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Abstract: Lunar meteorite EET 21/30 (paired stones Elephant Moraine 21/,+ and

30**2) is a breccia consisting of fragments of a solidified, di#erentiated magma of

basaltic composition. Small splits of the meteorite vary considerably in composition

because they are heterogeneous mixtures of (+) a low-FeO di#erentiate with high Mg/

Fe, high Cr/Sc, high Ca/Na, and low concentrations of incompatible elements and (,)
a high-FeO di#erentiate with complimentary geochemical characteristics. Y13/32
(paired stones 13-,1. and 32+*-+) and QUE (Queen Alexandra Range) 3.,2+ are

regolith breccias consisting of subequal proportions of material from the feldspathic

highlands and fragments of mafic volcanic rock of mare-basalt-like composition.

Previous studies have shown that (+) QUE 3.,2+ and Y13/32 are very similar to each

other and likely derive from the same source crater, (,) the texture and mineralogy of

the volcanic components of all three meteorites are similar to each other yet distinct

from mare basalts of the Apollo collection, and (-) all three meteorites were launched
from the Moon at about the same time. We show that the volcanic component of Y

13/32 and QUE 3.,2+ are compositionally indistinguishable from a point on the EET

21/30 mixing line. Thus, there is no compositional impediment to the hypothesis that

all three meteorites originate from the same place on the Moon and were launched by

a single impact.

key words: lunar meteorites, meteorite pairing, mare basalt, impact crater,

geochemistry

+. Introduction

The subjects of this study are rocks originating from near the surface of the Moon

that were (+) ejected from the Moon because they were accelerated to lunar escape

velocity by impact of asteroidal meteoroids or possibly comets, (,) achieved orbits that

eventually intersected the Earth, (-) survived passage through Earth’s atmosphere, (.)
landed intact in uninhabited and inhospitable places, (/) were found by humans

thousands of years later, and (0) were recognized to be of lunar origin. Although the

scenario constitutes a sequence of improbable events, we know that it has occurred

approximately two dozen times, and we can reasonably assume that the first four steps

have occurred countless times over solar system history and that the last two will occur

again.
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Most lunar meteorites originate from the feldspathic highlands; about a third derive

from the basaltic maria or from near a boundary between a mare and the highlands (Fig.

+). This distribution is qualitatively reasonable for random source locations on a Moon

dominated by feldspathic highlands and for which volcanic deposits cover only +1� of

the surface (Head and Wilson, +33,). In this paper we present new compositional data

for five meteorite samples that originate from regions of the Moon dominated by

volcanic rocks; all were found in Antarctica. Y (Yamato) 32+*-+ is a recently found

regolith breccia (Kojima and Imae, ,***) consisting of subequal proportions of mafic

volcanic and feldspathic highland materials. We show that Y32+*-+ is almost indistin-

guishable from Y-13-,1. in composition, although it is somewhat more feldspathic.

Our compositional data corroborate the conclusion of preliminary petrographical,

Fig. +. (a) Each point (letter or geometric symbol) represents the mean composition of a lunar

meteorite. Except for paired stones Y-13-,1. and Y32+*-+, known pairs are represented by

a single point. Feldspathic meteorites (“F,” e.g., Y-20*-,) originate from the highlands; all

are breccias. Meteorites from the maria (“M”) are either breccias (EET 21/,+ and EET

30**2 at +2�+3� FeO) or crystalline basalts (,+�,-� FeO, e.g., Y-13-+03). The YQ

meteorites (and, probably, Calcalong Creek and Y32-22/) are breccias that are mixtures of

FeO-rich volcanic and FeO-poor highland materials. The dotted line segment is a mixing

line defined by the compositions of the inferred feldspathic and mare components of QUE

3.,2+ (Jolli# et al., +332). (b) Splits of the YQ meteorites contain variable proportions of

mare and highland components; the split analyzed here by FB-EMPA (Table -) is the most

feldspathic (lowest FeO). Data are from the following sources: Arai and Warren (+333),
Bischo# et al. (+321, +332), Boynton and Hill (+32-), Fagan et al. (,**,), Fukuoka (+33*),
Fukuoka et al. (+320a,b), Greshake et al. (,**+), Hill et al. (+33+), Jolli# et al. (+33+,
+332), Kaiden and Kojima (,**,), Kallemeyn and Warren (+32-), Karouji et al. (,**,),
Koeberl (+322), Koeberl et al. (+323, +33*, +33+a,b, +33-, +330), Kojima and Imae (,***),
Korotev et al. (+32-, +330), Laul et al. (+32-), Lindstrom et al. (+320, +33+a,b, +33/),
Ostertag et al. (+320), Palme et al. (+32-, +33+), Spettel et al. (+33/), Taylor et al. (,**+a,
b), Thalmann et al. (+330), Warren and Kallemeyn (+320, +323, +33+a,b, +33-, ,**+),
Warren et al. (,**+), and unpublished data of this laboratory.
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mineralogical, and cosmic-ray exposure studies showing that Y-13-,1. and Y32+*-+ are
paired (Arai et al., ,**,a,b; Lorenzetti and Eugster, ,**,). We also compare Y-
13-,1./32+*-+ to QUE (Queen Alexandra Range) 3.,2+ because there are similarities
in composition, mineralogy, texture, and cosmic-ray exposure ages between the two

meteorites (Jolli# et al., +332; Arai and Warren, +333; Nishiizumi et al., +333). These
similarities are so strong that, although the meteorites are not paired in the usual sense

(they were found about ,/** km apart), the Yamato stones almost surely derive from
the same place on the Moon as QUE 3.,2+ and were launched from the Moon by a
single impact (Arai and Warren, +333). Here, we refer to the two Yamato stones
together as Y13/32 and, following the lead of Arai and Warren (+333), we refer to
Y13/32 and QUE 3.,2+ together as YQ.

We also report new compositional data for EET (Elephant Moraine) 21/,+ and
EET 30**2, which are breccias with basaltic compositions and mineralogies. Because
the two stones are paired (Lindstrom et al., +333; Mikouchi, +333; Nishiizumi et al.,

+333; Snyder et al., +333a,b; Warren and Ul#-M/oller, +333; Eugster et al., ,***), we
will refer to them together as EET 21/30. We show that EET 21/30 likely consists of
fragments of a solidified basaltic magma that had di#erentiated. We also show that (+)
the volcanic components of YQ and EET 21/30, in addition to having many textural and
mineralogical similarities (as shown by others), are compositionally indistinguishable

and (,) there are, therefore, no significant impediments to the hypothesis (Arai and
Warren, +333; Warren and Ul#-M/oller, +333) that they were launched from the Moon
by a single impact. Finally, we report new data for crystalline mare basalts Y-13-+03
and A (Asuka)-22+1/1 and make compositional comparisons to the other meteorites
from the lunar maria. A-22+1/1 and Y-13-+03 have already been well described
compositionally and petrographically (Takeda et al., +33-; Koeberl et al., +33-; Warren
and Kallemeyn, +33-; Arai et al., +330; Oba and Kobayashi, ,**+).

