Noble gas signatures of Antarctic nakhlites, Yamato (Y) 000593, Y000749, and Y000802

Ryuji Okazaki^{1*}, Keisuke Nagao¹, Naoya Imae² and Hideyasu Kojima²

¹Laboratory for Earthquake Chemistry, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113–0033 ²Antarctic Meteorite Research Center, National Institute of Polar Research, Kaga 1-chome, Itabashi-ku, Tokyo 173–8515

Abstract: We have measured noble gases in three nakhlites from Antarctica, Yamato (Y) 000593, Y000749, and Y000802, by step-heating and total-melting methods. The trapped ³⁶Ar/⁸⁴Kr/¹³²Xe ratios determined for the bulk samples are around 80/3/1, identical to those of Nakhla. The Yamato nakhlites also release noble gases showing high ¹²⁹Xe/¹³²Xe (up to 1.486) and low ⁸⁴Kr/¹³²Xe (~1.5) at 1000 and 1300°C, which is one of the most characteristic signatures of nakhlites. The low ⁸⁴Kr/¹³²Xe, as compared to that of the Mars atmosphere, suggests the presence of a fractionated Martian atmosphere.

Cosmic-ray exposure ages based on cosmogenic ²¹Ne are 11.7, 11.9, and 13.0 Ma for Y000593, Y000749, and Y000802, respectively. This supports the pairing based on the mineralogical and petrographical similarities and the location of the finds. The average of the ²¹Ne exposure ages is 12.05 ± 0.69 Ma. We also calculated an apparent ⁸¹Kr-Kr age as 11.8 ± 1.0 Ma from cosmic-ray produced radioactive ⁸¹Kr and stable Kr isotopes from Y000593. The coincidence with the ²¹Ne exposure age indicates a short terrestrial age (<0.04 Ma). Hence, the Mars ejection time, as calculated from the sum of the ²¹Ne exposure age and terrestrial age, is 12.1 ± 0.7 Ma. Calculated K-Ar gas retention age for the Yamato nakhlites is 1.24 ± 0.22 Ga. The ejection time and gas retention age are close to those of non-Antarctic nakhlites and Chassigny. This suggests that the Yamato nakhlites were ejected from Mars together with other nakhlites and Chassigny.

Xenon isotopes are mixtures of Chassigny Xe, fission Xe, and the Mars atmosphere. High-temperature fractions (1000–1750°C) are enriched in the Mars atmosphere and fission Xe components, compared to lower temperature fractions. There are similarities in Xe isotopes between Y000749 and Y000802 showing excesses in ¹²⁹Xe and ¹³⁶Xe, whereas Y000593 has only small excesses. The release pattern of ¹³⁰Xe for Y000593 is also different from those of the other two nakhlites. A mineralogical study pointed out that Y000593 has lower olivine abundance compared to the others. These differences in Xe isotopes and petrologic features probably represent the heterogeneities of the ejection site on Mars.

key words: Martian meteorite, trapped noble gas, cosmic-ray exposure age, terrestrial age, K-Ar gas retention age

* Present address: Department of Geological Sciences, Arizona State University, P.O. Box 871404, Tempe, AZ 85287-1404, U.S.A.

Corresponding author: R.O. (Fax: +81-3-5841-4119, E-mail: okazaki@eqchem.s.u-tokyo.ac.jp) (Fax: +1-480-965-8102, Phone: +1-480-965-3523, E-mail: okazaki@asu.edu)

1. Introduction

Japanese Antarctic Research Expedition in 2000 (JARE-41) found over 3500 meteorite specimens in the Yamato meteorite field. Among them, a heavy achondrite, Yamato (Y) 000593 (13.7 kg) was recognized to be a nakhlite from petrological and mineralogical features (Kojima and Imae, 2001; Imae *et al.*, 2002, 2003). Two stones (Y000749 of 1.3 kg and Y000802 of 22 g) were found nearby, and they are probably paired with the Y000593 meteorite based on petrographical and mineralogical similarities and the locations of the finds (Kojima and Imae, 2001; Kojima *et al.*, 2002; Imae *et al.*, 2002, 2003).

Nakhlites are one of the SNC meteorite members named after three meteorites, Shergotty, Nakhla, and Chassigny. Shergottites are basaltic rocks, whereas nakhlites and Chassigny have features of plutonic cumulates (e.g., McSween, 1994). The SNCs were initially classified as HED (Howardite-Eucrite-Diogenite) meteorites because of their similarities in mineralogical and petrological features. It was recently shown that SNCs are obviously different from HEDs in crystallization ages (Geiss and Hess, 1958; Gale et al., 1975; McSween, 1994), and oxygen (Clayton and Mayeda, 1996), nitrogen (Becker and Pepin, 1984; Wiens et al., 1986), and noble gas (Pepin, 1985) isotopic compositions. After that, SNC meteorites were reconsidered, and thought to have formed on a parent body different from that of the HED members: most plausibly "Mars." Some of the strongest evidence for the Martian origin of SNC meteorites is the excellent coincidence in abundances of noble gas and other volatile elements between impact-melt glasses of the EET79001 shergottite (Pepin, 1985) and Viking probe data (Owen et al., 1977) of the Martian atmosphere. This is supported by laboratory experiments suggesting that shock implantation does not cause significant elemental fractionation of noble gases (Bogard et al., 1986; Wiens and Pepin, 1988). Mars atmospheric noble gas ratios have been repeatedly compared with data of impact glasses of EET79001 and impact veins of Zagami, and are estimated to be 20.5±2.5 and 2.60 ± 0.05 for ⁸⁴Kr/¹³²Xe and ¹²⁹Xe/¹³²Xe, respectively (Bogard and Garrison, 1998).

Noble gas data are useful to support SNC meteorite classification because there are variations in isotopic and elemental ratios of heavy trapped noble gases of Ar, Kr, and Xe. In addition to isotopic signatures, chronological constraints on the meteorite history are available from radiometric systems, such as ³⁹Ar-⁴⁰Ar, ⁴⁰K-⁴⁰Ar, ¹²⁹I-¹²⁹Xe, U-Th-He, and ²⁴⁴Pu-Xe. The duration of cosmic-ray exposure (CRE) in space can be also determined using cosmogenic isotopes.

Within the following, we will report the results of noble gas analyses for Y000593, Y000749, and Y000802. First, we will present signatures of trapped noble gases and discuss elemental and isotopic ratios. Second, we will estimate the timing of crystallization and ejection from Mars based on radiogenic ⁴⁰Ar and cosmic-ray produced noble gases, respectively. Based on these noble gas data, we will confirm the classification and potential paring predicted by the mineralogical study (Kojima and Imae, 2001; Kojima *et al.*, 2002; Imae *et al.*, 2002, 2003).

2. Samples and experimental methods

2.1. Experiments

Whole rock samples of about 200 mg were prepared from each meteorite for step-heating analyses. Noble gases were extracted from the samples in a Mo crucible by heating stepwise at 400, 600, 800, 1000, 1300, and 1750° C for 20 min. In addition to the step-heating analyses, a total-melting extraction (at 1750° C) was performed for Y000593 (0.2963 g) in order to determine a precise Kr-isotope data for ⁸¹Kr-Kr dating.

Extracted noble gases were purified through our standard procedure, and measured with a modified VG5400 mass spectrometer (MS-II) at the Laboratory for Earthquake Chemistry, University of Tokyo. Details of the analytical procedure and conditions of the MS-II are described in Nagao *et al.* (1999).

2.2. Partitioning of the noble gas components

Isotopic ratios of He, Ar, Kr, and Xe show that they are mixtures of cosmogenic, radiogenic, and trapped components. Neon is almost completely cosmogenic, although there is variation in ²¹Ne/²²Ne related with temperatures of the step-heating analyses (see Section 3.3). Assumptions for the partitioning of the cosmogenic (c) and trapped (t) components are as follows: ³He_t=0, ²¹Ne_t=0, (³⁸Ar/³⁶Ar)_c=1.55, (³⁸Ar/³⁶Ar)_t= 0.188. Contributions from trapped and fission components on Kr isotopes were corrected to determine cosmogenic Kr spectra for the ⁸¹Kr-Kr dating using the method described in Miura *et al.* (1993), assuming terrestrial atmosphere (Ozima and Podosek, 2002) as a trapped component. Trapped ⁸⁴Kr concentrations were estimated from the following equation:

$$[{}^{84}\text{Kr}]_{t} = ({}^{84}\text{Kr}/{}^{83}\text{Kr})_{t} \cdot \frac{({}^{86}\text{Kr}/{}^{83}\text{Kr})_{c} - ({}^{86}\text{Kr}/{}^{83}\text{Kr})_{m-f}}{({}^{86}\text{Kr}/{}^{83}\text{Kr})_{c} - ({}^{86}\text{Kr}/{}^{83}\text{Kr})_{t}} \cdot [{}^{83}\text{Kr}]_{m},$$

where $({}^{84}\text{Kr}/{}^{83}\text{Kr})_t = 4.966$ (Earth Atm.), $({}^{86}\text{Kr}/{}^{83}\text{Kr})_c = 0.0152$ (Marti and Lugmair, 1971), and $({}^{86}\text{Kr}/{}^{83}\text{Kr})_t = 1.516$ (Earth Atm.). The $[{}^{83}\text{Kr}]_m$ is the measured ${}^{83}\text{Kr}$ concentration, while the $({}^{86}\text{Kr}/{}^{83}\text{Kr})_{m-f}$ is calculated by subtracting the fission ${}^{86}\text{Kr}$ contribution from the measured $({}^{86}\text{Kr}/{}^{83}\text{Kr})_m$ based on the fission ${}^{136}\text{Xe}$ abundance, $[{}^{136}\text{Xe}]_f$, and the ${}^{244}\text{Pu}/{}^{238}\text{U}$ ratio of 0.0068 (Hudson *et al.*, 1989). In order to obtain the $[{}^{136}\text{Xe}]_f$ and spallation-corrected Xe isotopic ratios, we used the spallation spectrum estimated from the Stannern eucrite (Marti *et al.*, 1966) and $({}^{126}\text{Xe}/{}^{130}\text{Xe})_t = 0.0218$ (Earth Atm.; Ozima and Podosek, 2002).

