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Abstract: We report nitrogen and heavy noble gas isotopic abundances in the

Yamato nakhlites Y***/3- and Y***1.3 and infer isotopic signatures for the magma
source region in Mars. The nitrogen signature d+/N�+-�+� appears in broad

plateau releases of both nakhlites and also has previously been observed in Nakhla and

in Chassigny. This signature di#ers from the primitive indigenous nitrogen signature
(d+/N��-*�) and, strikingly, from nitrogen in the modern Martian atmosphere.

It demonstrates that exchanges between the solid planet and its modern atmosphere

have been very limited. The xenon isotopic records support this conclusion. In

nakhlite Y***1.3 radiogenic +,3Xe is observed in one temperature fraction, while a five

times larger component is observed in several steps of Y***/3-. The lack of an

association with fission Xe or with indigenous Xe from the mantle source region

suggests a crustal source. A crustal storage of the extinct +,3I was previously invoked

to account for radiogenic +,3Xe in the Martian atmosphere. Fission Xe components

due to extinct ,..Pu were identified in both nakhlites. These records show that the

magma source region had assimilated and retained fission gas since the early di#eren-
tiation of Mars. The measured concentrations of .*Ar exceed the amounts produced

from the decay of .*K in +.-Ga and document that the magma inherited some
radiogenic .*Ar, together with fission gas. CRE ages based on spallation +/Nc and

-2Ar

are consistent with a reported 2+Kr-2-Kr age and CRE ages for other nakhlites,

confirming identical ejection ages for all nakhlites.
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+. Introduction

Chronologies based on extinct radionuclides in SNC meteorites (e.g. Halliday et al.,

,**+) show that Mars accreted on time scales of several Ma. Constraints on the early

evolution of Martian volatiles were obtained from fission xenon records in Chassigny

and ALH2.**+ (Mathew and Marti, ,**+) and in nakhlites (Mathew and Marti, ,**,;
Marty and Marti, ,**,; Mathew et al., ,**-). The identification of mantle reservoirs

is based on Chassigny data, which Mathew and Marti (,**+) characterized as primitive
component “Chass-S”, with a solar-type isotopic signature of Xe and a light nitrogen

signature (d+/N��-*�). This component was enriched in an olivine separate of

Chassigny, lacking radiogenic +,3Xe and fission Xe. These properties can either be due

to a late incorporation, after decay of +,3I and ,..Pu, or it may represent an interior
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reservoir with substantial Xe concentrations, which could mask in-situ produced compo-

nents.

Mathew and Marti (,**+) noted that a second xenon component, Chass-E

(Evolved), is related to Chass-S by the addition of fission Xe due to extinct ,..Pu. This

Chass-E xenon signature implied that fission Xe was mixed with Chass-S Xe at the time

of, or prior to, its incorporation. The fission gas is not due to in-situ decay of ,..Pu in

Chassigny. Both Chass-S and Chass-E xenon components apparently represent indig-

enous reservoirs that are characterized by low +,3Xe/+-,Xe (�+.*1) ratios. In those

Chassigny samples Mathew and Marti (,**+) also found light N (d+/N��,+�)

isotopic signatures (in the�-**�C extractions), while the heaviest observed signature in

the low-temperature range was d+/N��+/� at .**�C. Light N (d+/N��-*�) was

interpreted to represent a primitive indigenous nitrogen signature.

The nakhlites from Yamato Mountains (Y***/3- and Y***1.3) o#er new

opportunities to probe the Martian mantle. The research is carried out in consortium

mode and permits petrographic, chemical and isotopic investigations on the same

material (Misawa et al., ,**-). Marty and Marti (,**,) argued that the presence of
,..Pu-derived fission Xe presents evidence for closed system evolution of the mantle,

which indicates quite di#erent geodynamic regimes for planets Earth and Mars.

Records from these nakhlites may provide further insights into mantle characteristics, as

well as data regarding the question of survival of extinct radionuclide signatures in

events capable of resetting the .*K-.*Ar, 21Rb-21Sr and +.1Sm-+.-Nd clocks recorded in the

+.- Ga ages of nakhlites (e.g. Nyquist et al., ,**+). If exchanges with atmospheric

gases did occur, also information on paleoatmospheres may be secured.