,. Samples and analysis

For chemical analysis, we used an approach that we have used for other lunar

meteorites (Jolli# et al., +33+, +332; Korotev et al., +330; Fagan et al., ,**,). We first
subdivided our allocated sample of each meteorite into several to many small splits for

analysis by instrumental neutron activation (INAA, Korotev, +33+), a technique that
provides concentrations for about ,/ elements, mostly trace elements, in a nearly
nondestructive manner. The compositional variation among small splits provides

useful information about the components of a rock. We then select a representative

INAA split (or unirradiated material), fuse it on a molybdenum strip heater, and

analyze the resulting glass bead with an electron microprobe (Jolli# et al., +33+). This
technique, FB-EMPA (fused bead electron microprobe analysis), provides “whole rock”

data for the major elements.

For Y32+*-+, we subdivided the allocated sample into six splits for INAA by
breaking it in an agate mortar and pestle. Each split consisted of +�, chips that ranged
in mass from ,- to -3mg. We were allocated two samples of EET 21/,+ and three
samples of EET 30**2. We subdivided the EET 21/30 samples by breaking them in an
agate mortar and pestle. In total, we analyzed 1 splits of EET 21/,+ (mean mass: /-
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mg, range: ,3�0.mg) and +1 splits of EET 30**2 (mean mass: -*mg, range: +,�.2mg)

by INAA. Each split consisted of + to . chips or residual fines. We received samples

of A-22+1/1,2, and Y-13-+03,2- as powders (Yanai et al., +33-; Warren and

Kallemeyn, +33-). For INAA, we analyzed three 1,�11-mg splits of the A-22+1/1
powder in one experiment. On the basis of elements determined with high precision,

the powder is uniform in composition at the 1/-mg mass level (Table +). In a separate

experiment, we analyzed the +3-mg sample of Y-13-+03 along with a +3-mg split of the

A-22+1/1 powder by INAA. The composition of the small split of A-22+1/1 agrees

well with the average of the three large splits, except that for Cr the concentration value

is ,.-� greater in the +3-mg split. Table , presents the INAA results in the form of

mass-weighted mean compositions of all analyzed splits of each of the five meteorite

samples. Several of the figures, however, present data for the individual splits.

For FB-EMPA, we prepared two glass beads of A-22+1/1 by fusing +*�+/mg of the

powder on a molybdenum strip heater. For Y-13-+03, we powdered the neutron-

irradiated sample and prepared two fused beads. For Y32+*-+, we powdered all

residual fines from crushing and prepared four beads from the powder. For elements

that we determine in common by INAA and FB-EMPA, our results agree within

analytical uncertainty except that (+) in some cases concentrations of Na obtained by

FB-EMPA are only �3*� of those obtained by INAA and (,) for Y32+*-+, Fe and Cr

are /�1� lower in the FB-EMPA splits (Table -a). The di#erence for Na likely

results from volatilization and loss of some Na during fusion, although the degree of loss

is variable (�/�+*�) because the amount of electrical power applied to the Mo strip

during fusion cannot be reproduced exactly from sample to sample. We discuss the

discrepancy for Y32+*-+ in more detail below. Our INAA results for EET 21/30 show

the meteorite to be very heterogeneous at the small mass of our splits, a characteristic

that provides some useful information, as we demonstrate in the next section. We

fused all or a portion of five of the neutron-irradiated splits and made a single bead of

each for FB-EMPA (Table -b). Because of the large intersplit variability, we have no

reason to believe that any of the individual splits, or any type of mean calculated from

the split data, necessarily represents well “average” EET 21/30.

Table +. Relative sample standard deviations (RSD, in

�) for some elements determined with high-

precision by INAA in three 1*�2*mg samples of
Asuka-22+1/1 powder.

RSD RSD

Na

Sc

Fe

Cr

Co

*.13
*.,,
*.,/
*.,2
*.,.

La

Sm

Eu

Yb

Hf

,./
+.,
-.+
+.0
-.2
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-. Results and discussion

-.+. Elephant Moraine 21/,+ and 30**2
EET 21/30 is classified as a fragmental breccia (Warren and Kallemeyn, +323;

Warren and Ul#-M/oller, +333; Mikouchi, +333), but the description of Mikouchi (+333)
argues that it is marginally a regolith breccia in that it contains rare agglutinates and

glass spherules. The meteorite consists mainly of VLT (very low Ti) mare basalt or

gabbro, although it contains some clasts of nonmare derivation (Delaney, +323; Warren

and Kallemeyn, +323; Arai et al., +330; Lindstrom et al., +333; Mikouchi, +333; Warren

Table ,. Mean results of INAA.

unit
Asuka-
22+1/1

Yamato-
13-+03

anal.
unc.

QUE
3.,2+

Yamato
32+*-+

anal.
unc.

Y32
s.d.

EET
21/,+

EET
30**2

anal.
unc.

+ , - . / 0 1 2 3 +*

Na,O

CaO

Sc

Cr,O-

FeO�t�
Co

Ni

Sr

Zr

Cs

Ba

La

Ce

Nd

Sm

Eu

Tb

Yb

Lu

Hf

Ta

Ir

Au

Th

U

N

mass

�
�
mg�g
�
�
mg�g
mg�g
mg�g
mg�g
mg�g
mg�g
mg�g
mg�g
mg�g
mg�g
mg�g
mg�g
mg�g
mg�g
mg�g
mg�g
ng�g
ng�g
mg�g
mg�g

mg

*.,/.
++.3
3-.3
*.-*,

,-.*
,..+
�+/*

+.*
+-/

�*.1
0*
-.-+
3.+
�-/

-.**
+.*,
*.2/
-./1
*./-.
,./-
*.-,
�+,
�3

*../
�*.1/

.
,.0.-

*.,2*
+,.,
2*.1
*.,-+

,+.*
+3.1
�+1*

+1*
�-/*
�*.1
+**

..1/
+-.,
+,
..+3
+.,,
+.+*
../0
*.00-
-.+3
*..*

n.a.

n.a.

*.1.
�*.-

+
+3.*

*.**-
*.0
*.3
*.**-
*.-
*.-

1*
3*

-*
*.+*
*.0
-
*.*.
*.*1
*.*1
*.+*
*.*+*
*.+-
*.*1

*.*-

*.-30
+,.1

,2.3
*.,0+

+-.-*
./.0

,3/
++/
3/
�*.,
10
0.00

+1.2
+*
-.+1
*.2-
*.02
,...
*.-.+
,./+
*.-,

+*.1
-
+.*-
*.,0

,2
.0-.1

*..+-
+-.+
,/.+
*.,2/

+,.,-
-3.2

+/*
+,*
+**
�*.+/
2+
0.2*

+2.2
+,
-.,0
*.3*
*.01
,..1
*.-..
,..2
*.-1
-.0
,
+.*2
*.-*
0

+11..