3. Results and discussion

Table 1 shows concentrations and elemental ratios of trapped noble gases together with ¹²⁹Xe/¹³²Xe. In the Appendix, we present full sets of noble gas data determined for the Yamato nakhlites. There are discrepancies in ³⁶Ar_t concentration and $(^{36}Ar/^{132}Xe)_t$ between total-melting and step-heating analyses for Y000593. Heterogeneous distributions of ³⁶Ar_t may be responsible for the differences between the two Y000593 samples. Alternatively, the correction of cosmogenic ³⁶Ar for the total-melting data might be inappropriate, because the measured ³⁸Ar/³⁶Ar ratio is close to the

	³⁶ Ar _t	⁸⁴ Kr _t	¹³² Xe _t	(³⁶ Ar/ ¹³² Xe) _t	(⁸⁴ Kr/ ¹³² Xe) _t	(¹²⁹ Xe/ ¹³² Xe) _t
Y000593 step h	eating (0.162	22 g)				
400%	0.142	64.0 ^{a)}	4.34	32.8	14.7	1.038
400 0	±0.014	±6.4 、	±0.44	± 4.7	±2.1	±0.027
600°C	0.0481	12.3 ^{a)}	2.67	18.0	4.59	1.036
000 C	±0.0070	±1.2	±0.28	± 3.2	±0.67	±0.047
000°0	0.387	8.01	5.92	65.3	1.35	1.021
000 C	±0.040	±0.86	±0.63	± 9.8	±0.21	±0.043
1000%	0.638	3.14	1.16	549	2.70	1.16
1000 C	±0.067	±0.84	±0.14	± 88	±0.79	±0.10
4000°0	0.288	6.75	10.2	28.1	0.66	1.092
1300 C	±0.031	±0.80	±1.1	± 4.3	±0.10	±0.048
4750°0	0.857	11.7	3.28	262	3.58	1.16
1750 C	±0.087	±1.3	±0.47	± 46	±0.64	±0.13
	2.36	106	27.6	85.4	3.83	1.074
total	±0.24	±11	±2.8	± 12.3	±0.56	±0.031
V000503 total n	noltina (N 206	(3 a)				
1000333 10181 11	0 004	153 153	38.0	22.8	4.03	1 07
1750°C	+0.006	133		± 50	4.03	+0.10
	±0.090	±13	±0.4	± 5.9	±0.90	±0.19
Y000749 step h	eating (0.204	18 a)				
100%	0.0972	20.1 ^{a)}	5.06 ^{a)}	19.2	3.97	1.050
400°C	±0.0097	±2.0	±0.51	± 2.7	±0.56	±0.044
000%	0.0271	4.73 ^{a)}	3.25 ^{a)}	8.3	1.46	1.054
600°C	±0.0028	±0.47	±0.33	± 1.2	±0.21	±0.051
0000	0.127	7.4	3.00	42.4	2.48	1.109
800°C	±0.015	±1.1	±0.34	± 6.9	±0.45	±0.073
10000	0.0616	3.2	0.75	82	4.2	1.44
1000°C	±0.0076	±1.2	±0.10	± 15	±1.7	±0.15
10000	0.101	0.94	1.05	96	0.90	1.44
1300°C	±0.011	±0.36	±0.25	± 25	±0.40	±0.30
	0.641	4.68	0.69	929	6.8	1.42
1750°C	±0.066	±0.74	±0.29	±405	±3.1	±0.58
	1.06	41.1	13.8	76	2.98	1.133
total	±0.11	±5.0	±1.5	± 11	±0.48	±0.050
Y000802 step h	eating (0.177	'2 g)				
400%	0.159	36.0	9.61 ^{a)}	16.5	3.74	1.064
400 C	±0.016	±3.7	±0.96	± 2.3	±0.54	±0.026
600°C	0.0400	5.12	3.75 ^{a)}	10.7	1.37	1.127
600 C	±0.0044	±0.57	±0.38	± 1.6	±0.21	±0.043
000%0	0.431	5.33	3.35	128	1.59	1.159
800 C	±0.044	±0.59	±0.35	± 19	±0.24	±0.050
100000	0.173	2.41	1.65	105	1.46	1.486
1000 C	±0.019	±0.50	±0.18	± 16	±0.34	±0.068
400000	0.287	2.58	2.01	143	1.28	1.45
1300-0	±0.030	±0.34	±0.26	± 24	±0.24	±0.13
475000	0.516	4.76	0.517	997	9.2	1.31
1750 C	±0.052	±0.52	±0.093	±205	±1.9	±0.22
total	1.60	56.2	20.9	77	2.69	1.167
lotal	±0.16	±5.8	±2.1	± 11	±0.39	±0.024

Table 1. Concentrations and elemental ratios of trapped noble gases of Y000593, Y000749, and Y000802.

^a Measured values are presented. Units for Ar and Kr-Xe are 10^{-9} and 10^{-12} cm³ STP/g, respectively. Spallation-corrected ¹²⁹Xe/¹³²Xe ratios are also shown. Presented errors were 1σ obtained from propagation of errors for concentrations (10%) and isotopic ratios. assumed cosmogenic value (Appendix).

3.1. Trapped noble gas compositions of Y000593, Y000749, and Y000802

There is a wide diversity in noble gas elemental ratios in solar system reservoirs such as Sun, Venus, Mars, Earth, chondrites, and achondrites (Fig. 1). In the plot of 84 Kr/ 132 Xe and 36 Ar/ 132 Xe, we can see two trends, Sun-Venus-chondrite and Earth-Mars-achondrite lines. SNC meteorites and eucrites plot on the lower left of the Earth-Mars-achondrite line (Fig. 1). Noble gases of Chassigny are enriched in Xe, distinct from those of Nakhla, Shergotty, and the Mars atmosphere. Our data (Table 1) for Y000593, Y000749, and Y000802 plot close to Nakhla (total compositions of step-heating data are shown in Fig. 1). Hence, the noble gas elemental ratios are consistent with the classification of these meteorites as Nakhla-type Martian meteorites based on the petrological and mineralogical studies (Kojima and Imae, 2001; Kojima *et al.*, 2002; Imae *et al.*, 2002, 2003). Some eucrites (*e.g.*, Juvinas and Camel Donga; Miura *et al.*, 1998) have noble gas elemental ratios similar to those of nakhlites (Fig. 1), but the spread in the data for eucrites primary reflects addition of fractionated terrestrial atmosphere, as shown by Xe isotopic ratios (Miura *et al.*, 1998; Busemann and Eugster,

Fig. 1. Elemental ratios of trapped (primordial) noble gases in solar system reservoirs. Uncertainties approximately correspond to the size of the data markers, except for those of the Venus atmosphere and Viking data. Data sources: Sun (Anders and Grevesse, 1989); lunar soil (Eberhardt et al., 1972); terrestrial atmosphere (Ozima and Podosek, 2002); Venusian atmosphere (estimated from Pepin (1991) assuming ¹³²Xe/¹³⁰Xe = 6.5); chondrules in an E-chondrite (Okazaki et al., 2001); Viking probe data (Owen et al., 1977); Mars atmosphere (trapped gases in shergottite glasses; Bogard and Garrison, 1998); Shergotty, Nakhla, Chassigny (Otto, 1988); ALH84001 (Miura et al, 1995; Bogard and Garrison, 1998); eucrites (Miura et al., 1998).

2002). In addition, their crystallization ages of eucrites are older (close to those of Angra dos Reis of 4.5578 Ga; Lugmair and Galer, 1992) relative to those of nakhlites (~1.3 Ga; Nyquist *et al.*, 2001).

Excess ¹²⁹Xe (129 Xe/ 132 Xe>1) is one of the most important features of Martian meteorites, except for Chassigny (Ott, 1988). As shown in Fig. 2, nakhlites have high 129 Xe/ 132 Xe and low 84 Kr/ 132 Xe ratios, different from those of shergottites and Chassigny. It was reported that iddingsite is a host phase of the noble gas characteristic of nakhlites; iddingsite in the Lafayette nakhlite (Drake et al., 1994) shows a high 129 Xe/ 132 Xe (2.04) but a low 84 Kr/ 132 Xe ratio (6±3) that is clearly lower than that of the Martian atmosphere (20.5; Bogard and Garrison, 1998). It has been inferred that the iddingsite was produced via reactions with water on Mars, and the low 84 Kr/ 132 Xe ratio might reflect elemental fractionation during the reaction (Drake et al., 1994). On the other hand, Chassigny contains noble gases depleted in lighter elements (Fig. 1), and the 129 Xe/ 132 Xe is lower than 1.029 and close to the solar value. Other Xe isotope ratios of Chassigny are also similar to those of solar wind (Ott, 1988; Swindle and Jones, 1997; Mathew and Marti, 2001). Chassigny has many petrologic features similar to Earth mantle materials, and hence the compositional characteristics of Chassigny probably represent those of the Mars interior. As shown in Fig. 2, noble gases in shergottites seem to be mixtures of Mars mantle and atmosphere.

Fig. 2. Plot of ⁸⁴Kr/¹³²Xe versus ¹²⁹Xe/¹³²Xe ratios. Nakhlites contain Chassigny-type and iddingsite noble gases in varying mixing ratios. Data sources: Becker and Pepin (1984, 1993); Bogard and Garrison (1998); Drake et al. (1994); Ott (1988); Ott and Löhr (1992); Ott et al. (1988); Swindle et al. (1986, 1989); Wiens (1988).

Our data show that noble gases released at 1000 and 1300°C from Y000593, Y000749, and Y000802 are similar to those of other non-Antarctic nakhlites, while those at 600 and 800°C are close to Chassigny (Fig. 2 and Table 2). The high 129 Xe/ 132 Xe and elemental ratios in the high-temperature steps strongly support the petrologic and mineralogical judgment (Imae *et al.*, 2002, 2003) that these meteorites belong to the nakhlite group.

Table 2 and Fig. 3 show isotopic ratios of Xe corrected for the spallation contribution. Noble gases with high ¹²⁹Xe/¹³⁰Xe ratios released at 1000, 1300, and 1750°C also have excess in ¹³⁶Xe (Fig. 3). If noble gases in nakhlites are mixtures between gases in the Mars mantle as found in Chassigny and fractionated atmosphere, as expected from

Table 2. Spallation-corrected Xe isotopes of Y000593, Y000749, and Y000802.