The Xe signatures observed in ALH2.**+ were interpreted to represent those of an

ancient Martian atmosphere (Gilmour et al., +332; Mathew and Marti, ,**+), while a

more recent atmospheric signature, consistent with that of the modern atmosphere, was

identified in a few temperature fractions of Nakhla (Mathew and Marti, ,**,). The

component with Chass-S xenon composition shows strong elemental fractionation in the

heavy noble gas abundances: -0Ar/+-,Xe and 2.Kr/+-,Xe ratios were constrained to be

�/ and �+.+, respectively (Mathew and Marti, ,**+), and may be compared with

estimated solar ratios -0Ar/+-,Xe and 2.Kr/+-,Xe of 01*** and ,*, respectively (Anders

and Grevesse, +323). If representative of the mantle, this evidence for noble gas

fractionation may help to characterize di#erentiation processes during the formation of

Mars. For example, an origin due to adsorption by carbon-rich matter during accre-

tion of the Martian protoplanetesimals would favor heavy noble gases, and carbon

sub-micron grains are e$cient noble gas trappers (Niemeyer and Marti, +32+). These

authors showed that trapped noble gases are loosely bound and elementally strongly

fractionated, while no isotopic fractionations were detected. Their results also suggest,

that if carbon-rich phases were in fact carriers of noble gases from early solar system

reservoirs, the observed similarities in elemental fractionations for the atmospheres of

planets Earth and Mars could be understood, even for fairly di#erent trapping condi-

tions. An identification of paleoatmospheric components could provide information

for an assessment of isotopic evolutions during the period of heavy bombardment

(Mathew et al., +332).
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,. Mass spectrometry

Several fragments of both nakhlites Y***/3- and Y***1.3 were wrapped in Au

foils and loaded into the gas extraction and purification system. The meteorites were

step-heated by an external resistance heater up to +*.*�C in a double walled quartz

system within a separately pumped vacuum jacket. Samples were then transferred in

vacuo into a Mo crucible, mounted in a double walled quartz system with cooling water,

for step-heating by radio frequency up to the melting temperature. Extraction blanks

were measured at the same temperatures between sample measurements. The extrac-

tion blanks for N were *.+�*.. ng for the �+.**�C steps and was of atmospheric

composition (d+/N�*�-�). Typical blanks for -0Ar and +-,Xe (of atmospheric

composition) were +�-�+*�+, cm-STP/g and +�,�+*�+. cm-STP/g, respectively. Details

of the analyzing procedure were described previously (Mathew and Marti, ,**,). The

propagated uncertainties in the isotope ratios include statistical errors and uncertainties

in the discrimination and in blank corrections.

-. Fission Xe in nakhlites

A remarkable feature of the +.-Ga old NC meteorites, Chassigny as well as the

nakhlites Nakhla and NWA2+1, is that they contain fission Xe components produced

mostly by the decay of extinct ,..Pu. The Xe gas was released at temperatures above

3**�C and was well mixed with indigenous (Chass-S) Xe. A model calculation of the

initial ,..Pu content of Mars (Marty and Marti, ,**,) suggests that it was consistent

with the chondritic abundance. Since nakhlites are considered to represent cumulates

of magmas derived from mantle reservoirs, Mathew et al. (,**-) used Nd and U as

adequate geochemical proxies for Pu to trace the behavior of Pu during fractionation

processes. In a study of Xe isotopes in the Yamato nakhlites Okazaki et al. (,**-)
noted excesses in +-0Xe and suggested that fission xenon may be present.

We now discuss the Yamato nakhlite Xe data (Table +) which show correlated

excesses on all heavy Xe isotopes, and the relative yields identify the source as fission Xe

from extinct ,..Pu, as was observed for other nakhlites (Mathew and Marti, ,**,;
Mathew et al., ,**-). We take the approach used by these authors to disentangle the

various Xe components. In a first step, the spallation Xe component has to be

evaluated and subtracted from the measured data. The Y***/3- Xe data in the 2**�
and 3**�C steps (Table +) show only very small spallation components. For the higher

temperature steps the subtraction method is used for fractions with constant fission to

indigenous xenon ratios, but variable spallation components. The evaluated spallation

Xe spectra show minor di#erences in the relative spallation yields, especially for the

early releases. A slightly steeper spectrum and a very low relative +-+Xe yield may

signal spallation yields from fractionated LREE in phosphates and glassy mesostasis