*.**.
*.-
*.-
*.**-
*.+-
*./

,*
,*
.*

3
*.*1
*.-
,
*.*-
*.*,
*.*,
*.*-
*.**0
*.*/
*.*-
+.+
,
*.*.
*.*0

*.*+-
*.-
*.2
*.*+2
*./-
,.3

+.
+,
2

2
*.1*
+.2
,
*.-/
*.*-
*.*2
*.,,
*.*-
*.+.
*.*0
*.1
+.*
*.++
*.*.

*..*-
+,.2
-..,
*.,01

+0.0.
./.1
2*

+**
+**
�*.,
1*
0.30

+2.*
+,
-..+
*.2.
*.1,
,.//
*.-/*
,./1
*.-*
�2
�3

+.**
*.,2
1

-1-.,

*.-21
++.3
-1.,
*.,2/

+2.00
.2.3
0*
3/

+*/
�*.,
03
1.*0

+2./
++
-..-
*.2*
*.1,
,.0*
*.-0-
,.0,
*.-*
�1
�2

*.3*
*.,+

+1
/*-.0

*.**.
*.0
*.**.
*.**-
*.+2
*./

.*
-*
.*

+*
*.*1
*.1
,
*.*.
*.*,
*.*,
*.*.
*.**1
*.*0
*.*-

*.*.
*.*1

FeO (t�
N

+,/,2,3

Total Fe as FeO.

Number of splits analyzed.

Mass-weighted mean of all splits.

, Results for a single split. We previously presented the data of columns + and , in an abstract

(Jolli# et al., +33-).
-,0,+*
.
1

Estimated analytical uncertainty (+-s) of an analysis of a single split.

Mass-weighted mean of ,2 splits of QUE 3.,2+ (Jolli# et al., +332), for comparison.

Sample standard deviation of splits of column /.
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and Ul#-M/oller, +333; Arai, ,**+). On average, the composition of EET 21/30 is

consistent with that of an aluminous (+,�+.� Al,O-), very-low-Ti (*.2� TiO,) mare

basalt or gabbro (Warren and Kallemeyn, +323; Figs. + and ,).
In total, we analyzed ,. splits of EET 21/30 by INAA. For several of the

precisely determined elements, di#erences between mean concentrations in EET 21/,+
and EET 30**2 considerably exceed values expected on the basis of analytical uncertain-

ty. For example, concentrations of Fe, Sc, Cr, and Co are 1�+,� greater, on average,

in our EET 30**2 sample than in our EET 21/,+ sample. For lithophile elements,

however, when the standard deviation of the concentrations for the individual splits is

considered (t-test), there is no statistically significant di#erence between the mean

compositions of our samples of the two EET stones (Table ,), thus our data provide no

evidence that the two stones are not paired. The splits are highly variable in composi-

tion, with concentrations that span a factor of , for Fe, Sc, and Cr and more than a

factor of +* for Ba, La, Ta, and Th (Fig. -). EET 21/30 displays the greatest degree

of compositional variation that we have observed among small splits of a lunar

meteorite. For example, among small splits of crystalline mare basalt NWA (North-

Table -a. Results of electron microprobe analysis of fused beads (FB-EMPA) and

comparison to results from instrumental neutron activation analysis (INAA).

Asuka-
22+1/1

Yamato-
13-+03

Yamato
32+*-+

mean � mean � mean �
FB-EMPA

SiO,

TiO,

Al,O-

Cr,O-

FeO(t)

MnO

MgO

CaO

Na,O

K,O

P,O/

�
beads�

spots�

.0.+
,..

+*.*
*.-+

,,.0
*.-.
0.*.

++./*
*.,-/
*.*-/
*.*-3

33.0
,
3

*./
*.,
*.1
*.*-
*./
*.*-
*.+-
*.*3
*.*++
*.**/
*.*+.

.0..
,.++

++.2
*.,,

,*.1
*.-*
/./2

+,.**
*.,0+
*.*/.
*.*.2

33./
,
2

*./
*.*2
*.-
*.*,
*..
*.*-
*.*2
*.+,
*.*+/
*.**.
*.*++

./.3*
*./0

+3.0
*.,1

++.-0
*.+/
2.+,

+-.-,
*.-01
*.*1,
*.*/-

33.2
.

-,

*.+/
*.*1
*.,
*.*-
*.+1
*.*-
*.++
*.*1
*.*+3
*.**0
*.**3

INAA

Cr,O-

FeO

CaO

Na,O

*.-*,
,-.*
++.3
*.,/.

*.**-
*.-
*.0
*.**-

*.,-+
,+.*
+,.,
*.,2*

*.**-
*.-
*.0
*.**-

*.,2/
+,.,-
+-.+
*..+-

*.**-
*.+-
*.-
*.**.

Concentration values are in mass percent; FeO represents total Fe as FeO. For

FB-EMPA, uncertainties (�) are 3/� confidence limits. For INAA, uncertainties

are those of Table ,.
�number of beads
�total number of spots
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west Africa) *-, (mean split mass: +/mg, compared to -1mg in EET 21/30), FeO
concentrations range over only a factor of +.+ (Fig. -). Even among large whole-rock

samples of EET 21/30 analyzed for major elements, di#erences among splits is signifi-

cant (Fig. -; data of Warren and Kallemeyn, +33+b; Karouji et al., ,***).
The compositional variation among the EET 21/30 splits is systematic in that the

factor of , variation in FeO concentration is accompanied by correlated variations in the

concentrations of other lithophile elements (Figs. , and -). (This and other generali-

zations made here ignore one of the EET 21/,+ splits, that with the lowest FeO

concentration of Figs. , and -. The anomalous split, 13b+, appears to contain a

significant amount of highland material, as discussed in more detail below.) Because the

meteorite is a breccia and the variation trends are approximately linear, we assume that

the trends reflect mixing of a low-FeO and high-FeO component. Both the components

are nominally basaltic or gabbroic on the basis of Al,O- and CaO concentrations (Fig.

,; Table -b). Although Al,O- increases with decreasing FeO, the low-FeO component

Table -b. Results of electron microprobe analysis of fused beads (FB-EMPA) and

comparison to results from instrumental neutron activation analysis (INAA)

for five small splits of EET 21/30.

split
21/,+
13a+

21/,+
13a,

21/,+
13b+

30**2
+.b,

30**2
+.b/ �

FB-EMPA

SiO,

TiO,

Al,O-

Cr,O-

FeO(t)

MnO

MgO

CaO

Na,O

K,O

P,O/

sum

beads�

spots�

.0./
*.1-

+..-
*.,2

+0.3
*.,.
2.+

++.3
*.-2
*.*.1
*.*1

33.-
+
2

.1.,
*.1.

+-.,
*.,3

+1.0
*.,-
2..