	¹³⁰ Xe	¹²⁴ Xe/ ¹³⁰ Xe	¹²⁶ Xe/ ¹³⁰ Xe	¹²⁸ Xe/ ¹³⁰ Xe	¹²⁹ Xe/ ¹³⁰ Xe	¹³¹ Xe/ ¹³⁰ Xe	¹³² Xe/ ¹³⁰ Xe	¹³⁴ Xe/ ¹³⁰ Xe	¹³⁶ Xe/ ¹³⁰ Xe
Y000593	step heating	a (0.1622a)							
400°C	0.653	0.022	0.0218	0.475	6.90	5.268	6.65	2.569	2,155
	+ 0.065	+ 0.013	+ 0.0046	+ 0.014	+ 0.13	+ 0.090	+ 0.12	+ 0.064	+ 0.041
600°C	0 4 1 2	0.023	0.0218	0.445	6.73	5 15	6.49	2 56	2 155
000 0	+ 0.041	+ 0.015	+ 0.0052	+ 0.033	+ 0.20	+ 0.16	+ 0.23	+ 0.12	+ 0.087
800°C	0.895	0.0238	0.0218	0.4623	6.76	5.22	6.62	2 575	2 176
000 0	+ 0.000	+ 0.0087	+ 0.0040	+ 0.0083	+ 0.13	+ 0.12	+ 0.25	+ 0.071	+ 0.055
1000°C	0.030	1 0.0007	1 0.0040	1 0.0003	7.64	1 0.12	1 0.25	2.53	2 17
1000 C	+ 0.010	ND	ND	+ 0.090	+ 0.40	+ 0.22	+ 0.40	+ 0.16	+ 0.16
1200°C	1 55	0.025	0.022	I 0.009	± 0.49	± 0.23	± 0.40	± 0.10	I U. 10
1300 C	1.00	0.025	0.022	0.407	1.22	4.90	0.01	2.000	2.237
175000	± 0.10	± 0.013	± 0.021	± 0.040	± 0.21	± 0.10	± 0.21	± 0.045	± 0.049
1750 C	+ 0.061	ND	ND	0.40	1.12	3.39	0.07	2.40	2.20
Tatal	± 0.001	0.0400	0.0400	± 0.17	± 0.71	± 0.30	± 0.46	± 0.16	± 0.17
Iotai	4.18	0.0199	0.0183	0.468	7.10	4.914	0.01	2.552	2.201
	± 0.42	± 0.0056	± 0.0076	± 0.020	± 0.12	± 0.069	± 0.12	± 0.035	± 0.032
VOODEOO	total matting	~ (0.2052~)							
1750°0	5 TOLAI MERING	J (U.29039)	0.022	0 472	7 1 4 2	E 052	6 666	2 5 9 1	2 2 1 0
1750 C	+ 0.57	+ 0.0252	+ 0.011	+ 0.020	1.143	+ 0.054	+ 0.061	+ 0.024	+ 0.022
	± 0.57	± 0.0069	± 0.011	± 0.020	± 0.075	± 0.054	± 0.061	± 0.024	± 0.023
V000740	stop hoatin	a (0.2048a)							
400°C	0 763	0.0373	0.0218	0 473	7.00	5 1/8	6 67	2 543	2 171
400 0	+ 0.076	+ 0.0005	+ 0.0210	+ 0.015	+ 0.22	+ 0.092	+ 0.10	+ 0.024	+ 0.041
ennoc	1 0.070	1 0.0095	1 0.0039	1 0.015	1 0.22	± 0.005	1 0.13	1 0.024	2 170
000 C	+ 0.040	+ 0.046	+ 0.0210	+ 0.020	+ 0.19	J.17	+ 0.09	2.040	2.179
800°C	± 0.049	± 0.015	± 0.0030	± 0.020	I U.10	± 0.17	I 0.20	± 0.000	± 0.007
800 C	0.430	0.000	0.0218	0.409	1.39	0.20	0.07	2.30	2.192
1000°C	± 0.045	I 0.024	± 0.0000	± 0.031	± 0.30	± 0.14	± 0.34	± 0.12	± 0.040
1000 C	0.111	0.11	ND	0.44	9.09	3.90	0.74	2.47	2.40
1200°C	± 0.013	± 0.10		± 0.16	± 0.74	± 0.33	± 0.49	± 0.19	± 0.10
1300 C	+ 0.029	ND	ND	+ 0.27	10.1	+ 0.50	+ 1.0	2.40	+ 0.40
1750°C	± 0.020			I 0.37	± 1.5	± 0.59	I 1.0	± 0.30	± 0.40
1750 C	0.104	ND	ND	ND	9.0	ND	0.7	1.90	2.37
Tatal	± 0.033	0.047		0.466	± 2.9	4.04	± 1.0	± 0.56	± 0.74
rotar	2.00	0.047	ND	0.466	7.59	4.64	0.70	2.509	2.210
	± 0.21	± 0.023		± 0.062	± 0.25	± 0.13	± 0.20	± 0.069	± 0.064
V000802	stop hoatin	a / (0.1772a)							
,000002 400°⊂	1 45	0 0243	0.0218	0.469	7 07	5 257	6 65	2 597	2 196
400 0	+ 0.15	+ 0.0243	+ 0.0210	+ 0.011	+ 0.11	+ 0.069	+ 0.03	+ 0.041	+ 0.022
600°C	1 0.15	1 0.0030	1 0.0027	1 0.011	1 0.11 7.49	1 0.000	1 0.15	2 0.041	1 0.025
000 C	0.007	0.0260	0.0216	0.400	7.40	0.20	0.04	2.010	2.220
00000	± 0.037	± 0.0000	± 0.0043	± 0.010	I U.IZ	I U.12	± 0.23	± 0.070	± 0.037
600 C	0.490	0.020	0.0210	0.409	/.04	J.∠0	0.70	2.020	2.204
4000°0	± 0.050	± 0.012	± 0.0065	± 0.013	± 0.21	± 0.10	± 0.22	± 0.075	± 0.065
1000 C	+ 0.026	ND	ND	0.470	9.09	4.07	0.40	2.409	2.17
400000	± 0.026			± 0.055	± 0.31	± 0.16	± 0.21	± 0.076	± 0.07
1300°C	0.310	ND	ND	0.45	9.40	3.00	0.47	2.47	2.29
475000	± 0.036			± 0.15	± 0.62	± 0.28	± 0.38	± U.15	± U.16
1750°C	0.0639	ND	ND	0.49	10.6	3.75	8.09	2.11	2.00
Tatal	± 0.0092	0.0247	0.000	± U.29	± 1.3	± U.5/	± U.8/	± U.3U	± U.33
rotal	3.14	0.0247	0.022	0.471	1.11	5.024	0.00	2.587	2.228
	± 0.32	± 0.0087	± 0.014	± 0.024	± 0.11	± 0.066	± 0.10	± 0.035	± 0.029

Unit for 130 Xe concentration is 10^{-12} cm³ STP/g. Presented errors were obtained from propagation of errors for measured isotopic ratios and those for assumed end members. ND: not determined.

Fig. 3. Spallation-corrected Xe isotopes. High temperature fractions show excesses in ¹²⁹Xe and ¹³⁶Xe. Data sources: Mathew et al. (1998); Miura et al. (1995); Ott (1988).

the plot of ¹²⁹Xe/¹³²Xe and ⁸⁴Kr/¹³²Xe (Fig. 2), nakhlite data should draw a straight line connecting the Mars atmosphere and Chassigny-Xe in Fig. 3. However, no nakhlite data show such a trend; they plot to the right side of a mixing line between Mars and Earth atmospheres. The rightward shifts from the mixing line suggest that an *in situ* produced fission Xe might be retained in nakhlites, as suggested by some workers (Ott, 1988; Swindle and Jones, 1997; Mathew and Marti, 2001). On the other hand, there is no simple correlation between fission ¹³⁶Xe and excess ¹²⁹Xe, which suggests that the excess ¹²⁹Xe could come mostly from the Mars atmosphere.

Xenon isotopes of Y000593 show only small excesses in ¹²⁹Xe and ¹³⁶Xe (Figs. 2 and 3, and Table 2), which is different from those of Y000749 and Y000802. A mineralogical study by Imae *et al.* (2003) found that there is a difference in the modal abundance of olivine; Y000749 and Y000802 contain more abundant olivine phenocrysts than Y000593. This seems reasonable because iddingsite, probably one of the host phases for ¹²⁹Xe-rich gas, occurs in rims and fractures in olivine phenocrysts. In addition, Y000593 has a different release pattern of trapped ¹³⁰Xe in the step-heating experiment and shows a steep increase of ¹³⁰Xe release between 1000 and 1300°C (Table 2). This suggests that a host phase for ¹³⁰Xe-rich but ^{129,136}Xe-poor gas is more abundant in Y000593 than in Y000749 and Y000802. At this time the host phase is not identified,

but it should have high noble gas retentivity.

Low temperature fractions (400–800°C) of the Yamato nakhlites plot around the terrestrial atmosphere (Fig. 3), while Nakhla released noble gases similar to the Chass-E component at 400–500°C (Mathew and Marti, 2002). The Chass-E component is originally determined for high temperature fractions of Chassigny (Mathew *et al.*, 1998). Mathew and Marti (2002) could not exclude a possibility that the Chass-E-like noble gas in Nakhla is a mixture between solar-like Chassigny gas and adsorbed terrestrial atmosphere. Hence, although the Antarctic nakhlites may also contain solar-like noble gas, the indigenous isotopic signature was covered with contamination by fractionated terrestrial gas due to Antarctic weathering. In order to characterize the noble gas released at low temperature we need further investigation on separated minerals with low noble gas retentivity, such as plagioclase and sulfides.

3.2. Cosmic-ray exposure (CRE) ages and ejection times from Mars

Timing of ejection from the parent body is the most reliable evidence for sourcecrater pairing of meteorites. The ejection time is obtained from the sum of CRE and terrestrial ages that are generally estimated from cosmogenic stable and radioactive nuclides of noble gases and other elements such as ¹⁰Be, ¹⁴C, ²⁶Al, ³⁶Cl, and ⁵³Mn (*e.g.*, Nishiizumi, 1987).

Table 3 shows concentrations and isotopic ratios of cosmogenic noble gases, calculated production rates, P_{3He}, P_{21Ne}, and P_{38Ar}, and CRE ages, T_{3He}, T_{21Ne}, and T_{38Ar}, based on ³He_c, ²¹Ne_c, and ³⁸Ar_c, respectively. The apparent CRE age (T_{81Kr}), terrestrial age (T_t) , and ejection time (T_e) are also listed. Measured ²¹Ne is assumed to be entirely cosmogenic (*i.e.*, no trapped Ne) because Ne isotopic ratios of bulk samples (Appendix) are identical to those of pure spallogenic gases (20 Ne/ 22 Ne~0.8 and 21 Ne/ 22 Ne~0.85). Trapped ³He is also negligible because trapped gases, except for solar wind, are generally depleted in light elements (Swindle, 1988). Contributions of trapped ³⁸Ar were subtracted from the measured ³⁸Ar concentrations, as mentioned above (Section 2.2). We calculated production rates of P_{3He} , P_{21Ne} , and $P_{38}Ar$ in the same way as described in Eugster and Michel (1995), using the bulk chemical composition determined for Y000593 (Imae et al., 2003). As shown in Table 3, there are excellent consistencies in the CRE ages between Y000593, Y000749, and Y000802. In addition, cosmogenic $({}^{21}\text{Ne}/{}^{22}\text{Ne})_c$ and $({}^{78}\text{Kr}/{}^{83}\text{Kr})_c$ of the three meteorites also show agreement (Table 3), suggesting that these meteorites were irradiated at the similar shielding conditions. These cosmogenic noble gas signatures support the conclusion from the trapped noble gas compositions, petrology, mineralogy, and the find sites (Kojima and Imae, 2001; Kojima et al., 2002; Imae et al., 2002, 2003), that the three Yamato nakhlites were ejected from Mars as a single meteoroid, which broke up at entry to the terrestrial atmosphere.