(Wadhwa and Crozaz, ,**-). Therefore, we adopt inferred spallation spectra as given

in Appendix A, which reports the spallation-corrected Xe data. We see from the

isotopic correlation of spallation-corrected ratios (Fig. +) that all data plot close to the

tie-line of Chass-S Xe and fission Xe. We further note in this figure that, although

well-mixed components were reported in nakhlites (Mathew and Marti, ,**,; Mathew
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et al., ,**-), some variability is present in the Yamato nakhlites. Some temperature

fractions plot halfway between data of Chass-E and the other Yamato temperature

fractions and reveal fission Xe/Chass-S Xe mixing ratios which are smaller. These

systematics indicate that although fission gas has generally been well assimilated in the

nakhlite magma, complete mixing with indigenous Chass-S Xe was not achieved. The

isotope ratios shown in Fig. , permit the identification of the fission source. First, we

note a confirmation of varying mixing ratios fission Xe/indigenous Xe and a trend line

which documents that the fission component is dominated by Xe from extinct ,..Pu, but

minor contributions from ,-2U can not be excluded. However, in situ-produced fission

Xe from ,-2U during +.-Ga, based on the measured U abundance of // ppb (Dreibus et

al., ,**-) can only account for �/� of the observed fission Xe (Table +). Figures +

Table +. Measured Xe isotopic abundances in Yamato nakhlites.

The +-,Xe concentrations are in units (+*�+, cm-STP/g); only data for temperature steps �2**�C are

given (low temperature extractions were consistent with terrestrial Xe). Uncertainties included are

those in the least significant figures of the isotopic ratios (3/� confidence levels).
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and , further illustrate that Y***1.3 Xe data cannot be explained as mixtures of modern

Martian atmospheric Xe components with fission gas. We return to this issue again

when we discuss +,3Xe data.

.. Radiogenic +,3Xer on Mars

There has been controversy in the literature (Drake et al., +33.; Okazaki et al.,
,**-) regarding the origin of the +,3Xe excesses in nakhlites, since the data do not fit a

Fig. +. Spallation-corrected +-*Xe/+-0Xe vs. +,2Xe/+-0Xe ratios (Appendix A) in Y***1.3, Y***/3- and

other nakhlites. Isotopic shifts due to the addition of fission Xe components to Chass-S Xe

are not uniform, but the observed shifts exceed those due to fission of ,-2U in +.-Ga. NWA

2+1 data are from Mathew et al. (,**-), Nakhla data are from Mathew and Marti (,**,)
and Chass-S and Chass-E data are from Mathew and Marti (,**+).
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tie-line of Chass-S (Mars mantle) and Mars atmosphere (Fig. -), as observed in

shergottite glasses. Therefore, the suggestion was made that nakhlite xenon data are

a#ected by iddingsite with a low ratio 2.Kr/+-,Xe�0, which might suggest elemental

fractionation in the iddingsite formation process on Mars. On the other hand, Mathew

and Marti (,**,) in their study of Nakhla showed that Xe data in the temperature steps

2**� to +***�C fit such a tie-line and probably represent a modern atmospheric

component. However, the �+***�C data of Nakhla show indigenous Xe with the

Chass-S isotopic composition, and are inconsistent with isotopic signatures of modern

atmospheric gases. A di#erent source for radiogenic +,3Xe excesses is required, as

Fig. ,. Xe isotopic ratios (Appendix A) +-,Xe/+-0Xe vs. +,2Xe/+-0Xe in Y***1.3, Y***/3- and other

nakhlites. The shifts due to a fission Xe component identify extinct ,..Pu as the major

contributor. NWA2+1, Nakhla and Chassigny data are from the same sources as Fig. +.
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mantle (Chass-S) Xe does not carry such excesses. Mathew et al. (,**-) confirmed

variable excesses of radiogenic +,3Xer in recently discovered SNC meteorites which are

not related to the modern Martian atmosphere. The observed excesses of radiogenic
+,3Xe in nakhlites indicate a source inside the solid planet.