++..
*.-.
*.*//
*.*1

33./
+
2

.1.-
*.0*

+2.0
*.,*

+,./
*.+1
0.3

+-.+
*..1
*.*/2
*.*0

+**.*
+

+0

./.3
*.0.

+0.2
*.-+

+..,
*.+3
3.+

+,..
*.--
*.*+3
*.*.

+**.*
+

+*

.0./
*.-0

+..-
*.-*

+0.2
*.,,

+*.*
++.*
*.,3
*.*.,
*.*.

33.3
+
0

*.2
*.,+
+.*
*.*.
*.1
*.*-
*./
*.-
*.*-
*.**3
*.*,
-.1

INAA

Cr,O-

FeO(t)

CaO

Na,O

mg

*.-*1
+0./1
+,.1
*.-1*

/3

*.-*-
+2..-
+,.+
*.-/-

//

*.,+0
++.0,
+..*
*../1

//

*.-,*
+-.22
+,.-
*.---

+-

*.-,1
+1.-/
++.,
*.,1.

+,

*.**-
*.+2
*.-
*.**.

See Table -a. For the EET 21/,+, the fused beads were prepared from a +*�+/-mg

portion of the large (//�/3mg), pulverized INAA splits. For EET 30**2, the entire

INAA split (+,�+-mg) was pulverized and fused. Split 13a, is most typical of

“average” EET 21/30 (all literature data). Split 13b+ is highly anomalous and

apparently contains a large proportion of feldspathic material. Splits +.b, and +.b/
best represent the Mg-rich end of the mixing trend.
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is not a feldspathic highland material, as in YQ (next section), because it contains at

least +,� and not more than �+/� FeO on the basis of the lowest-Sm subsamples of
Fig. -b. The high-FeO component of the mixing trend contains at least ,.� FeO (Fig.
-). On the basis of data for our small splits (Table -b, excluding split 13b+) and the
large-split data of Warren and Kallemeyn (+33+) and Karouji et al. (,**,), MgO
anticorrelates with FeO ([�MgO]��*.01 ·[�FeO]�,*; R,�*..2,, simple linear
regression), implying that the ,� variation in FeO among our small splits is ac-

companied by an anticorrelated variation of �-� in MgO. As recognized by

Lindstrom et al. (+333), the low-FeO extreme of the compositional range is “primitive”

Fig. ,. Symbols represent samples of EET 21/,+ and 30**2. Key and sources of data: squares, this

work, Table - (EET 21 and 30); triangles, Warren and Kallemeyn (+33+b; EET 21); and

circles, Karouji et al. (,**,; EET 21 and 30). In (c), note that except for one anomalous,

low-FeO split (the same split is anomalous in Fig. -), MgO anticorrelates with FeO. The

gray fields represent the range of all analyses of YQ (Fukuoka et al., +33*; Lindstrom et al.,

+33+b; Warren and Kallemeyn, +33+b; Koeberl et al., +33+b; Jolli# et al., +332; Arai and

Warren, +333; Kojima and Imae, ,***; Karouji et al., ,**,, and this work). The YQ

mixing trends of Fig. 0 are not evident in YQ fields of this figure probably because the data

of this figure derive from many labs using di#erent analytical techniques.
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in the igneous di#erentiation sense in having high Mg/Fe, high Cr/Sc, high Ca/Na, and

low concentrations of incompatible elements. The high-FeO extreme is “evolved,” with

low Mg/Fe, low Cr/Sc, low Ca/Na, and high concentrations of incompatible elements

Fig. -.

R.L. Korotev, B.L. Jolli#, R.A. Zeigler and L.A. Haskin160

100 

EET 87521 A 

90 
EET 96008 

N NWA032 
80 A A881757 

y 

y Y793169 

70 a YQmafic 

i D Dhofar287 

3, 60 

,)l 
so 

40 

..,.. 
.�£9 9 

30 

(a) 
20 

4000 

3500 

3000 
9 

io 
J 2500 

t'.J 
2000 

1500 
y 

9 

9 

1000 
(c) 

60 

so 
9 

i 
3, 40 

a 
8 

30 

A 

20 y 

(e) 

10 12 14 16 18 20 22 24 26 

FeO (%) 

7 

6 

i 
3, 4 

3 

0 

0.50 

0.45 

0.40 

� 
0 0.35 

i 
0.30 

0.25 

0.20 

1.2 

1.0 

I 0.8 

.B 

0.6 

0.4 

� 
.... 

a· 

9 

9 

9 

(b) 

9 

10 12 14 16 

9 9 

8 
8 

9 

18 

9 
9 y 

A 

mare volcanic 
lunar meteorites 

9 
9 9 

9 

9 

9 

.\ J 
a 

1 
A 

(d) 

(f) 

20 22 24 

FeO (%) 

26 



(Figs. , and -).
We previously observed systematic compositional variations among small splits of

NWA *-, (Fagan et al., ,**,). NWA *-, is an olivine-rich, crystalline mare basalt,
and the variations are caused by small di#erences in the relative abundance of olivine
phenocrysts among the splits, reflecting that the mass of the analyzed splits (�+/mg) is
too small to be consistently representative of the whole rock. In NWA *-,, the olivine
is the high-FeO component of the variation trends because it has a greater FeO

concentration (-.�/-�; Fagan et al., ,**,) then the whole rock (,+�,.�; Fig. -). In

EET 21/30 the trends are usually of opposite slope to those of NWA *-, and are caused
by a di#erent mineralogical e#ect. The high-FeO component is rich in late-stage

fractionation products such as lithic clasts of fayalite-hedenbergite-silica assemblages

and clasts of K- and Si-rich glass with RE (rare earth)-merrillite (whitlockite; Snyder et

al., +333a; Mikouchi, +333; Arai, ,**+). We have made a preliminary petrographic

study of one of the low-FeO, high-MgO splits and find it to be dominated by a pigeonite

(En/*�0*)-plagioclase assemblage. We will provide a more thorough petrographic study

of the high-Mg/Fe component of EET 21/30 in a subsequent work.
If, in fact, EET 21/30 is dominated by a “single lithology (or a single group of

closely-related lithologies)” (Warren and Kallemeyn, +323), then the compositional
variation among splits (Fig. -) is consistent with mixing of di#erentiates of a basaltic
liquid. Because (+) the rock is a breccia, (,) the intersplit trends are linear (e.g., Sm
vs. FeO; Fig. -b), and (-) the points are distributed approximately evenly along the
trends but with most points clustering at the middle, the trends more likely reflect mixing

of the di#erentiation products of a fractionated system than a continuous igneous

di#erentiation trend. In this scenario, we would expect similarly sized (i.e., small)

Fig. - (opposite). Compositional variation of lithophile-element concentrations in small splits of EET

21/30 (“2” and “3”), a breccia composed mainly of mare volcanic rock (data of this work).