Mean T_{3He} and T_{21Ne} ages (12.94 \pm 0.93 and 12.05 \pm 0.69, respectively) are in good agreement with each other, while T_{38Ar} (8.46 \pm 0.15) disagrees with the other two ages, ~0.7 \times shorter. The discrepancy is probably due to uncertainties in corrections of the production rates for variations in chemical compositions and shielding conditions. A recent study by Nishiizumi *et al.* (2002) estimated the production rate for cosmogenic ²¹Ne in a basaltic shergottite Dhofar 019 based on radionuclides ¹⁰Be, ²⁶Al, and ³⁶Cl.

		Y000593 (step heating)	Y000593 (total melting)	Y000749 (step heating)	Y000802 (step heating)
	³ He _c	213	214	209	245
	²¹ Ne _c	20.1	20.9	21.5	24.0
	³⁸ Ar _c	16.9	16.4	17.1	16.6
Cosmogenic	⁸¹ Kr _c	-	0.102	-	-
gases ^{a)}	⁸³ Kr _c	8.84	6.43	8.05	5.28
	(²² Ne/ ²¹ Ne) _c	1.206	1.206	1.191	1.184
	(⁷⁸ Kr/ ⁸³ Kr) _c	0.183 ±0.014	0.1825 ±0.0089	0.184 ±0.019	0.179 ±0.012
	(⁸¹ Kr / ⁸³ Kr) _c	-	0.0159 ±0.0013	-	-
	P _{3He}	17.0	17.0	17.0	17.1
Production	P _{21Ne}	1.76	1.76	1.81	1.84
rates ^{b)}	P _{38Ar}	1.98	1.98	1.98	1.98
	P _{81Kr} / P _{83Kr}	-	0.613 ±0.011	-	-
	T _{3He}	12.6	12.6	12.3	14.3
CRE ages	T _{21Ne}	11.4	11.9	11.9	13.0
(Ma)	T _{38Ar}	8.54	8.29	8.63	8.38
	T _{81Kr} c)	-	11.8 ±1.0	-	-
Terrestri	ial age T _t (Ma)	<0.04			
Mars ejection	time ^{d)} T _e (Ma)	12.1 ±0.7			

Table 3. Concentrations of cosmic ray produced noble gases and calculated cosmic-ray exposure ages of Y000593, Y000749, and Y000802.

^a Units are in 10⁻⁹ and 10⁻¹² cm³ STP/g for He-Ne-Ar, and Kr, respectively.

^b We estimated production rates for ³He, ²¹Ne, and ³⁸Ar (P_{3He}, P_{21Ne}, and P_{38Ar}, respectively; shown in 10⁻⁹ cm³ STP/g/Ma) in the same way as reported in Eugster and Michel (1995) using the bulk composition determined for Y000593 (Imae et al., 2003). The production rate ratio P_{81Kr}/P_{83Kr} is calculated from an equation in Marti and Lugmair (1971) using (⁷⁸Kr/⁸³Kr)_c.

^c Apparent CRE age.

^d Calculated from the sum of T_{21Ne} and T_t .

The Nishiizumi *et al.* (2002) production rate is in agreement with the P_{21Ne} calculated for Dhofar 019 in the same way as we used for the Antarctic nakhlites in this study. Therefore, we considered that T_{21Ne} is probably the most reliable estimate of the CRE age for these nakhlites.

We also obtained an apparent CRE age (T_{81Kr}) for Y000593 based on radioactive ⁸¹Kr and stable Kr isotopes using data in Table 3 and the following equation (Freundel *et al.*, 1986):

$$T_{81Kr} (yr) = \frac{1}{\lambda_{81Kr}} \cdot (\frac{P_{81Kr}}{P_{83Kr}}) \cdot (\frac{R^{83}Kr}{R^{10}})_{cs}$$

where (P_{81Kr}/P_{83Kr}) is $1.262 \cdot ({^{78}Kr}/{^{83}Kr})_c + 0.381$ (Marti and Lugmair, 1971) and $\lambda_{81Kr} = 3.25 \times 10^{-6} \text{ yr}^{-1}$ (Eastwood *et al.*, 1964). There is no need to input the Kr concentration, which reduces scatter introduced by diffusive gas loss that is often

observed in T_{3He} . In addition, the T_{81Kr} needs no assumptions on the chemical composition and the shielding condition. The T_{81Kr} can be calculated from the production rate ratio (P_{81Kr}/P_{83Kr}), which is evaluated directly from the Kr isotope spectrum. Hence, the T_{81Kr} could be as reliable as the T_{21Ne} in determining the CRE age if the terrestrial age of a meteorite is negligible. If T_{81Kr} of a meteorite is longer than the appropriate CRE age based on other nuclides, the difference comes from the decay of ⁸¹Kr on the Earth. The obtained T_{81Kr} of Y000593 is 11.8 ± 1.0 Ma (Table 3), which agrees with T_{21Ne} (12.05 ± 0.69) within the experimental errors. This indicates that the terrestrial age (T_t) of the Yamato nakhlites is not long, *i.e.*, the duration of residence in Antarctica should be less than 0.04 Ma (Table 3), which was estimated from the upper-most limit of T_{81Kr} and the lowest limit of T_{21Ne} . Thus, the ejection time (T_e) of the Yamato nakhlites is 12.1 ± 0.7 Ma ago, calculated from the sum of T_{21Ne} and T_t .

Figure 4 plots the cosmogenic ${}^{21}\text{Ne}/{}^{22}\text{Ne}$ ratio against the Mg/(Si+Al) ratio for bulk Martian meteorite samples. The shielding conditions of Y000539, Y000749, and Y000802 (Fig. 4) are similar to those for other non-Antarctic nakhlites (Eugster *et al.*, 1997) that were probably exposed only to galactic cosmic-rays (GCRs). Solar cosmic-ray (SCR) produced Ne has a low ${}^{21}\text{Ne}/{}^{22}\text{Ne}$ (Walton *et al.*, 1976; Hohenberg *et al.*,

Fig. 4. Mg/(Si+Al) elemental concentration ratios and cosmogenic ²¹Ne/²²Ne. The shaded zone represents the boundary between essentially pure GCR-produced Ne on the right and increasing amounts of SCR-produced Ne on the left side, following Begemann and Schultz (1988) and Garrison et al. (1995). The slope of the shaded zone was determined using the Bruderheim mineral separates by Garrison et al. (1995). Data sources: Bogard et al. (1984); Eugster et al. (1997); Garrison et al. (1995); Miura et al. (1995); Swindle et al. (1996).

1978; Reedy, 1992) and plots to the left of the boundary (the shaded zone in Fig. 4) between essentially pure GCR-produced Ne and increasing amounts of SCR-produced Ne. The SCR-produced Ne is negligible in the Yamato nakhlites (Fig. 4), although it has been reported for some shergottites (*e.g.*, ALHA77005; Garrison *et al.*, 1995; Miura *et al.*, 1995). Considering the correlation between chemical compositions (Garrison *et al.*, 1995) and shielding conditions (Schultz and Signer, 1976), the measured cosmogen-ic 22 Ne/ 21 Ne ratios (1.206, 1.191, and 1.184 for Y000593, Y000749, and Y000802, respectively; Table 3) suggest that the Yamato nakhlites were irradiated by GCRs in a small (<1 m in diameter) pre-atmospheric object. Therefore, we consider that Y000593, Y000749, and Y000802 were ejected directly from Mars by an impact.

Fig. 5. Neon three isotope plot. Measured ²¹Ne/²²Ne ratios elevate as heating temperature increases. Isotopic ratios of 400°C fractions of the Yamato nakhlites are in excellent agreement with those determined for plagioclase from the St. Severin chondrite (Smith and Huneke, 1975). A range of Ne composition produced via reactions with SCRs is also shown for different shielding conditions (0.5–10g/cm²) and energy spectrum according to Reedy (1992), for the bulk chemical composition of Y000593 (Imae et al., 2003). Isotopic ratios of Ne for terrestrial atmosphere (Air; Ozima and Podosek, 2002) and solar wind (SW; Benkert et al., 1993) are also plotted for comparison.

3.3. Cosmogenic Ne produced in Na-rich phases

Step heating analyses revealed that cosmogenic ²¹Ne/²²Ne determined at 400 and 600°C are lower (0.69–0.74; Fig. 5 and Appendix) than those released at high temperatures where ²¹Ne/²²Ne are normal (GCR-produced Ne). Unlike the case for ALHA77005 shergottite in which the low (²¹Ne/²²Ne)_c is due to SCR (released at $> 1200^{\circ}$ C; Garrison *et al.*, 1995), the temperature dependent variation in the Yamato nakhlites is due to chemical composition. The low ²¹Ne/²²Ne ratios seen for low temperatures (400 and 600°C) in the Yamato nakhlites (Fig. 5) are identical to spallogenic Ne observed in plagioclase separated from the St. Severin chondrite (Smith and Huneke, 1975). High Na content (~6.5 wt%; Smith and Huneke, 1975) is responsible for the low (²¹Ne/²²Ne)_c of plagioclase, and the Na content of St. Severin plagioclase is similar to those of the Yamato nakhlite plagioclase (~7 wt%; Imae *et al.*, 2003). The ²¹Ne/²²Ne ratios at higher temperatures are typical GCR-produced Ne, probably released from olivine and/or augite. Thus, the variations in ²¹Ne/²²Ne reflect different minerals with different release temperatures.

3.4. Crystallization ages and comparisons with other nakhlites and chassignite

We calculated K-Ar ages for Y000593, Y000749, and Y000802 using the bulk K concentration of 1494 ppm reported for Y000593 (Imae *et al.*, 2003). Table 4 shows K-Ar ages calculated for the Antarctic nakhlites and Nakhla (Ott, 1988) with two assumptions on the trapped 40 Ar/ 36 Ar ratio. Ott (1988) presented K-Ar age of about 1 Ga for Nakhla assuming negligible contribution of Mars atmospheric Ar, (40 Ar/ 36 Ar)_t = 0. If the same calculation is done for Nakhla assuming that the trapped Ar is present-day Mars atmosphere (40 Ar/ 36 Ar=2000; Owen *et al.*, 1977; Bogard and John-

	2)	36 .	(⁴⁰ Ar / ³	⁶ Ar) _t =0	(⁴⁰ Ar / ³⁶	³⁶ Ar) _t =2000	
Sample	K ^{a)} (ppm)	³⁰ Ar _t	$\begin{array}{c} ({}^{40}\text{Ar} / {}^{36}\text{Ar})_{i} = 0 & ({}^{40}\text{Ar})_{i} = 0 & ({}^$	K-Ar age (Ga)			
Y000593 step heating	1494	2.36	13294	1.48 ±0.14	8574	1.08 ±0.11	
Y000593 total melting	1494	0.904	9093	1.13 ±0.12	7285	0.95 ±0.10	
Y000749	1494	1.06	11888	1.37 ±0.14	9768	1.19 ±0.12	
Y000802	1494	1.60	7669	0.99 ±0.11	4469	0.64 ±0.08	
		Mean K-A	Ar age (Ga)	1.24 ±0.22		0.97 ±0.24	
Nakhla P1	1378	0.90	7833	1.07 ±0.11	6043	0.88 ±0.10	
Nakhla P2/3/4	1378	0.88	7594	1.05 ±0.11	5838	0.85 ±0.10	
Nakhla H1	1378	0.86	6511	0.93 ±0.10	4791	0.73 ±0.08	

Table 4. K-Ar ages for Y000593, Y000749, and Y000802.