More information on the source of radiogenic +,3Xe can be found by analyzing the

associations with interior components. We discussed the fission component in the

Yamato nakhlites and can use the data in Appendix A to assess a correlation of +,3Xer
with fission gas. +,3I (t+/,�+0Ma) and ,..Pu are now extinct, but radiogenic and fission

Xe components recorded decay processes in the early history of Mars. If the observed

radiogenic +,3Xer component was cycled through the mantle, it should be well mixed

with the fission component which in turn was rather well mixed with indigenous mantle

Xe, as discussed earlier. In Fig. - (see also Table +) we observe variable ratios +,3Xe/+-,Xe,

which are decoupled from those of fission Xe and indigenous mantle gas. While in

nakhlite Y***1.3 only the +.**�C step shows a radiogenic component, the Y***/3-
data show only one temperature step (+,**�C) lacking a radiogenic component. Radi-

ogenic +,3Xe (-.*�+*�+, cm-STP/g) is about /� larger than in Y***1.3, and ratios
+,3Xer/

+-0Xef are ... and *.1, respectively. This record shows that although radiogenic
+,3Xe was not stored and mixed in the nakhlite magma source, it represents a radiogenic

Fig. -. Plot of the spallation-corrected +,3Xe/+-,Xe vs. +-0Xe/+-,Xe ratios (Appendix A) in Y***1.3,
Y***/3- and other nakhlites. Mixtures of Chass-S Xe with Martian atmospheric Xe cannot

explain the observed trends. Figure also shows that radiogenic +,3Xe excesses and fission

excesses are decoupled.
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component from extinct +,3I and must have been stored in the solid planet. In their

study of xenon isotope correlations in nakhlites Y***/3-, Y***1.3 and Y***2*,,
Okazaki et al. (,**-) noted that there is no simple correlation between excesses of
fission +-0Xe and radiogenic +,3Xe, and they suggest that the excess could come from the

Mars atmosphere. However, this interpretation has to be rejected, since indigenous Xe

in the nakhlites has the isotopic signature of Chass-S xenon and di#ers from atmospheric
Xe.

Martian crustal storage and assimilation into the ascending magma is an option.

The +,3I storage in the crust during the early di#erentiation of Mars, and a release of
radiogenic +,3Xer after its decay were suggested by Dreibus and Wänke (+321) and by
Musselwhite and Drake (,***) to account for the high ratio +,3Xe/+-,Xe in the present

atmosphere. Dreibus and Wänke (+321) noted that iodine is an incompatible and
highly volatile element which could have been extracted from hot rock in the interior, in

the presence of water, and incorporated into crustal rock. Musselwhite and Drake

(,***) determined the solubility of iodine in a range of synthetic basaltic liquids and
found values which exceed the solubility of Xe by a few orders of magnitude. They

suggest that in a second stage of outgassing the atmospheric +,3Xe/+-,Xe can be

explained, if it follows a stage of an e$cient removal of atmospheric gases by
hydrodynamic escape and impact erosion. In these models assimilation of crustal

radiogenic xenon into the lava (probably by means of a crustal carrier) may account for

variable amounts in the two paired nakhlites, as well as the observed lack of correlation

between radiogenic and fission components. Depletion of iodine in the mantle during

the early large-scale di#erentiation event (e.g. Halliday et al., ,**+; Blichert-Toft et al.,

+333), is supported by the near absence of radiogenic +,3Xer in Chass-S xenon. Since an

assimilation of crustal material in lavas is here implied, are there other records which

support such an origin? The heavy nitrogen signature in the modern Martian atmos-

phere contrasts with light ancient nitrogen (d+/N ��-*�) as observed in ALH2.**+
(Marti and Mathew, ,***), but nitrogen signatures in the Martian crust have not been
studied.

/. Nitrogen in nakhlites

Nitrogen concentrations in Yamato nakhlites (Table ,) are similar to those in
Nakhla, but smaller than in NWA 2+1 (Mathew et al., ,**-). The isotopic signatures

observed in stepwise pyrolysis of the Yamato nakhlites are reported in Table , and are
shown in Fig. .. The low-temperature data (�-**�C) are a%icted by terrestrial
contaminants; the temperature fractions in Y***1.3 show a small component of light
nitrogen. In Y***1.3 a broad release plateau (/**� to +*.*�C) with signature d+/N�
�+-� was observed. A high-resolution investigation of this component was carried

out in nakhlite Y***/3-. The broad plateau with d+/N��+-� was confirmed in a

total of +- steps over an intermediate temperature range from -/*� to +*.*�C, before a
spallation +/Nc component appears in steps above this temperature. This nitrogen

component is not only observed in the Yamato nakhlites, but also in the plateau-release

of Nakhla (Mathew and Marti, ,**,), in Chassigny (Mathew and Marti, ,**+), and
apparently also in high-temperature steps of NWA2+1 (Mathew et al., ,**-). These
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data show the presence of nitrogen with this signature in nakhlite magma sources in the

Martian mantle.

