

*4,,/

�

�*4*,

*4*/0

�

[+] Misawa (,**-); [,] Dreibus et al4 (,**-); [-] Shirai et al. (,**,); [.] Imae et al. (,**-); [/] Oura

et al. (,**-); [0] average values for lherzolites ALHA11**/, LEW 22/+0, and Y-13-0*/ given by Meyer

(,**-).
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Meteorite 

3
He 

Y980459,59 2.50 
±0.30 

Y000593,103 17.1 
±0.7 

Y000749,61 20.3 
±0.8 

NWA 1950 6.53 
±0.30 

* see text. 

Meteorite 81
Kr 

Y980459,59 0.057 
± 0.020 

Y000593, 103 0.074 
± 0.015 

Y000749,61 0.074 

± 0.015 

* Error> 60%. 

cosmogenic 

21 Ne 

0.721 
±0.070 

2.04 
±0.30 

2.04 
± 0.10 

1.02 
±0.10 

83 
Kr 

38 Ar 

0.245 
±0.030 

2.36 
±0.30 

2.55 
±0.30 

0.205 
±0.025 

126 Xe 

1o-12cm 3STP/g 

0.51 * 
± 0.15 

4.74 0.46 
± 1.0 ±0.14 

3.23 0.42 
±0.6 ±0.10 

trapped radiogenic 
22Ne 36 Ar 4He 

40 Ar 
21Ne 

1.182 0.154 12.8 * 
± 0.060 ±0.050 ±3.0 

1.225 0.30 846 < 1183 
±0.030 ±0.10 ±30 

1.237 0.29 680 < 128 
±0.030 ±0.10 ±25 

1.249 0.123 < 10 < 128.8 
± 0.020 ± 0.040 

78
Kr 

8oKr 82
Kr 

124Xe 128Xe 
83

Kr 
83Kr 

83
Kr 

126Xe 126Xe 

0.25 1.44 1.56 * * 
±0 10 ±0.40 ±0.90 

0.21 0.57 0.78 * 1.8 
± 0.03 ± 0.12 ±0.40 ±0.6 

0.23 0.61 0.85 0.45 2.6 

± 0.05 ±0.20 ± 0.45 ±0.20 ±0.6 
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occurred more than a few Ma ago +*Be with its half-life of +.0Ma would not be a#ected
by it and the +*Be CRE age would yield a reliable Mars-Earth transfer time. Nuclides

produced by SCRs (explanation ,) could have been accumulated in free space. T,+ and

T-2 are much more sensitive to SCRs than T- and T+* (Hohenberg et al., +312; Graf

et al., +33*). Consequently, T,+ and T-2 would yield too high CRE ages. We conclude

that the +*Be based CRE age of +.+�*.,Ma (Nishiizumi and Hillegonds, ,**.) is, in the

case of Y32*./3, the most reliable age. The 2+Kr- 2-Kr age (T2+) of +.3�*.2Ma given

in Table 1 agrees within experimental errors with T+*. As the terrestrial age of

Y32*./3 has not been determined it is possible that T2+ is enhanced as a result of 2+Kr

decay on Earth.

The two paired nakhlites specimens Y***/3- and Y***1.3 studied in this work

yield average CRE ages of ++.,�+.,Ma and +,.-�+.2Ma, respectively. Our ages are

close to those obtained by other workers. We conclude that the three paired specimens

of the Yamato nakhlite yield the same Mars ejection time as the previously known

nakhlites Governador Valadares, +*.*�,.+Ma, Lafayette, ++.3�,.,Ma, and Nakhla,

+*.1/�*..*Ma (Nyquist et al., ,**+).
For lherzolite NWA+3/* we obtain an average CRE age of ..+�+..Ma. This age

is within the range of the CRE ages of the other dated lherzolites of ,.3 to ..1Ma

(Nyquist et al., ,**+). NWA+3/* is also similar to the previously analyzed lherzolites

(cf. Terribilini et al., +332; Eugster et al., ,**,) in other characteristics: ( ,,Ne/,+Ne)c of

+.,.3 is within the range of +.,*1 to +.,3 for ALHA11**/, LEW22/+0, and Y-13-0*/
and the -0Artr concentration of *.+,-�+*�2cm-STP/g is similar to that of Y-13-0*/
(*.+21�+*�2cm-STP/g, Terribilini et al., +332).