^a The bulk K concentrations for Y000593 and Nakhla are from Imae et al. (2003) and Dreibus et al. (1982), respectively.

Concentrations of ${}^{36}Ar_t$ and ${}^{40}Ar_r$ are shown in $10^{.9}$ cm 3 STP/g. The Nakhla data are from Ott (1988).

son, 1983), the resulting age is 0.82 Ga, which is $0.6 \times$ younger than those obtained for Nakhla by other radiometric system; 1.3, 1.30, 1.26, and 1.26 Ga are ³⁹Ar-⁴⁰Ar, Rb-Sr, Sm-Nd, and U-Th-Pb ages for Nakhla, respectively (Podosek, 1973; Gale *et al.*, 1975; Papanastassiou and Wasserberg, 1974; Nakamura *et al.*, 1982). Therefore, we calculated K-Ar ages for the Yamato nakhlites assuming a negligible contribution from the Mars atmosphere. The adopted K-Ar age of 1.24 ± 0.22 for the Antarctic nakhlites is in agreement with crystallization ages of other nakhlites (around 1.3 Ga; Nyquist *et al.*, 2001 and references therein), although other radiometric ages should be obtained to determine a reliable and precise crystallization age.

The Martian surface consists of rocks with distinct crystallization ages, and has been classified into eight epochs (Tanaka, 1986): Noachian, Hesperian, and Amazonian along with "Early", "Middle (except for Hesperian)", and "Late" subdivisions according to the density of impact crater per unit area. The "crater retention age" is related to the evolution of the Martian surface layers to a depth on the order of km (Hartmann and Neukum, 2001), although the ejected Martian rocks are likely to come from shallower surface layers (< several hundred meters; Melosh, 1989). In this context, the combination of the crystallization age and ejection time could discriminate impact events on the Mars surface units.

The ejection times of non-Antarctic nakhlites range between 10.9 and 14.2 Ma (we considered only T_{21Ne} for CRE ages reviewed in Nyquist *et al.* (2001) and references therein), while crystallization ages are from 1.27 to 1.34 Ga (Nyquist et al., 2001). Both the crystallization age and ejection time of the Yamato nakhlites are in good agreement with those of other nakhlites. Chassigny also has the ejection time and crystallization age (12.6 Ma and 1.34 Ga; Nyquist et al., 2001) close to those of nakhlites. These chronological data suggest that both Antarctic and non-Antarctic nakhlites, and Chassigny were ejected from a unit of the Martian surface simultaneously by a single impact. One of the possible ejection sites is Amazonis Planitia because the crystallization ages of 1.3 Ga correspond to Early Amazonian epoch according to Hartmann-Tanaka model, as discussed in Nyquist et al. (2001). However, the crater retention age has large uncertainties in the time scales of the mid-Martian histories (Hartmann and Neukum, 2001). Thus, it is important to try to identify the original Martian surface units of Martian meteorites by comparison between meteorite samples and Mars exploration data in terms of petrographical, mineralogical and isotopic signatures. Further investigations both on Mars and on Martian meteorites will lead us to understanding the origins and evolution histories of Mars and other terrestrial planets.

4. Summary

We have measured noble gases of Yamato (Y) 000539, Y000749, and Y000802. Calculated cosmic-ray exposure (CRE) ages from cosmogenic He, Ne, and Ar for the three nakhlites are in good agreement with each other; T_{21Ne} based on the cosmogenic 21 Ne for Y000593, Y000749, and Y000802 are 11.7, 11.9, and 13.0, respectively. This supports the pairing based on mineralogical and petrographical similarities and the locations of the finds (Kojima and Imae, 2001; Kojima *et al.*, 2002; Imae *et al.*, 2002,

2003). An apparent ⁸¹Kr-Kr age was also determined for Y000593 to be 11.8 ± 1.0 Ma, which agrees with the T_{21Ne} within experimental uncertainties. Hence, the terrestrial age of this meteorite should be less than 0.04 Ma. The ejection time was estimated to be 12.1 ± 0.7 Ma. The K-Ar age was calculated as 1.24 ± 0.22 Ga. The ejection time and K-Ar ages are identical to those of other nakhlites and Chassigny.

Trapped noble gas elemental ratios of ${}^{36}\text{Ar}/{}^{84}\text{Kr}/{}^{132}\text{Xe}$ and ${}^{129}\text{Xe}/{}^{132}\text{Xe}$ indicate that the three Antarctic meteorites are Nakhla-type Martian meteorites. This is also consistent with mineralogical and petrographical studies (Kojima and Imae, 2001; Kojima *et al.*, 2002; Imae *et al.*, 2002, 2003).

Contrary to the similarity in cosmogenic gases, some variations in Xe isotopes were observed among the Antarctic nakhlites. Y000749 and Y000802 show higher contributions of excess ¹²⁹Xe and fission ¹³⁶Xe compared to Y000593. In addition, the release pattern of trapped ¹³⁰Xe for Y000593 is different from those of Y000749 and Y000802. Only Y000593 has enrichment in trapped ¹³⁰Xe at high temperature (1300–1750°C). Olivine abundance of Y000593 is also different from those of Y000749 and Y000802 (Imae *et al.*, 2003). These differences in Xe isotopes and petrologic features probably reflect the heterogeneities at the ejection site on the Martian surface.

Acknowledgments

We thank D.D. Bogard and N. Takaoka for the review comments aiding in the revision of the manuscript. This work was partly supported by the JSPS Research Fellowships for Young Scientists for R.O.

References

- Anders, E. and Grevesse, N. (1989): Abundances of the elements: Meteoritic and solar. Geochim. Cosmochim. Acta, 53, 197–214.
- Becker, R.H. and Pepin, R.O. (1984): The case for a martian origin of the shergottites: nitrogen and noble gases in EETA 79001. Earth Planet. Sci. Lett., 69, 225-242.
- Becker, R.H. and Pepin, R.O. (1993): Nitrogen and noble gases in a glass sample from LEW88516. Lunar and Planetary Science XXIV. Houston, Lunar Planet. Inst., 77–78.
- Begemann, F. and Schultz, L. (1988): The influence of bulk chemical composition on the production rate of cosmogenic nuclides in meteorites. Lunar and Planetary Science XIX. Houston, Lunar Planet. Inst., 51–52.
- Benkert, J-P., Baur, H., Signer, P. and Wieler, R. (1993): He, Ne, and Ar from the solar wind and solar energetic particles in lunar ilmenites and pyroxenes. J. Geophys. Res., 98 (E7), 13147–13162.
- Bogard, D.D. and Johnson, P. (1983): Martian gases in an Antarctic meteorite? Science, 221, 651-654.
- Bogard, D.D. and Garrison, D.H. (1998): Relative abundances of argon, krypton, and xenon in the Martian atmosphere as measured in Martian meteorites. Geochim. Cosmochim. Acta, **62**, 1829–1835.
- Bogard, D.D., Nyquist, L.E. and Johnson, P. (1984): Noble gas contents of shergottites and implications for the Martian origin of SNC meteorites. Geochim. Cosmochim. Acta, 48, 1723–1739.
- Bogard, D.D., Hörz, F. and Johnson, P.H. (1986): Shock-implanted noble gases: an experimental study with implications for the origin of Martian gases in shergottite meteorites. Proc. Lunar Planet. Sci. Conf., 17th, pt. 1, E99–E114 (J. Geophys. Res., 91, B13).
- Busemann, H. and Eugster, O. (2002): The trapped noble gas component in achondrites. Meteorit. Planet. Sci., 37, 1865–1891.
- Clayton, R.N. and Mayeda, T.K. (1996): Oxygen isotope studies of achondrites. Geochim. Cosmochim.

Acta, 60, 1999-2017.