For comparison, data for other lunar meteorites that are unbrecciated mare basalts are also

shown: (+) splits of NWA *-, (“N; ” Fagan et al., ,**,), (,) mean compositions of A-22+1/1
(“A”) and Y-13-+03 (“Y; ” Table ,), and (-) preliminary data for a sample of Dhofar ,21
(“D”; Taylor et al., ,**+b; plot c only). Also shown are the YQ mixing lines of Fig. 0
(dotted) and the inferred composition of the mare component of the YQ meteorites (“Q,”

data of Fig. 0 and similar plots) that is based on our previous assumption that the mare

component of YQ has +3� FeO (Jolli# et al., +332). The error bars on Q represent the

3/� confidence range based on simple linear regression (Fig. 0). The solid diagonal lines

represent linear regressions to data for splits of EET 21/30 and NWA *-,. For NWA *-,,
the correlations reflect variable proportions of modal olivine among small splits (mean mass:

+/mg; splits with greater FeO have a greater proportion of olivine). For EET 21/30, the
correlations reflect mixing of components of a di#erentiated gabbroic source. The thick

portion of the lines depicts the 3/� confidence range for the mean composition of EET 21/
30. The plot shows three things. (+) It is unlikely that mare basalts A-22+1/1, Dhofar
,21, NWA *-,, or Y-13-+03 are related to EET 21/30. (,) The mean FeO concentration of

EET 21/30 (or the breccia “unit” it represents) is probably less than the +3.,� obtained by

Warren and Kallemeyn (+323) on the first EET 21/30 sample to be analyzed; it might be as

low as +0.1� (see also Fig. ,). (-) If the mean FeO concentration of EET 21/30 is �+1�,

then the EET 21/30 gabbro or basalt largely qualifies as the volcanic component inferred for

YQ (Jolli# et al., +332; Arai and Warren, +333; Warren and Ul#-M/oller, +333).
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splits of the unbrecciated precursor rock to show even greater compositional variability.

Alternatively, the trends of Fig. - may result because EET 21/30 is either (+) a polymict

breccia composed of unrelated or distantly related volcanic lithologies, e.g., a basalt and

a gabbro arising from di#erent batches of magma or (,) a single basaltic magma

containing high-Mg/Fe xenoliths. We favor the first hypothesis, however, because of

its simplicity.

A characteristic feature of the Elephant Moraine lunar meteorites is the occurrence

of coarse pyroxene grains with exsolution lamellae (Warren and Kallemeyn, +323; Arai

et al., +330; Mikouchi, +333; Arai, ,**+). Such lamellae are rare to absent in mare

basalts of the Apollo missions. The occurrence of coarse, exsolved pyroxene grains and

coarse intergrowths or separate grains of fayalite, hedenbergite, and silica indicate that

the magmas from which these coarse basaltic or gabbroic rocks solidified�and from

which the breccias derive� cooled slowly. Thus the likely source of the EET meteorites

is either a shallow di#erentiated gabbroic intrusion or a thick, ponded basalt flow

(Warren and Kallemeyn, +323; Arai et al., +330; Warren and Ul#-M/oller, +333) in

which there was physical separation of early and late crystallized phases. Because our

splits are small, the scale of the separation might also have been small, e.g., millimeters

to decimeters. We are unaware of any sample from a mare site in the Apollo collection

that is texturally similar to EET 21/30, that is, a fragmental breccia or nonglassy

regolith breccia composed mainly of mineral grains from a coarse-grained volcanic rock.

(However, little work has been done on mare breccias. Many of the breccias from the

central valley of the Apollo +1 site, for example, have not been classified or studied in

thin section; Neal and Taylor, +33-a,b.) Thus, there is no particular reason to assume

that the mafic component of EET 21/30 actually derives from a magma extruded into

an impact basin, that is, a mare. It may represent a shallow intrusion of mare-basalt-

like magma.

In contrast to most mare basalts from the Apollo missions, EET 21/30 has a high

La/Sm ratio (Fig. .) and relative concentrations of incompatible elements that are

similar (but not identical, as we discuss below) to those of nonmare rocks from the

Apollo missions identified as KREEP (e.g., Apollo +0 regolith; Fig. /), an acronym

reflecting the high concentrations of K, REE (rare earth elements), P and other

incompatible elements in such rocks (e.g., Warren and Wasson, +313; Heiken et al.,

+33+). This similarity might reflect either (+) assimilation by a basaltic magma during

ascent through the crust of high-REE, late-stage residual liquid from crystallization of

a global magma ocean, the urKREEP of Warren and Wasson (+313), or (,) incorpora-

tion in the source region of a KREEP-like trapped melt retained in the mantle cumulate.

We cannot exclude these scenarios, but neither provides a satisfying explanation for the

observations. On average, absolute concentrations of incompatible elements in EET

21/30 (e.g., -.. mg/g Sm) are in the lower half of the range for low-Ti and very-low-Ti

basalts of the Apollo and Luna collection, thus, if it contains KREEP, it doesn’t contain

much. If we assume an original basaltic magma with + mg/g Sm, the lowest concentra-

tion observed among Apollo mare basalts (Apollo +1 VLT; Wentworth et al., +313;

Lindstrom et al., +33.), and a high-REE KREEP component with .2 or .3 mg/g Sm

(Warren and Wasson, +313; Warren, +323), then the -.. mg/g Sm of EET 21/30 (Table

,) corresponds to a /� component of KREEP. In this scenario, ,2� of the Sm in the
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meteorite ([*.3/�+]/-..) derives from the original (pre-assimilation) magma (the

proportion is similar for other incompatible elements) and 1,� from the KREEP

component. Because the non-KREEP proportion is large, the original magma must

necessarily also have had relative abundances of incompatible elements similar to

KREEP in order to account for the KREEP-like whole-rock concentrations. Other

reasonable boundary conditions (greater Sm in original magma, lower Sm in assimilated

KREEP) exacerbate the problem in that they require that an even greater fraction of the

KREEP-like incompatible elements in EET 21/30 were associated with the original

magma. Thus, a scenario involving assimilation or mixing of a high-REE KREEP

component does not uniquely account for the KREEP-like concentrations of incompat-

ible elements in EET 21/30.

In detail, relative abundances of incompatible elements in EET 21/30 (whole rock)

deviate from those of KREEP. For example, ratios of Th and U to trivalent REE

average 0*� of those of the KREEP component of Warren (+323). Some low-Ti

basalts with greater concentrations of incompatible elements then EET21/30 have

non-KREEP-like relative abundances of incompatible element (e.g., NWA *-,, Fig. /).