From the observed excesses in d+/N (relative to the�+-� signature) in steps above

+*.*�C we calculate spallation concentrations +/Nc�+-. and ++2 pg in Y***/3- and

Y***1.3, respectively. This yields an average CRE age of ++�+Ma, if a production

rate P+/�++.0 pgMa�+ for +/Nc (Mathew et al., ,**-) is used. The +/Nc-derived CRE

age is consistent with reported CRE ages of other nakhlites (Nyquist et al., ,**+;

Table ,. N concentrations and isotopic signatures in the Yamato nakhlites Y***1.3,/+ and

Y***/3-,2/.

Martian mantle signatures in Yamato nakhlites 125



Mathew et al., ,**-; Okazaki et al., ,**-). This supports the implicit assumption that

indigenous N in the high-temperature steps and in the plateau steps are the same

component.

0. K-Ar ages and ejection times from Mars

The time of ejection from Mars is calculated as the sum of the CRE and the

terrestrial age. Okazaki et al. (,**-) determined a 2+Kr-2-Kr age of ++.2�+.*Ma for
Y***/3- and give a limit for the terrestrial age�*.*.Ma. These authors use produc-

Fig. .. Release systematics of nitrogen in the nakhlites Y***1.3 and Y***/3-. The plateau release

in the �+*.*�C steps show the indigenous N signature and the excursions to heavy N in the

high temperature steps signal spallation +/Nc . The cosmic ray exposure age calculated from

these spallation +/Nc excesses is consistent with the other CRE ages of nakhlites. Extraction

temperatures (in hundreds of degrees) are marked close to the data bars. For Y***1.3 a

combustion step in oxygen (at ./*�C, marked ../C in upper panel) was sequentially added

after the 1**�C pyrolysis step and is not considered part of the plateau.
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tion rates according to Eugster and Michel (+33/) for the ,+Ne�ages of ++.3Ma for

both Y***/3- and Y***1.3, consistent with the 2+Kr-2-Kr age and with CRE ages

obtained for other nakhlites (Nyquist et al., ,**+; Mathew et al., ,**-). This also

confirms the identical ejection ages for all nakhlites.

The spallation -2Arc component is released as early as -/*�C and peaks at +.**� to
+//*�C. The -2Arc concentrations (Table -) are +2.0�+*�3 and +3.1�+*�3cm-STP/g

Table -. Measured heavy noble gas concentrations and Ar isotopic ratios (3/� confidence limits).

The data are corrected for blanks and mass discrimination. The -0Ar and -2Arc abundances are in units

+*�+* cm-STP/g and a spallation ratio -0Ar/-2Ar�*.0/ is adopted, the +-,Xe abundances are in +*�+,

cm-STP/g.
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for Y***/3- and Y***1.3 are both consistent with the reported CRE age.

Okazaki et al. (,**-), assuming a negligible contribution from Martian atmospher-

ic .*Ar, reported K-.*Ar age of +.,.�*.,, Ga. This assumption appears appropriate,

since nitrogen and xenon records do not show an atmospheric component. A non-

radiogenic .*Ar/-0Ar ratio similar to the indigenous ratio .*Ar/-0Ar�,*1 ratio (Mathew

and Marti, ,**+) is inferred from the data (Table -), a ratio which does not a#ect the

budget. From measured .*Ar concentrations (Table -) and concentration of K

(Dreibus et al., ,**-; Oura et al., ,**-) we calculate crystallization ages in excess of the

reported +.- Ga age for nakhlites (Nyquist et al., ,**+), �+.0 Ga for Y***/3- and �+./
Ga for Y***1.3. These excesses suggest that radiogenic .*Ar was inherited by the

magma.