Table 2. Neutron-induced 2*Kr, 2*Krn, epithermal neutron fluxes, fn (-*�-** eV), slowing down

densities, q, and pre-atmospheric sizes.
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Meteorite 8('Krn

1) Br2) Ta}) P("'Krn) q>n(30- q Rum p4
) M,,,;n 

300eV) 
1 o-12cm'STP/g ppm Ma 10-12 cm3STP / g ncm-2s-1 ncm-'s·1 cm gem-' kg 

ppmBr xMa 

Y980459 0.48 0.205 LI 2.15) 5) 5) 5) 5) 5) 

± 0.20 

Y000593 0.37 0.17 11.2 0.19 039 0.014 23 3.37 170 
± 0.14 

Y000749 0.37 0.17 123 0.18 037 0.013 23 337 170 

± 0.14 

1) Assuming ('°Kr/83Kr),p = 0.495; 2) Dreibus et al. (2003); 3) from Table 7; 4) for densities p see Eugster et al. 

(2002); 5) calculation not meaningful, see text 



/. Mars ejection times

For calculating the ejection time, Tej, we have to add the terrestrial age, Tterr, to the

CRE age. Tterr for Y32*./3 and NWA+3/* is not known but generally for martian

meteorites a Tterr�*.-Ma was observed (Eugster et al., ,**,). Nishiizumi and

Hillegonds (,**.) reported for Y***/3-/**1.3/***2*, a Tterr of *.*//�*.*,*Ma.

For the meteorites studied in this work we adopt ejection times that are identical to the

CRE ages (Tadopted, Table 1) and obtain for the olivine-phyric shergottite Y32*./3, the
paired nakhlites, and the lherzolite NWA+3/* average ejection ages of +.+�*.,Ma, ++.-
�*..Ma, and ..+�+..Ma, respectively.

Figure + demonstrates the ejection ages of the martian meteorites that were dated

until now. In the figure caption we give the references for the CRE ages. We

conclude that the following ejection times for the di#erent types of martian meteorites

can be distinguished. The first event occurred when DHO *+3, a olivine-phyric

shergottite, was ejected +3.2�,.-Ma ago. ALH 2.**+, the only orthopyroxenite, was

ejected +..1�*.3Ma ago. Chassigny (++.-�*.0Ma) and the nakhlites (average Tej�
+*.2�*.1Ma) di#er strongly in their mineralogy but may have been ejected in the same

event. The lherzolites (average Tej�..+�*..Ma) were followed by the basaltic

shergottites (average Tej�,.2�*.-Ma). Another impact occurred +.+0�*.*0Ma into

an area of olivine-phyric composition. Finally, *.1-�*.+/Ma ago the unique olivine-

phyric/basaltic shergottite EETA13**+ was ejected. If we take these average ejection

times at face value, we conclude that the presently dated martian meteorites represent

seven di#erent source areas. If Chassigny and the mineralogically strongly di#ering
nakhlites were produced by di#erent events, we observe eight impact events on Mars.

Model calculations for the transfer times of rocks ejected from Mars are essentially

in agreement with the observed CRE ages for material ejected slightly above escape

velocity of / km/s. Gladman et al. (+330) found that 3/� of all ejected rocks reach

Earth within ,*Ma and only about ,*� are expected to have CRE ages �+Ma. In

contrast to lunar meteorites (cf. Vogt et al., +33+) no clear evidence for a complex

exposure history has been observed for martian meteorites. If the impacts on Mars are

occurring at intervals of a few Ma, as indicated by the CRE ages, the impactors are

likely of the order of kilometers (Gladman, +331). Consequently, the resulting craters

must be considerably larger than kilometers in size. Thus, most ejected rocks originate

from more than a few meters depth and did not experience a pre-exposure to cosmic rays

on Mars. The size of the ejected rocks from such impacts is estimated to be in a range

of ,*�,** cm (Artemieva and Ivanov, ,**,; Eugster et al., ,**,). The number of

martian meteoroids from an impact event must be enormous and source crater pairing

of specimens collected on Earth is not surprising.

0. Neutron induced 2*Kr

The concentrations and isotopic ratios of cosmogenic Kr are given in Table /.
Adopting a ratio 2*Kr/ 2-Kr�*..3/ for spallation produced Kr (Marti et al., +300) we

obtain the concentration of 2*Krn that was produced by neutron capture of 13Br (Table

2). The calculation of 2,Krn from
2+Br is not meaningful because the experimental error
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is �+**�. The 2*Krn concentration is a measure for the pre-atmospheric size of the

meteoroid, if 2*Krn was produced in situ during the time the meteoroid was exposed to

cosmic rays in free space. Other possibilities to explain an excess of 2*Krn are a

pre-exposure to cosmic rays on Mars before ejection of the meteorite or trapping of

martian atmospheric 2*Krn. However, as Nishiizumi and Hillegonds (,**.) state, a

pre-exposure for martian meteorites has not yet been observed and Rao et al. (,**,)
point out that other nakhlites did not acquire 2*Krn via trapping of martian atmospheric