Fig. .. Variation of La/Sm ratio with TiO, concentration in crystalline mare basalts from the Apollo

and Luna missions and basaltic lunar meteorites. Each point represents the average of most

available data (the data were compiled from too many sources to list). For the Apollo sites,

di#erent points for a given site each represent the mean composition of di#erent compositional

types (e.g., Apollo +, ilmenite basalt, Apollo +, olivine basalt, etc.). The plot shows that

EET 21/30 is distinct and resembles only the aluminous, low-Ti basalts of Apollo +.
(Dickinson et al., +32/) with regard to its high La/Sm ratio.
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Thus, the coincidence of “REE patterns” between EET 21/30 and KREEP-bearing

nonmare samples (Fig. /a) may not require assimilation of a late-stage material related

to global di#erentiation of a magma ocean. It may be a consequence of the simple

mineralogy of lunar rocks (i.e., olivine, pyroxene, and plagioclase-dominated systems) in

that di#erentiation in some small-scale lunar systems leads, at some point, to liquids with

KREEP-like interelement ratios of incompatible elements (Jolli#, +332).

Of the lunar meteorites that are regolith or fragmental breccias, EET 21/30 has the

lowest concentrations of siderophile elements (Ni, Ir, Au; Table ,), suggesting that its

components have had minimal exposure at the surface of the Moon compared to other

brecciated lunar meteorites. This hypothesis is consistent with the moderately low

concentrations of trapped solar noble gases (Eugster et al., ,***) and with the observa-

tion that the rock is either a fragmental breccia or highly immature regolith breccia.

Fig. /. Concentrations of rare earth elements as a function of atomic number in meteorites from the

lunar maria. Meteorites of (a) have relative abundances of trivalent REE that resemble

those of KREEP. For reference, data for typical mature regolith (“soil”) from Apollo +0 is

shown. The Apollo +0 regolith, although feldspathic, derives 2,�20� of its trivalent REEs

from KREEP-rich impact-melt breccias (Table 2 of Korotev, +331). As a consequence, it

has relative abundances of REE similar to KREEP as well as absolute abundances similar to

the meteorites. For EET 21/30, the mean concentrations are shown as well as extreme

concentrations inferred for the evolved (high-FeO) and primitive (low-FeO) components (Fig.

-). These compositions were derived from correlations against FeO such as that of Fig. -b
extrapolated to +-./� and ,../� FeO, that is, the extremes of the range of the EET 21/30
splits. The mare basalts of (b) have REE abundances that are more typical of mare basalts

from the Apollo missions. Most notably, they have lower La/Sm ratios. The NWA *-,
data are from Fagan et al. (,**,). The REE concentration values were normalized by +.-0
C, where the C values are the “Mean C+ Chondr.” values of Anders and Grevesse (+323).
The factor +.-0 normalizes to a volatile-free basis, as in ordinary chondrites (e.g., Nakamura,

+31.). The plot is based on only the labeled elements, i.e., those determined by INAA.

Values for other elements are interpolated, except that Gd (between Eu and Tb) values are

estimated (mean of Ce-Sm and Yb-Tb extrapolations).
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-.,. Yamato 32+*-+
Y32+*-+ is similar in composition to both Y-13-,1. and QUE 3.,2+ (Table ,,

Figs. +b and 0). As a group, the YQ meteorites are distinct from other lunar meteor-

ites in being subequal mixtures of VLT volcanic rock (basalt or gabbro) and material of

the feldspathic highlands (Jolli# et al., +332; Arai and Warren, +333). As a conse-

quence (and with the exceptions discussed below), the YQ meteorites plot between the

fields for the feldspathic lunar meteorites and mare basalts on ,-element plots of most

major lithophile elements (e.g., Fig. +a).
At the small masses typically used for analysis (+*�0*mg), YQ is heterogeneous

and small splits from the three stones plot along mare-highland mixing lines because of

di#erences in the proportions of mafic volcanic and feldspathic highland components in

each split (Fig. +b). Scatter about the mixing lines occurs because (+) the highland

component, which is probably a regolith, is itself polymict and not of uniform compo-

sition and (,) the volcanic component, like EET 21/30, is also not uniform in

composition.

There is considerable overlap of the compositional ranges of the three YQ stones

(Fig. +b and 0). The Y32+*-+ split from which we determined major-element concen-

trations by FB-EMPA (Table -a) has a lower concentration of iron (++..� FeO) than

(+) any of our six INAA splits (++.3�+,.3� FeO), (,) other Y32+*-+ samples (+,..�
and +-.+�; Kojima and Imae, ,***; Karouji et al., ,**,), and (-) any “bulk” or

“matrix” samples of Y-13-,1. and QUE 3.,2+ (+,./�+/.,�; Fig. +b). In other

words, the composition of our FB-EMPA split is more feldspathic than that of other YQ

“bulk” samples. The material that we fused for major-element analysis (FB split)

consisted of fines generated from subdividing the sample for INAA. It is possible that

this procedure biased the FB split. Nevertheless, other samples of Y32+*-+ are also at

the low-FeO end of the range of the YQ meteorites (Fig. +b).
Largely on the basis of trends such those of Figs. +b, 0a, and 0b, Jolli# et al. (+332)

were able to estimate the average concentrations of major elements in the highland and

mare components of QUE 3.,2+, and similar estimates have been made by Arai and

Warren (+333) and Warren and Ul#-M/oller (+333). The mafic component of YQ

corresponds in composition to VLT basalt (*.2� TiO,) and is discussed in detail by

Jolli# et al. (+332) and Arai and Warren (+333). The inferred nonmare component of

YQ resembles the feldspathic lunar meteorites in that it is similarly feldspathic. It

di#ers, however, in that the inferred concentrations of both incompatible elements and

the plagiophile elements Na and Eu are considerably greater in the feldspathic compo-

nent of YQ than they are in any of the feldspathic lunar meteorites (Fig. 0). For

incompatible elements, the correlation with FeO is poor (Fig. 0c, R,�*.++), but the
data taken as a whole suggest that the feldspathic component is /�,*� richer in

incompatible elements than the Y32+*-+ “whole rock” of Table ,.
Among plagioclase-rich, Sm-poor samples from the lunar highlands, there are

strong correlations between concentrations of Na and Eu (also Sr). Eu increases with

the mean albite content of the plagioclase (Fig. 1a). Although Y-2,+3,/20*-, is

somewhat enriched in Na and Eu compared to other feldspathic lunar meteorites; the

inferred feldspathic component of YQ is even more albitic (Fig. 1b). The di#erence
corresponds approximately to mean anorthite (An) contents of 30./� in the plagioclase
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of the feldspathic lunar meteorites and 3-.1� in the plagioclase of the feldspathic

component of YQ. Although anomalous with respect to feldspathic lunar meteorites,

the feldspathic component of YQ is not unusual compared to regolith samples from

Fig. 0.
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Apollo +0 (Fig. 1). Apollo +0 regolith has relatively high concentrations of Na and Eu

because (+) it is composed in part of KREEP-bearing impact-melt breccias and (,)

some samples, particularly those from North Ray Crater, contain plagioclase that is

slightly more albitic than the An30�31 typical of ferroan anorthosite (James et al., +323;

Korotev, +330). Overall, the inferred composition of the feldspathic component of YQ

is in the range of regolith samples from the edge of North Ray Crater of Apollo +0
(Korotev, +330). Unlike North Ray Crater regoliths, however, clasts of KREEP-

bearing impact-melt breccias have not been reported from YQ. Thus, it is unlikely that

there is any actual connection between the feldspathic components of YQ and the

Apollo +0 regolith other than that both originate from the highlands, which are not

everywhere identical in composition.