1. Magmatic fractionation

Two scenarios were considered by Mathew et al. (,**-) for the presence of ,..Pu-

derived fission Xe in nakhlites. In the first option Xe components, consisting of fission

Xe gas mixed with indigenous mantle Xe, were either added in variable proportions to

nakhlite parent magmas, or fractionated to variable extents. A magmatic fractionation

is implied by the composition of nakhlites, which could have taken place at any time

after ,..Pu decay. A second option was mentioned suggesting that ,..Pu was still alive

during magmatic episodes, an option consistent with the apparent trend that fission Xe

is enriched in nakhlites together with U and the REE. In both scenarios the Xe

components were enriched in the liquid during the course of magma generation. We

may model the evolution of the fission component in the mantle during the period from

the early di#erentiation to the recorded +.- Ga event, assuming a U abundance of +,
ppb. The size of this fission component is +-0Xef�,0�+*�+/ cm-STP/g. The compo-

nent produced after di#erentiation (during the past +.- Ga) using a U concentration of

// ppb (Dreibus et al., ,**-), would add .,�+*�+/ cm-STP/g, but the total fission

component would only amount to �2� of the observed average fission component

(*.2�+*�+, cm-STP/g). An inferred shift due to a calculated ,-2U-fission component

would be di$cult to observe in Fig. ,. Yamashita et al. (,**-) report Pb isotopic

systematics in Y***/3- which indicate that no isotopic equilibration was achieved, but

they suggest that the source material was subjected to two di#erentiation events. The

first event represents the initial di#erentiation as recorded in the products of extinct
,..Pu, +.0Sm and +2,Hf. Closed-system behavior of noble gases in the mantle requires

su$cient pressure and, therefore, depth for the evolving liquids, of quantities which are

not well known for Mars. Since LREE, as proxies for ,..Pu, are strongly enriched in

the mesostasis and in phosphates (Wadhwa and Crozaz, ,**-), the observed trend of an

enrichment of fission Xe in NWA2+1 (Mathew et al., ,**-) simply may reflect variable

mesostasis abundance (Imae et al., ,**-; Mikouchi et al., ,**-).

2. Conclusions

+) Isotopic abundances of nitrogen and of heavy noble gases in nakhlites Y***/3-
and Y***1.3 were studied for signatures of the magma source region. A nitrogen
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component with d+/N�+-�+� is observed in plateau releases of both Yamato

nakhlites; it has previously been observed in Nakhla and also in Chassigny.

,) In nakhlite Y***1.3 radiogenic +,3Xe is observed in one temperature fraction,

while a much larger component is observed in several steps of Y***/3-. The lack of an

association with fission Xe as well as with indigenous Xe from the mantle source region

indicates a crustal source.

-) Fission Xe components due to extinct ,..Pu are identified in both nakhlites. The

records show that the magma source region had assimilated and retained fission gas

since the early di#erentiation of Mars.
.) The measured concentrations of .*Ar exceed the amounts produced from the

decay of .*K in +.-Ga and suggest that the magma inherited some radiogenic .*Ar.

/) CRE ages based on spallation +/Nc and
-2Ar are consistent with the 2+Kr-2-Kr age

(Okazaki et al., ,**-) and CRE ages for other nakhlites (Nyquist et al., ,**+; Mathew
et al., ,**-), confirming identical ejection ages for all nakhlites.
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Appendix A. Spallation-corrected Xe isotopic ratios in Y***1.3,/+ and Y***/3-,2/.

The +-,Xe data are corrected for spallation adopting a spallation spectrum obtained by the subtraction

method.
�Adopted spallation spectrum of +,.Xe: +,0Xe: +,2Xe: +,3Xe: +-*Xe: +-+Xe: +-,Xe: +-.Xe�*.//�*.+*: �+.**:

+.0*�*.+*: +.1*�*.,*: *.3/�*.+*: +.3*�*.-*: +.*�*.-: *.-�*.+.
# Adopted spallation spectrum of +,.Xe: +,0Xe: +,2Xe: +,3Xe: +-*Xe: +-+Xe: +-,Xe: +-.Xe�*./2�*.+*: �+.**:

+../�*.*/: +.0*�*.+/: *.2/�*.*0: ,.+�*.-: *.2�*.,: *.-�*.+.
Uncertainties listed are those in the least significant figures of the isotopic ratios (3/� confidence levels).
The uncertainties in the isotopic ratios include variations by assuming lower (and upper) limits of the

spallation spectrum.
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