- Drake, M. J., Swindle, T.D., Owen, T. and Musselwhite, D.S. (1994): Fractionated martian atmosphere in the nakhlites? Meteoritics, **29**, 854–859.
- Dreibus, G., Palme, H., Rammensee, W., Spettel, B., Weckwerth, G. and Wänke, H. (1982): Composition of Shergotty parent body; Further evidence of a two component model of planet formation. Lunar and Planetary Science XIII. Houston, Lunar Planet. Inst., 186–187.
- Eastwood, T.A., Brown, F. and Crocker, I.H. (1964): A krypton-81 half-life determination using a mass separator. Nuclear Physics, 58, 328–336.
- Eberhardt, P., Geiss, J., Graf, H., Grögler, N., Mendia, M.D., Mörgeli, M., Schwaller, H., Steller, A., Krähenbühl, U. and von Gunten, H.R. (1972): Trapped solar wind noble gases in Apollo 12 lunar fines 12001 and Apollo 11 breccia 10046. Proc. Lunar Sci. Conf., 3rd, 1821–1856.
- Eugster, O. and Michel, Th. (1995): Common asteroid break-up events of eucrites, diogenites, and howardites and cosmic-ray production rates for noble gases in achondrites. Geochim. Cosmochim. Acta, 59, 177–199.
- Eugster, O., Weigel, A. and Polnau, E. (1997): Ejection times of Martian meteorites. Geochim. Cosmochim. Acta, 61, 2749–2757.
- Freundel, M., Schultz, L. and Reedy, R.C. (1986): Terrestrial ⁸¹Kr-Kr ages of Antarctic meteorites. Geochim. Cosmochim. Acta, **50**, 2663–2673.
- Gale, N.H., Arden, J.W. and Hutchison, R. (1975): The chronology of the Nakhla achondritic meteorite. Earth Planet. Sci. Lett., 26, 195–206.
- Garrison, D.H., Rao, M.N. and Bogard, D.D. (1995): Solar-proton-produced neon in shergottite meteorites and implications for their origin. Meteoritics, 30, 738–747.
- Geiss, J. and Hess, D.C. (1958): Argon-potassiun ages and the isotopic composition of argon from meteorites. Astrophys. J., 127, 224–236.
- Hartmann, W.K. and Neukum, G. (2001): Cratering chronology and the evolution of Mars. Space Sci. Rev., 96, 165–194.
- Hohenberg, C.M., Marti, K., Podosek, F.A., Reedy, R.C. and Shirck, J.R. (1978): Comparisons between observed and predicted cosmogenic noble gases in lunar samples. Proc. Lunar Planet. Sci. Conf., 9th, 2311–2344.
- Hudson, G.B., Kennedy, B.M., Podosek, F.A. and Hohenberg, C.M. (1989): The early solar system abundance of ²⁴⁴Pu as inferred from the St. Severin chondrite. Proc. Lunar Planet. Sci. Conf., 19th, 547–557.
- Imae, N., Okazaki, R., Kojima, H. and Nagao, K. (2002): The first nakhlite from Antarctica. Lunar and Planetary Science XXXIII. Houston, Lunar Planet. Inst., #1483 (CD-ROM).
- Imae, N., Ikeda, Y., Shinoda, K., Kojima, H. and Iwata, N. (2003): Yamato nakhlites: Petrography and mineralogy. Antarct. Meteorite Res., 16, 13–33.
- Kojima, H. and Imae, N., ed. (2001): Meteorite Newsletter, 10 (2), 9 p.
- Kojima, H., Nakamura, N., Imae, N. and Misawa, K. (2002): The Yamato nakhlite consortium. Antarctic Meteorites XXVII. Tokyo, Natl Inst. Polar Res., 66–68.
- Lugmair, G.W. and Galer, S.J.G. (1992): Age and isotopic relationships among the angrites Lewis Cliff 86010 and Angra dos Reis. Geochim. Cosmochim. Acta, 56, 1673–1694.
- Marti, K., Eberhardt, P. and Geiss, J. (1966): Spallation, fission, and neutron capture anomalies in meteoritic krypton and xenon. Z. Naturforsch, 21a, 398-413.
- Marti, K. and Lugmair, G.W. (1971): Kr⁸¹-Kr and K-Ar⁴⁰ ages, cosmic-ray spallation products, and neutron effects in lunar samples from Oceanus Procellarum. Proc. Lunar Sci. Conf., 2nd, 1591–1605.
- Mathew, K. J. and Marti, K. (2001): Early evolution of Martian volatiles: Nitrogen and noble gas components in ALH84001 and Chassigny. J. Geophys. Res., 106 (E1), 1401–1422.
- Mathew, K.J. and Marti, K. (2002): Martian atmospheric and interior volatiles in the meteorite Nakhla. Earth Planet. Sci. Lett., **199**, 7-20.
- Mathew, K. J., Kim, J.S. and Marti, K. (1998): Martian atmospheric and indigenous components of xenon and nitrogen in the Shergotty, Nakhla, and Chassigny group meteorites. Meteorit. Planet. Sci., 33, 655–664.
- McSween, H.Y., Jr. (1994): What we have learned about Mars from SNC meteorites. Meteoritics, 29, 757-

779.

- Melosh, H.J. (1989): Impact Cratering: A Geologic Process. New York, Oxford Univ. Press, 245 p.
- Miura, Y., Nagao, K. and Fujitani, T. (1993): ⁸¹Kr terrestrial ages and grouping of Yamato eucrites based on noble gas and chemical compositions. Geochim. Cosmochim. Acta, 57, 1857–1866.
- Miura, Y.N., Nagao, K., Sugiura, N., Sagawa, H. and Matsubara, K. (1995): Orthopyroxenite ALH84001 and shergottite ALH77005: Additional evidence for a Martian origin from noble gases. Geochim. Cosmochim. Acta, 59, 2105–2113.
- Miura, Y.N., Nagao, K., Sugiura, N., Fujitani, T. and Warren, P.H. (1998): Noble gases, ⁸¹Kr-Kr exposure ages and ²⁴⁴Pu-Xe ages of six eucrites, Béréba, Binda, Camel Donga, Juvinas, Millbillillie, and Stannern. Geochim. Cosmochim. Acta, 62, 2369–2387.
- Nagao, K., Okazaki, R., Sawada, S. and Nakamura, N. (1999): Noble gases and K-Ar ages of five Rumuruti chondrites Yamato (Y)-75302, Y-791827, Y-793575, Y-82002, and Asuka-881988. Antarct. Meteorite Res., 12, 81–93.
- Nakamura, N., Unruh, D.M., Tatsumoto, M. and Hutchison, R. (1982): Origin and evolution of the Nakhla meteorite inferred from the Sm-Nd and U-Pb systematics and REE, Ba, Sr, Rb, and K abundances. Geochim. Cosmochim. Acta, 46, 1555–1573.
- Nishiizumi, K. (1987): ⁵³Mn, ²⁶Al, ¹⁰Be and ³⁶Cl in meteorites: Data compilation. Nucl. Tracks Radiat. Meas., **13**, 209–273.
- Nishiizumi, K., Okazaki, R., Park, J., Nagao, K., Masarik, J. and Finkel, R.C. (2002): Exposure and terrestrial histories of Dhofar 019 Martian meteorite. Lunar and Planetary Science XXXIII. Houston, Lunar Planet. Inst., #1366 (CD-ROM).
- Nyquist, L.E., Bogard, D.D., Shih, C.-Y., Greshake, A., Stöffler, D. and Eugster, O. (2001): Ages and geological histories of Martian meteorites. Space Sci. Rev., 96, 105–164.
- Okazaki, R., Takaoka, N., Nagao, K., Sekiya, M. and Nakamura, T. (2001): Noble-gas-rich chondrules in an enstatite meteorite. Nature, **412**, 795–798.
- Ott, U. (1988): Noble gases in SNC meteorites: Shergotty, Nakhla, Chassigny. Geochim. Cosmochim. Acta, **52**, 1937–1948.
- Ott, U. and Löhr, H.P. (1992): Noble gases in the new shergottites LEW 88516 (abstract). Meteoritics, 27, 271.
- Ott, U., Löhr, H.P. and Begemann, F. (1988): New noble gas data for SNC meteorites: Zagami, Lafayette, and etched Nakhla (abstract). Meteoritics, 23, 295–296.
- Owen, T., Biemann, K., Rushneck, D.R., Biller, J.E., Howarth, D.W. and Lafleur, L.L. (1977): The composition of the atmosphere at the surface of Mars. J. Geophys. Res., 82, 4635–4639.
- Ozima, M. and Podosek, F.A. (2002): Noble Gas Geochemistry, 2nd ed. Cambridge Univ. Press, 286 p.
- Papanastassiou, D.A. and Wasserburg, G.J. (1974): Evidence for late formation and young metamorphism in the achondrite Nakhla. Geophys. Res. Lett., 1, 23–26.
- Pepin, R.O. (1985): Evidence of Martian origins. Nature, 317, 473-475.
- Pepin, R.O. (1991): On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. Icarus, 92, 2–79.
- Podosek, F.A. (1973): Thermal history of the nakhlites by the ⁴⁰Ar-³⁹Ar method. Earth Planet. Sci. Lett., **19**, 135–144.
- Reedy, R.C. (1992): Solar-proton production of neon and argon. Lunar and Planetary Science XXIII. Houston, Lunar Planet. Inst., 1133–1134.
- Schultz, L. and Signer, P. (1976): Depth dependence of spallogenic helium, neon, and argon in the St. Severin chondrite. Earth Planet. Sci. Lett., 30, 191–199.
- Smith, S.P. and Huneke, J.C. (1975): Cosmogenic neon produced from sodium in meteoritic minerals. Earth Planet. Sci. Lett., 27, 191–199.
- Swindle, T.D. (1988): Trapped noble gases in meteorites. Meteorites and the Early Solar System, ed. by J.F. Kerridge and M.S. Matthews. Tuscon, Univ. Arizona Press, 535–564.
- Swindle, T.D. and Jones, J.H. (1997): The xenon isotopic composition of the primordial Martian atmosphere: Contributions from solar and fission components. J. Geophys. Res., 102 (E1), 1671–1678.
- Swindle, T.D., Caffee, M.W. and Hohenberg, C.M. (1986): Xenon and other noble gases in shergottites. Geochim. Cosmochim. Acta, 50, 1001–1015.

- Swindle, T.D., Nichols, R. and Olinger, C.T. (1989): Noble gases in the nakhlite Governador Valadares. Lunar and Planetary Science XX. Houston, Lunar Planet. Inst., 1097–1098.
- Swindle, T.D., Li, B. and Kring, D.A. (1996): Noble gases in Martian meteorite QUE94201. Lunar and Planetary Science XXVII. Houston, Lunar Planet. Inst., 1297–1298.
- Tanaka, K.L. (1986): The stratigraphy of Mars. Proc. Lunar Planet. Sci. Conf., 17th, Pt. 1, E139–E158 (J. Geophys. Res. 91, B13).
- Walton, J.R., Heymann, D. and Yaniv, A. (1976): Production of He, Ne, and Ar isotopes and U²³⁶ in lunar materials by solar cosmic ray protons—Production rate calculations. J. Geophys. Res., 81, 5701– 5710.
- Wiens, R.C. (1988): Noble gases released by vacuum crushing of EETA 79001 glass. Earth Planet. Sci. Lett., 91, 55–65.
- Wiens, R.C. and Pepin, R.O. (1988): Laboratory shock emplacement of noble gases, nitrogen, and carbon dioxide into basalt, and implications for trapped gases in shergottite EETA 79001. Geochim. Cosmochim. Acta, 52, 295–307.
- Wiens, R.C., Becker, R.H. and Pepin, R.O. (1986): The case for a martian origin of the shergottites, II. Trapped and indigenous gas components in EETA 79001 glass. Earth Planet. Sci. Lett., 77, 149– 158.

(Received November 8, 2002; Revised manuscript accepted February 3, 2003)

Appendix

Concentrations and isotopic ratios of noble gases of Y000593, Y000749, and Y000802. All data are corrected for blank gases and mass discrimination (MD) effects of the mass spectrometer. Concentrations of He, Ne, and Ar are in 10^{-9} cm³ STP/g, and those of Kr and Xe are in 10^{-12} cm³ STP/g. Presented errors for isotopic ratios are 1σ including statistical errors and errors propagated from the blank and MD corrections. Errors for concentrations are assumed to be 10%.