Y32+*-+ has concentrations of siderophile elements equivalent to those of Y-13-,1.
and the feldspathic lunar meteorites but substantially less, on average, than those of

QUE 3.,2+ (Fig. 0f). Jolli# et al. (+332) thus suggested that the Y-13-,1. derived

from a deeper regolith than QUE 3.,2+, one that did not receive as high an exposure to

micrometeorites. However, concentrations of trapped solar noble gases are less in

QUE 3.,2+ than in Y-13-,1. (Polnau and Eugster, +332) and some large samples of

QUE 3.,2+ (Arai and Warren, +333) have siderophile-element concentrations equiva-

lent to or lower than those of Y32+*-+, so the evidence for di#erent depths is not

compelling. The QUE 3.,2+ samples of Jolli# et al. (+332) clearly have a heterogene-

ous distribution of siderophile elements (Fig. 0f) and may be anomalously rich in

siderophile elements overall.

-.-. Launch pairing of EET 21/30 and YQ

Lunar meteorites Y-13-+03, A-22+1/1, Dhofar ,21, and NWA *-, are each

unbrecciated mare basalts (Dhofar ,21 contains a small brecciated portion, however;

Taylor et al., ,**+b) that have little compositional (Fig. -) or textural resemblance to

either EET 21/30 or the inferred basaltic component of YQ. In contrast, EET 21/30
and YQ have overlapping launch ages (Arai and Warren, +333; Nishiizumi et al., +333)

Fig. 0 (opposite). For lithophile elements (aoe), samples from the YQ meteorites plot along mixing

lines between a feldspathic highland component and a mafic volcanic component represented

by the hexagonal symbols. For reference, in each plot, the FeO concentrations of the two

components (hexagons) are those estimated by Jolli# et al. (+332) for QUE 3.,2+ (/.3�
and +3.*�). All data for Y32+*-+ and QUE 3.,2+ are INAA data of this laboratory (this

work and Jolli# et al., +332). The diagonal lines represent simple linear regressions using

only data for Y32+*-+ and QUE 3.,2+, except that data for the anomalously feldspathic

point for QUE 3.,2+ at /.,� FeO were excluded. The error bars represent 3/� confidence

limits on the extrapolated values for the estimated end members. Data for Y-13-,1. (not

used in regressions) are from Fukuoka (+33*), Koeberl et al. (+33+b), Lindstrom et al.

(+33+b), and Warren and Kallemeyn (+33+b). For the YQ samples, the diameter of the

points scale with the approximate size (diameter, if the analyzed mass of sample were a

sphere) of the splits they represent. The symbol “0” represents the average composition of

mature regolith from Apollo +0 (Korotev, +331) and the symbol “C” is the average

composition of regolith samples from the rim of North Ray crater at Apollo +0 (Korotev,

+330). The range of feldspathic lunar meteorites is shown by the gray field in each plot.
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and many compositional, mineralogical, and textural features in common (Arai et al.,

+330; Arai and Warren, +333; Warren and Ul#-M/oller, +333; Mikouchi et al., +333;
Arai, ,**+). Some of these features, e.g., low TiO, concentrations and coarse-grained,

exsolved pyroxenes, make them more similar to each other than either is to any mare

basalts in the Apollo collection.

On the basis of their various similarities, Arai and Warren (+333) and Warren and

Ul#-M/oller (+333) consider the possibility that EET 21/30 and YQ were ejected from

the Moon by a single impact, but “tentatively reject” (Warren and Ul#-M/oller, +333)
the hypothesis because the inferred mafic volcanic component of YQ has lower concen-

trations of Na and Eu and higher concentrations of Cr and V than EET 21/30 (e.g., Fig.

-). We suggest that the compositional data are, in fact, consistent with a common

mafic component for EET 21/30 and YQ when the range of EET 21/30 compositions is

taken into account.

Because of the large sample-to-sample compositional variability, the mean compo-

Fig. 1. Variation of Eu with Na,O in feldspathic regoliths. (a) Data for +/1 highly feldspathic

(�,./� FeO) and KREEP-poor (�+ mg/g Sm) lithic fragments from the Apollo +0 regolith

(Jolli# and Haskin, +33/; Korotev, +331; unpub. data, this lab). The diagonal line (Eu�
,.,* ·Na,O) is defined by the origin and the point corresponding to the mean of the data.

Points with anomalously low Na,O concentrations with respect to the line represent glass

spherules or fragments that lost some sodium from volatilization during an impact. (b) The

feldspathic lunar meteorites and the feldspathic component of YQ plot along the line (solid)

of (a) with Y-2,+3, and 20*-, having higher concentrations than the other feldspathic lunar

meteorites. The feldspathic component of YQ has Na,O and Eu concentrations more similar

to Apollo +0 regoliths than to the feldspathic lunar meteorites. Apollo +0 regolith samples

plot o# the line to higher Eu concentrations in part because they contain a component of

KREEP-bearing impact-melt breccia, which has a greater Eu/Na ratio (dotted line) than

plagioclase in highland rocks (Korotev, +331, ,***).
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sition of EET 21/30 is not precisely known and the mean composition of the basaltic or

gabbroic body from which it derives is even less well known. Our own samples of EET

21/,+ (-1-mg) and EET 30**2 (/*.mg), for example, di#er by 2� and ++� in their

mean concentrations of Sc and FeO (Table ,). The mean composition of EET 21/30
likely plots somewhere along the middle third of the mixing lines of Fig. -, i.e., at +0�
,*� FeO. Based on the mean and standard deviation of our own data (N�,.), the
3/�-confidence range for the mean FeO concentration is large, +0.1�+3.,�. Like-

wise, the composition of the volcanic component of YQ is not known well because (+)
it must be estimated from the adequate, but not particularly good, correlations such as

those of Fig. 0 and (,) a value for the FeO (or Al,O-, Sc, etc.) concentration must be

assumed. Jolli# et al. (+332) assumed +3� FeO, and that estimate is depicted in Figs.

+a, -, and 0. Arai and Warren (+333) assumed +2� FeO. However, it is evident

from Fig. - that if the inferred volcanic component of YQ has �+1� FeO, that is, in the

range of the point where the two mixing lines intersect, then the estimated concentra-

tions of other elements fall within the range of the mean concentrations of EET 21/30,
even for the elements of concern to Warren and Ul#-M/oller (+333). The EET 21/,+
samples of Warren and Kallemeyn (+323, +33+b) are, ironically, at the high-FeO end of

the EET 21/30 mixing trend whereas the inferred volcanic component of YQ corre-

sponds to a point on the low-FeO end of the trend. Most of the di#erences discussed
by Warren and Ul#-M/oller (+333) are not so great for EET 21/30 splits with �+1�
FeO. We cannot address vanadium as we did not determine its concentration in EET

21/30, but because Cr fits (Fig. -c), V is likely to fit. Finally, we note that EET 21/,+
split 13b+, which is represented by the anomalous, lowest-FeO points of Figs. , and -
that plot in the YQ fields, is very similar in composition to one of our six splits of

Y32+*-+ (Table .). This comparison provides weak evidence that not only is the

volcanic component of YQ the same as that of EET 21/30, but that the feldspathic

component of EET 21/30 is similar to that of YQ.