Kr. Therefore, we consider the 2*Krn in the Y***/3- and Y***1.3 nakhlites to be in

situ produced during the Mars-Earth transfer. Following the procedure outlined by

Eugster et al. (,**,) we derive the pre-atmospheric size of these two samples and obtain

a radius, adopting spherical shape, of �,- cm (Table 2). Nakhlites have a density of

about -.-1 g/cm- as estimated from their mineralogical composition. Consequently

their pre-atmospheric mass was �+1* kg. This lower limit for their mass is in the

typical range for martian meteorites.

For Y32*./3 we come to a di#erent conclusion. In the discussion of the CRE ages

obtained from various cosmogenic nuclides we have shown that this meteorite contains

a component of cosmogenic isotopes produced by solar cosmic rays. As their penetra-

tion depth in extraterrestrial matter is of the order of a few cm (cf. Hohenberg et al.,

+312) our sample of Y32*./3 must originate from a small meteoroid or from a location

close to the pre-atmospheric surface. However, as shown in Table 2, a relatively large

production rate for 2*Krn would result from a CRE age of +.+Ma and the measured

concentrations of 2*Krn and
13Br. This would indicate that the sample originates from

a location several tens of centimeters within the meteoroids. The contradiction can

only be understood if we assume that the Y32*./3 material trapped most of its 2*Krn
from the martian atmosphere in a similar way as observed for EETA13**+ (Rao et al.,

,**,). This conclusion is supported by the presence of .*Ar from the martian atmo-

sphere: adopting a crystallization age of -*.Ma for Y32*./3 (Shih et al., ,**-) and a K

concentration of *.*+1/� (Table 0) we calculate ,,./�+*�2cm-STP/g radiogenic .*Ar.

As this meteorite contains 3-..�+*�2cm-STP/g .*Ar (Table +), 1+�+*�2cm-ST/g .*Ar

must originate from trapped martian atmospheric gases. Thus, it is reasonable to

assume that part of 2*Krn is also trapped gas from the martian crust and a calculation of

a pre-atmospheric size for Y32*./3 from our data is not meaningful. In their temper-

ature release experiment with six temperature steps Okazaki and Nagao (,**.) could

show that excess of 2*Krn and 2,Krn relative to spallation Kr are pronounced in the

higher temperature fractions. These authors estimated the minimum radius for the

Y32*./3 meteoroid to have been ,1 cm.

1. Conclusions

The Mars ejection times for the investigated meteorites are essentially identical to

the CRE ages, as the terrestrial ages are negligible compared to the CRE ages and

pre-exposure on Mars was not observed. For the olivine-phyric shergottite Y32*./3
we consider the +*Be age of +.+Ma to be the most reliable CRE age because the ,+Ne and
-2Ar based CRE ages appear to be enhanced due to an addition of a solar cosmic-ray

produced component. This age is in agreement with the Mars ejection times of four
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other olivine-phyric shergottites. The paired nakhlite specimens Y***/3- and Y***1.3
yield Mars ejection times of ++.,Ma and +,.-Ma, respectively, similar to those observed

for four nakhlites dated earlier. NWA+3/* is the fourth lherzolite dated until now.

It yields a Mars ejection age of ..+Ma. This is within the range of -.2�..1Ma obtained

for the other meteorites of this type. Taking all dated martian meteorites into account

we conclude that they were ejected by up to eight impact events on Mars. Each event

produced one specific type of meteorite that represents the geologic characteristics of the

source area. If Chassigny and the nakhlites were ejected by the same impact at a

mineralogically heterogeneous area, the number of events is reduced to seven.

The olivine-phyric shergottite Y32*./3 contains neutron induced 2*Kr from the

reaction 13Br (n, gb) 2*Kr. We conclude that most of 2*Krn was not produced in situ

during Mars-Earth transfer. Most of this Kr component was acquired, along with .*Ar

from K decay, by the meteoritic matter on the martian surface. These gases originate

from outgassing of the martian crust. On the other hand, the nakhlites Y***/3- and

Y***1/3 do not contain martian atmospheric 2*Krn. The observed concentration of

this nuclide was induced by secondary cosmic-ray produced neutron capture of 13Br in

free space. For the parent meteoroid of these two specimens we calculate a minimum

pre-atmospheric mass of +1* kg.
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