	He, Ne, and Ar isotopes								
	⁴He	³ He/ ⁴ He	²² Ne	²⁰ Ne/ ²² Ne	²¹ Ne/ ²² Ne	³⁶ Ar	³⁸ Ar/ ³⁶ Ar	⁴⁰ Ar/ ³⁶ Ar	
Y000593 step heating (0.1622g)									
400 °C	2041	0.005543	0 377	0.704	0.6924	0 154	0.2930	841	
400 C	2041	± 0.000024	0.377	± 0.018	± 0.0038	0.154	± 0.0094	± 51	
600 °C	2488	0.009760	0 102	0.766	0.718	0 0758	0.687	2367	
	2100	± 0.000042	0.101	± 0.065	± 0.010	0.0100	± 0.092	± 388	
3° 008	5535	0.02404	0.469	0.743	0.8015	0.579	0.640	6792	
		± 0.00010		± 0.016	± 0.0053		± 0.028	± 403	
1000 °C	550	0.04657	3.29	0.8237	0.8233	0.995	0.677	/316	
		± 0.00023		± 0.0037	± 0.0012		1 2172	I 410	
1300 °C	189	+ 0.00401	10.1	+ 0.0013	+ 0.00062	1.68	+ 0 0007	109.0	
_		0 145		0.8445	0.8261		1 4307	± 5.9 59.46	
1750 °C	21.4	+ 0.010	10.1	+ 0.0018	+ 0.0012	9.79	+ 0.0022	+ 0.34	
		0.019714		0.8357	0.82391		1.3078	1002	
lotal	10825	± 0.000060	24.4	± 0.0011	± 0,00060	13.3	± 0.0032	± 36	
Y-000593 total melting (0.2963g)									
4750 %0	0047	0.02400	05.0	0.8299	0.82579	A 4 5	1.4428	791.4	
1750 C	8917	± 0.00011	25.3	± 0.0013	± 0.00066	11.5	± 0.0037	± 2.0	
Y000749 step heating (0.2048g)									
400 %	4000	0.004587		0.6342	0.6912	0 4 0 4	0.2773	802.7	
400 C	1082	± 0.000024	0.226	± 0.0081	± 0.0046	0.104	± 0.0015	± 6.5	
600 °C	2760	0.009503	0 107	0.5706	0.7067	0.0504	0.928	3542	
800 C	2/09	± 0.000069	0.197	± 0.0095	± 0.0035	0.0594	± 0.016	± 69	
800 °C	4695	0.02960	0 773	0.7611	0.8196	0 205	1.111	16587	
800 0	4005	± 0.00014	0.115	± 0.0039	± 0.0016	0.555	± 0.026	± 457	
1000 °C	261	0.05601	4 11	0.8179	0.8366	0 321	1.288	13010	
1000 0	201	± 0.00034	4.11	± 0.0024	± 0.0012	0.021	± 0.019	± 234	
1300 °C	198	0.11249	11.5	0.8305	0.8394	1 84	1.4751	270.55	
		± 0.00098		± 0.0021	± 0.0013		± 0.0031	± 0.67	
1750 °C	15.1	0.149	8.90	0.8301	0.8371	9.36	1.4568	38.95	
		± 0.014		± 0.0019	± 0.0012		± 0.0022	± 0.14	
Total	9010	0.023204 ± 0.000080	25.7	0.8226 ± 0.0012	0.83523 ± 0.00072	12.1	1.4310 ± 0.0020	984 ± 16	
Y000802 step heating (0.1772g)									
400 80	4000	0.008752	0.050	0.711	0.7078	0 4 0 7	0.2582	699	
400 °C	1208	± 0.000039	0.256	± 0.018	± 0.0048	0.167	± 0.0026	± 12	
600 °C	0700	0.015517	0 1 9 1	0.737	0.7428	0.0049	0.710	4071	
600 C	2133	± 0.000069	0.101	± 0.025	± 0.0063	0.0048	± 0.040	± 291	
800 °C	3400	0.04329	1 24	0.8241	0.8315	0.644	0.639	6971	
000 C	0490	± 0.00018	1.24	± 0.0081	± 0.0041	0.044	± 0.023	± 359	
1000 °C	227	0.07509	5 87	0.8286	0.8401	0.363	0.900	6021	
1000 0		± 0.00059	0.07	± 0.0018	± 0.0016	0.000	± 0.032	± 272	
1300 °C	188	0.1265	17.7	0.8342	0.8443	4.86	1.4695	96.22	
		± 0.0012		± 0.0018	± 0.0015		± 0.0021	± 0.21	

0.397

± 0.491

0.03127

± 0.00012

1.29

7847

1750 ℃

Total

0.8435

0.8320

± 0.0036

± 0.0013

3.33

28.6

0.8314

0.8395

± 0.0017

± 0.0010

6.25

12.3

1.4376

1.3730

± 0.0015

± 0.0019

24.22

621

± 20

0.17

Appendix	(continued):	Kr	isotopes

	⁸⁴ Kr	⁷⁸ Kr/ ⁸⁴ Kr	⁸⁰ Kr/ ⁸⁴ Kr	⁸¹ Kr/ ⁸⁴ Kr	⁸² Kr/ ⁸⁴ Kr	⁸³ Kr/ ⁸⁴ Kr	⁸⁶ Kr/ ⁸⁴ Kr
Y000593 step heating (0.1622g)							
400 °C	64.0	0.00627	0.03979	_	0.2016	0.2015	0.3073
400 C	04.0	± 0.00025	± 0.00067	-	± 0.0011	± 0.0014	± 0.0022
600 °C	12.3	0.00604	0.0397	_	0.1984	0.2024	0.3073
000 0	12.0	± 0.00038	± 0.0011		± 0.0034	± 0.0039	± 0.0031
800 °C	8.04	0.01317	0.0621	-	0.2280	0.2370	0.3045
		± 0.00083	± 0.0014		± 0.0030	± 0.0037	± 0.0061
1000 °C	4.92	0.103	0.323	-	0.561	0.679	0.203
		± 0.010	± 0.031		± 0.036	± 0.046	± 0.011
1300 °C	8.15	0.0588	0.1953	-	0.4036	0.465	0.2577
		± 0.0031	± 0.0083		± 0.0081	± 0.010	± 0.0055
1750 °C	13.7	0.0510	0.1696	-	0.3663	0.4270	0.2654
		± 0.0012	± 0.0038		± 0.0052	± 0.0064	± 0.0054
Total	111	0.02040	0.0814	-	0.2543	0.2725	0.2937
		± 0.00053	± 0.0016		± 0.0020	± 0.0025	± 0.0017
Y-000593 total melting (0.2963g)							
		0 01359	0.06129	0 000660	0 2315	0 24048	0 3023
1750 °C	155	+ 0.00016	+ 0.00059	+ 0.000043	+ 0.0011	+ 0.00068	+ 0.0016
		1 0.00010	1 0.00000	1 0.000040	1 0.0011	1 0.00000	1 0.0010
Y000749 step heating (0.2048g)							
400 %	20.4	0.00605	0.04032		0.2031	0.2009	0.3097
400 °C	20.1	± 0.00022	± 0.00077	-	± 0.0028	± 0.0023	± 0.0030
600 °C	4 72	0.00709	0.0404		0.2059	0.2026	0.3099
800 C	4.73	± 0.00075	± 0.0021	-	± 0.0044	± 0.0024	± 0.0040
800 °C	8.05	0.0325	0.1144	_	0.291	0.318	0.2842
000 0	0.05	± 0.0012	± 0.0060	-	± 0.012	± 0.012	± 0.0085
1000 °C	5 14	0.105	0.331		0.577	0.712	0.198
1000 0	0.14	± 0.012	± 0.036		± 0.043	± 0.069	± 0.014
1300 °C	1.84	0.158	0.474	-	0.757	0.934	0.170
		± 0.015	± 0.051		± 0.063	± 0.076	± 0.017
1750 °C	6.16	0.0788	0.251	-	0.4773	0.561	0.2381
		± 0.0038	± 0.011		± 0.0096	± 0.022	± 0.0050
Total	46.0	0.0377	0.1312	-	0.3194	0.3562	0.2776
	10.0	± 0.0016	± 0.0049		± 0.0061	± 0.0092	± 0.0027
V000000 / / / / / / / / /							
YUUU8U2 step heating (U.1772g)		0.00040	0 0000 4		0 0000	0.0000	0.0050
400 °C	36.0	0.00613	0.03964	-	0.2036	0.2030	0.3056
		± 0.00021	± 0.000/1		± 0.0016	I U.UU24	I U.UU21
000 °C	5.23	+ 0.00057	+ 0.0417	-	+ 0.0057	+ 0.0040	+ 0.0045
		1 0.00001	1 0.0017		1 0.0037	± 0.0040	1 2800
3° 008	5.83	+ 0.0200	+ 0.0903	-	+ 0.0058	+ 0.0051	+ 0.0036
		0.0746	0.0001		0.0038	0.552	0.0030
1000 °C	3.30	+ 0.0056	+ 0.015	-	+ 0.018	+ 0.031	+ 0.0085
		0 1085	0.3366		0.583	0.709	0 2141
1300 °C	3.84	± 0.0041	± 0.0073	-	± 0.017	± 0.016	± 0.0083
		0.0406	0.1396		0.3292	0.3725	0.2719
1750 °C	5.40	+ 0.0020	+ 0.0025	-	+ 0.0051	+ 0.0062	+ 0.0045
		0.02162	0.0849		0 2595	0.2785	0.2894
Total	59.6	+ 0.00049	+ 0.0011	-	+ 0.0020	+ 0.0026	+ 0.0016
		- 0.00049	- 0.0011		1 0.0020	1 0.0020	1 0.0010