In summary, we see no strong compositional, mineralogical, or lithological imped-

iment to the hypotheses that the volcanic components of EET 21/30 and YQ are one and

the same and that EET 21/30, Y13/32, and QUE 3.,2+ all derive from the same small

area of the Moon. Present estimates for the time of ejection from the Moon allow that

Y-13-,1., QUE 3.,2+, and EET 21/30 (Arai and Warren, +333; Nishiizumi et al.,

+333) could all have been launched by a single impact. At the Apollo +/ and +1 sites,

regoliths such as EET 21/30 that consist mainly of volcanic material occur within a few

kilometers of regoliths such as YQ that consist of �/*:/* mixtures of mafic and

feldspathic highland material (Korotev, +321; Korotev and Kremser, +33,). It would

require a significant coincidence for two di#erent impacts to have ejected rocks with

volcanic components as similar to each other as those of Y13/32, QUE 3.,2+, and EET

21/30, given the mutual dissimilarity of their volcanic components to Apollo mare

basalts. The most parsimonious hypothesis is that all three meteorites were launched

from the Moon by a single impact.

If, in fact, the three meteorites are launch paired, the site of the launch is likely to

be a place where highland material overlies mare volcanic material. YQ, a regolith

breccia, derives from near the surface and EET 21/30, a fragmental breccia, derives

from a deeper position, one with little admixed highland material. The volcanic
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component of EET 21/30 appears to be less well mixed than that of YQ. For example,

for our EET 21/30 subsamples, that portion of the standard deviation in Sc concentra-

tions not correlated with the FeO concentration (Fig. -a) is 3� of the mean Sc

concentration whereas it is /� for YQ (Fig. 0b), despite the larger split size for EET

21/30. This observation argues that the volcanic component of YQ has a finer

grain-size distribution than that of EET21/30, which in turn suggests the volcanic

material of YQ is exposed to a greater degree of regolith maturation that that of EET

21/30 (McKay et al., +31.). Finally, if the volcanic body is vertically di#erentiated,
we would expect the upper, less dense portion to have a lower FeO concentration than

the lower portion. This stratification would account for the apparent lower FeO

concentration of the YQ volcanic component compared to “average” EET (e.g., Fig.

-b).

.. Summary and conclusions

Small (-/�,*mg) subsamples of breccia EET 21/30 (lunar meteorite Elephant

Moraine 21/,+ and its pair 30**2) are highly variable in composition. Most sub-

samples have compositions corresponding to mixtures of two extreme components, both

of basaltic composition: (+) a primitive component with low FeO, high Mg/Fe, high

Ca/Na, and low concentrations of incompatible elements (+ mg/g Sm) and an evolved

component with high FeO, low Mg/Fe, low Ca/Na, and high concentrations of

Table .. Comparison of compositions (INAA) for selected

small splits from Y32+*-+ and EET 21/,+.

Meteorite
split

Y32+*-+
33d

EET 21/,+
13b+

Y/EET

Na,O

CaO

Sc

Cr

FeO

Co

Ni

Ba

La

Sm

Eu

Yb

Lu

Hf

Ta

Ir

Au

Th

U

mg

*4.,
+-41
,/4.
+3-.
++41
-040
+.*
2,
14-
-4/
*43,
,40
*4-1
,4/
*4-.
,41
,4*
+4+,
*4,2
-,

*4.0
+.4*
,14/
+.2*
++40
--42
++*
11
04-
-4*
*43/
,4,
*4-*
,4+
*4,0
-4-
+43
+4*1
*4--
//

*43-
*432
*43,
+4-+
+4**
+4*2
+4,1
+4*0
+4+0
+4+2
*431
+4+1
+4,+
+4,-
+4,3
*42,
+4*/
+4*/
*42/
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incompatible elements (/�0 mg/g Sm). The protolith of the meteorite appears to have

been a di#erentiated volcanic body with a bulk composition corresponding to VLT
(very-low-Ti) mare basalt.

Y (Yamato)-13-,1. and Y32+*-+ are regolith breccias consisting feldspathic

highland material and mare-like volcanic material. Others have shown on the basis of

similarities in composition, petrography, texture, and cosmic-ray exposure that the Y13/
32 stones are paired (Snyder et al., +333a,b; Lindstrom et al., +333; Warren and Ul#-
M/oller, +333; Arai et al., ,**,a,b; Lorenzetti and Eugster, ,**,). We show that the

composition of Y32+*-+ overlaps with that of Y-13-,1., but that Y32+*-+ contains a
greater proportion of feldspathic material. The di#erence corresponds approximately
to /,� normative plagioclase in Y32+*-+ compared to .-� in Y-13-,1..

Like Y13/32, QUE (Queen Alexandra Range) 3.,2+ is a regolith breccia consisting
of volcanic material with the composition of VLT mare basalt and feldspathic material

from the highlands (Jolli# et al., +332; Arai and Warren, +333). Assuming that the

YQ meteorites (Y13/32 and QUE 3.,2+) are all samples of a common regolith, as
proposed by Arai and Warren (+333), the feldspathic component of that regolith di#ers
from the numerous feldspathic lunar meteorites in two respects: (+) it is richer in Na
and Eu because it contains plagioclase that is slightly more albitic and (,) it is richer in
incompatible elements, e.g., +�+./ mg/g Th compared to *.,�*.0 mg/g in the feldspathic

lunar meteorites.

The inferred volcanic component of the YQ meteorites is compositionally similar to

small splits of EET 21/30 with about +1� FeO. Previous works have demonstrated

textural and mineralogical similarities among the volcanic components of the three

meteorites (Arai et al., +330, ,***a,b; Arai and Warren, +333; Mikouchi, +333; Arai,
,**+). The range of likely ejection ages from the Moon for the YQ and EET 21/30
meteorites overlap (Arai and Warren, +333; Nishiizumi et al., +333). On the basis of

these similarities, we conclude that all three meteorites, EET 21/,+/30**2, QUE 3.,2+,
and Y-13-,1./32+*-+, are su$ciently similar to each other, yet mutually dissimilar to
Apollo samples, that it is unlikely that they derive from two or more di#erent places on
the Moon. Given the rarity of lunar meteorites and the low frequency of impacts

having launched lunar meteorites that are found on Earth today (Warren, +33.), the
probability is high that all three meteorites were ejected from the Moon by a single

impact.
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