	¹³⁰ Xe	¹²⁴ Xe/ ¹³⁰ Xe	¹²⁶ Xe/ ¹³⁰ Xe	¹²⁸ Xe/ ¹³⁰ Xe	¹²⁹ Xe/ ¹³⁰ Xe	¹³¹ Xe/ ¹³⁰ Xe	¹³² Xe/ ¹³⁰ Xe	¹³⁴ Xe/ ¹³⁰ Xe	¹³⁶ Xe/ ¹³⁰ Xe
Y000593 step heating (0.1622g)									
400 °C	0.655	0.024	0.0254	0.478	6.88	5.263	6.63	2.561	2.147
400 0	0.000	± 0.013	± 0.0032	± 0.013	± 0.13	± 0.089	± 0.12	± 0.064	± 0.040
600 °C	0.413	0.023	0.0230	0.446	6.72	5.15	6.48	2.56	2.153
		± 0.015	± 0.0036	± 0.033	± 0.20	± 0.16	± 0.22	± 0.12	± 0.087
3° 008	0.903	0.0289	+ 0.0007	0.4713	0.71	5.21	0.07	2.000	2.157
		£ 0.0004 0 145	± 0.0027	1 0.0077	£ 0.13 6.21	1 0.12 4 60	± 0.25 5.22	1 99	1 65
1000 °C	0.232	+ 0.021	+ 0.021	+ 0.053	+ 0.32	+ 0.16	+ 0.27	+ 0.11	+ 0.11
1000 %=		0.1266	0.1979	0.646	6.25	4,796	5.62	2.154	1.847
1300 °C	1.88	± 0.0049	± 0.0056	± 0.019	± 0.14	± 0.068	± 0.16	± 0.025	± 0.031
1750 %	1 02	0.3295	0.544	1.004	4.58	3.81	3.70	1.328	1.087
1/30 C	1.02	± 0.0095	± 0.014	± 0.022	± 0.15	± 0.10	± 0.11	± 0.042	± 0.031
Total	5 10	0.1291	0.2040	0.653	6.114	4.752	5.585	2.138	1.805
		± 0.0038	± 0.0037	± 0.0093	± 0.071	± 0.043	± 0.081	± 0.022	± 0.019
V 000502 total malling (0.2062a)									
Y-000593 total meiting (0.2963g)		0 0002	0 1245	0 5974	6 520	4 029	6 025	2 221	1 072
1750 °C	6.41	+ 0.0903	+ 0.0016	+ 0.0055	+ 0.027	4.930	+ 0.034	+ 0.014	+ 0.013
		1 0.0015	1 0.0010	1 0.0035	1 0.027	1 0.034	1 0.034	1 0.014	1 0.015
1000740 -to - b for - 10 00 40 -1									
rouur 49 step neating (0.2048g)		0.0272	0.0210	0 472	7.00	E 149	6 67	3 642	2 171
400 °C	0.763	+ 0.0003	+ 0.00219	+ 0.015	1.00	0,140	0.07 ± 0.10	2.040	2.1/1
		1 0.0093	± 0.0028	± 0.015	± 0.21 7.04	£ 0.003	± 0.19	2 540	2 176
600 °C	0.489	+ 0.015	+ 0.0021	+ 0.020	+ 0.18	+ 0.17	+ 0.28	+ 0.058	+ 0.066
		0.067	0.0473	0.495	7.25	5.22	6.52	2.52	2,137
800 °C	0.462	± 0.023	± 0.0053	± 0.029	± 0.29	± 0.13	± 0.33	± 0.11	± 0.043
1000 °C	0.044	0.349	0.506	0,947	5.84	3,956	3,95	1,411	1,249
1000 C	0.214	± 0.046	± 0.016	± 0.036	± 0.18	± 0.096	± 0.16	± 0.063	± 0.051
1300 °C	0.416	0.406	0.669	1.115	4.68	3.525	3.12	1.025	0.872
1000 0	0.410	± 0.025	± 0.040	± 0.077	± 0.11	± 0.061	± 0.11	± 0.049	± 0.047
1750 °C	0.489	0.488	0.817	1.279	3.305	3.038	2.141	0.623	0.506
		± 0.022	± 0.043	± 0.036	± 0.079	± 0.074	± 0.097	± 0.050	± 0.036
Total	2.83	+ 0.0091	0,2952	0,745	5,981	4,4/0	5,137	1,899	1,618
		± 0.0001	± 0.0097	± 0.015	± 0.065	± 0.040	± 0.092	1 0.025	± 0.020
YUUUX02 step heating (0.1772g)		0.00.47		o	7.00				
400 °C	1.45	0.0247	0.0226	0.470	7.06	5.256	6.64	2.595	2.194
		± 0.0028	± 0.0019	± 0.011	± 0.11	± 0.068	± 0.13	± 0.040	± 0.023
600 °C	0.567	+ 0.0063	+ 0.0021	0.409	1.40	5,20	+ 0.04	2,014	2,227
		1 0.0003	1 0.0031	0.512	7 70	5 25	6.63	2 575	2 203
800 °C	0.507	+ 0.011	+ 0.0043	+ 0.012	+ 0.21	+ 0.17	+ 0.22	+ 0.072	+ 0.063
		0.156	0.257	0.709	7.74	4.52	5.17	1.969	1 666
1000 °C	0.333	± 0,012	± 0,013	± 0,014	± 0.15	± 0,10	± 0,12	± 0,041	± 0,029
4200 %0	0 500	0.2994	0,501	0,947	5,718	3,828	3,838	1,418	1,207
1300 C	0.592	± 0.0095	± 0.013	± 0.029	± 0.063	± 0.042	± 0.084	± 0.035	± 0.044
1750 °C	0 152	0.371	0.606	1.072	5.41	3.91	3.94	1.315	1.131
	0.132	± 0.029	± 0.025	± 0.080	± 0.32	± 0.17	± 0.19	± 0.061	± 0.077
Total	3 60	0.0992	0.1505	0.6016	6.991	4.896	5.929	2.290	1.945
		± 0,0031	± 0,0028	± 0,0079	± 0.061	± 0,043	± 0,072	± 0,023	± 0,018

Appendix (continued): ¹³⁰Xe-normalized Xe isotopes

Appendix (continued): ¹³²Xe-normalized Xe isotopes

	¹³² Xe	¹²⁴ Xe/ ¹³² Xe	¹²⁶ Xe/ ¹³² Xe	¹²⁸ Xe/ ¹³² Xe	¹²⁹ Xe/ ¹³² Xe	¹³⁰ Xe/ ¹³² Xe	¹³¹ Xe/ ¹³² Xe	¹³⁴ Xe/ ¹³² Xe	¹³⁶ Xe/ ¹³² Xe
Y000593 step heating (0.1622g)									
400 °C	4 34	0.0036	0.00384	0.0723	1.040	0.1509	0.794	0.3845	0.3220
450 C	4.54	± 0.0019	± 0.00051	± 0.0019	± 0.016	± 0.0023	± 0.011	± 0.0086	± 0.0046
€00 °C	2.67	0.0036	0.00355	0.0689	1.037	0.1543	0.794	0.393	0.3299
		± 0.0025	± 0.00058	± 0.0034	± 0.024	± 0.0049	± 0.016	± 0.012	± 0.0061
800 °C	5.92	0.0044	0.00467	0.0720	1.024	0.1525	0.7905	0.3876	0.3268
		± 0.0014	± 0.00036	± 0.0016	± 0.013	± 0.0047	± 0.0078	± 0.0062	± 0.0044
1000 °C	1.21	+ 0.0277	+ 0.0048	+ 0.0097	+ 0.045	+ 0.0077	+ 0.024	+ 0.015	+ 0.017
		0.02256	0.03528	0 1152	1 1126	£ 0.0077	1 0.024	0 3807	£ 0.017
1300 °C	10.5	+ 0.00071	+ 0.00063	± 0.0019	+ 0.0069	± 0.0045	± 0.010	± 0.0045	± 0.0048
		0.0897	0.1478	0.2722	1.241	0.2707	1.033	0.3587	0.2931
1750 °C	3.76	± 0.0026	± 0.0042	± 0.0063	± 0.024	± 0.0061	± 0.024	± 0.0093	± 0.0060
Total	29.5	0.02320	0.03665	0.1172	1.0961	0.1792	0.8469	0.3808	0.3211
TOTAL	20.0	± 0.00066	± 0.00065	± 0.0013	± 0.0062	± 0.0022	± 0.0057	± 0.0031	± 0.0024
Y-000593 total melting (0.2963g)					4 0070				
1750 °C	38.6	0.01513	0.02247	0.09793	1.0872	0.16633	0.8215	0.3858	0.3271
		± 0.00025	± 0.00019	± 0.00094	I U.UU42	I U.UUU94	I U.UU49	I U.UU2U	I U.UU2'I
V000740 dea backing (0.00 (0.1)									
YUUU/49 step neating (U.2U48g)		0.0057	0 00222	0.0746	1.057	0 4507	0 799	0 3974	0 2200
400 °C	5.06	+ 0.0057	0.00333	0.0716	1.057	+ 0.0022	0.700	+ 0.0044	+ 0.0067
		£ 0.0015	± 0.00041	£ 0.0015	1 060	£ 0.0032	1 0.018	£ 0.0044	£ 0,0007
600 °C	3.25	+ 0.0022	+ 0.00035	+ 0.0025	+ 0.016	+ 0.0051	+ 0.013	+ 0.010	+ 0.0065
202 %=		0.0104	0.00729	0.0762	1.115	0.1539	0.804	0.389	0.3289
800 °C	3.00	± 0.0034	± 0.00081	± 0.0040	± 0.026	± 0.0057	± 0.021	± 0.013	± 0.0056
1000 °C	0.840	0.090	0.1295	0.2415	1.486	0.2543	1.012	0.362	0.320
1000 8	0.040	± 0.011	± 0.0057	± 0.0094	± 0.038	± 0.0073	± 0.030	± 0.016	± 0.014
1300 °C	1 29	0.1318	0.216	0.360	1.510	0.3218	1.140	0.333	0.283
1000 0	1.20	± 0.0084	± 0.015	± 0.025	± 0.054	± 0.0097	± 0.040	± 0.012	± 0.015
1750 °C	1,05	0.230	0.384	0.600	1.549	0.468	1.426	0.293	0.238
		± 0.012	± 0.028	± 0.032	± 0.048	± 0.018	± 0.043	± 0.015	± 0.014
Total	14.5	+ 0.0017	+ 0.0025	+ 0.0034	+ 0.012	+ 0.0025	+ 0.0096	+ 0.0043	+ 0.0035
		1 0.0017	1 0.0025	1 0.0034	1 0.012	1 0.0025	1 0.0030	1 0.0043	1 0.0000
V000802 step beating (0 1772a)									
1000002 Step Healing (0.17729)		0.00380	0 00343	0.0712	1 068	0 1510	0 7983	0 3920	0 3308
400 °C	9.61	+ 0.00044	+ 0.00030	+ 0.0014	+ 0.011	+ 0.0023	+ 0.0082	+ 0.0052	+ 0.0029
		0.00443	0.00340	0.0712	1.133	0.1513	0 797	0 397	0.3375
600 °C	3.75	± 0.00094	± 0.00049	± 0.0023	± 0.020	± 0.0041	± 0.018	± 0.014	± 0.0099
800 °C	2.25	0.0060	0.00675	0.0777	1.167	0.1513	0.798	0.3909	0.3337
800 C	3.35	± 0.0016	± 0.00065	± 0.0022	± 0.022	± 0.0041	± 0.016	± 0.0084	± 0.0077
1000 °C	1 72	0.0306	0.0499	0.1364	1.601	0.1937	0.871	0.380	0.3208
1000 0	1.72	± 0.0023	± 0.0024	± 0.0018	± 0.022	± 0.0033	± 0.018	± 0.012	± 0.0076
1300 °C	2.26	0.0791	0.1318	0.2483	1.497	0.2614	1.002	0.3720	0.316
		± 0.0024	± 0.0034	± 0.0063	± 0.028	± 0.0042	± 0.016	± 0.0061	± 0.010
1750 °C	0.594	0.0976	0.1572	0.276	1.388	0.256	1.022	0.345	0.295
		± 0.0053	± 0.004/	± 0.019	± 0.045	± 0.011	± 0.033	± 0.015	± 0.015
Total	21.3	± 0.00050	± 0.00048	+ 0.0012	+ 0.0078	+ 0.0015	+ 0.0060	± 0.0038	+ 0.028