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Abstract: Allan Hills (ALH-) 77252 is a regolith breccia consisting of various types 

of clasts differing in metamorphic grades (L3-6). Titanium/aluminum ratios of low-Ca 

pyroxene in ALH-77252 are bimodally distributed. In equilibrated clasts, Ti/ Al ratios 

of low-Ca pyroxene are -0.5 which are quite different from those in unequilibrated 

clasts of -0.07. Among equilibrated and unequilibrated clasts, the Ti/Cr ratio of low­

Ca pyroxene also shows large differences. Because titanium and aluminum are not 

diffusive elements in the pyroxene crystal structure, diffusional redistribution of 

titanium and aluminum in low-Ca pyroxene requires significantly higher metamorphic 

temperature than Fe-Mg homogenization, possibly above -800
°
C. Alternatively, if the 

source materials of L-group chondrites were initially different, the fingerprints of 

mineral properties resistant to thermal metamorphism remain unchanged. If this was the 

case, the distinctly higher Ti/ Al ratios of low-Ca pyroxene in equilibrated clasts 

originated from the primary signatures of low-Ca pyroxene prior to thermal 

metamorphism. 

1. Introduction 

Brecciated ordinary chondrites are ubiquitous and consist of clasts with distinctive 

lithologies within a single specimen (Binns, 1967; Scott et al., 1985; Rubin, 1990). 

Regolith breccias of ordinary chondrites consist of light colored fragments of chondritic 

material in dark elastic material and are enriched in noble gases implanted by solar wind 

(Wasson, 1974; Keil, 1982; Bunch and Rajan, 1988). They are considered to be formed 

by lithification of regolith by impact(s) on the surface of the chondrite parent body and 

are primarily mixtures of chondritic materials of the same chemical group but of different 

petrologic types (Binns, 1967, 1968; Wasson, 1974; Keil, 1982; Scott, 1984; Bunch and 

Rajan, 1988). Foreign and/or impact-melted clasts are in some cases included in regolith 

breccias (Fodor and Keil, 1976; Scott et al., 1981a,b; Rubin et al., 1983; Bischoff et 

al., 1993). Mixing of a single chemical group of chondritic materials implies that 

constituents of regolith breccia are mainly derived from a single parent body or from 

closely related parent bodies. 

By analogy with unbrecciated ordinary chondrites, the chemical characteristics of 

chondritic regolith are obvious in the Fe/(Fe+Mg) ratios of the constituent olivine and 

low-Ca pyroxene, which vary in unequilibrated ordinary chondrites (UOCs) but are 

uniform in equilibrated ordinary chondrites (EOCs) (Binns, 1967, 1968; Wasson, 1974; 
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Keil, 1982; Scott, 1984; Bunch and Rajan, 1988). Minor element contents in low-Ca 

pyroxene vary significantly in the regolith breccia of the H chondrite, Weston (Noonan 

and Nelen, 1976). In Weston, low-Ca pyroxenes in unequilibrated chondritic xenoliths 

are rich in chromium and poor in titanium in comparison with those in recrystallized and 

equilibrated chondritic inclusions. These variations could reflect the relationship between 

the mineral chemistries and metamorphic degrees of the different materials. Previous 

studies showed that minor element compositions in low-Ca pyroxene vary in relation to 

metamorphic grades (Heyse, 1978; McCoy et al., 1991). Heyse (1978) showed 

systematic changes in the chromium, aluminum, sodium and titanium abundances in low­

Ca pyroxene with increasing wollastonite (Wo) contents, which are correlated with 

estimated metamorphic temperatures and pressures. On the other hand, McSween and 

Patchen (1989) could not find any correlation between aluminum and Wo in low-Ca 

pyroxene. An understanding of minor element behavior in low-Ca pyroxene during 

thermal metamorphism and brecciation processes wilJ give us information about the 

evolutional history of chondrite regolith breccias. We thus performed mineralogical and 

petrological studies on an L3-6 breccia, ALH-77252, mainly focusing on the minor 

element compositions of low-Ca pyroxene and here we discuss the evolutional history of 

the chondrite parent body. 

2. Sample and experiment 

On the basis of its mineralogy and petrology, ALH-77252 was previously classified 

as L4/L6 (King et al., 1980), L3/L6 (Score et al., 1981), or L3 (Scott, 1984; Yanai and 

Kojima, 1987). An acid residue fraction of ALH-77252 shows a heavy rare-earth 

element enriched pattern with a large positive Eu anomaly which is typically observed in 

EOCs (Ebihara, 1989). Noble gases implanted by solar wind are highly enriched in 

ALH-77252, suggesting that it is a regolith breccia (Nautiyal et al., 1984; Scott, 1984). 

ALH-77252 is claimed to be paired with ALH-77215, ALH-77216 and ALH-77217 (King 

et al., 1980). According to the thermoluminescence sensitivities, Sears et al. (1991) 

assigned petrologic subtype 3.7/3.9 for ALH-77216. ALH-77215 contains graphite­

magnetite aggregates that originated from an exotic chondritic source (Scott et al., 1981 a, b ). 

In this study, we examined about 2 cm2 area of ALH-77252 in three polished thin­

sections (PTS ,84-1 ,91-1 and ,91-2). Petrologic observation was performed using an 

optical microscope and a scanning electron microscope (JEOL JSM-5900) equipped with 

an energy-dispersive system (Oxford LINK ISIS). The chemical compositions of 

minerals and glasses were determined by an electron microprobe analyzer (JEOL JXA-

8800M) using an accelerating voltage of 15 kV, a beam current of 12 or 30 nA and 

counting times of 30-120 s for olivine, pyroxene and chromite, and 10-30 s for feldspar, 

Ca-phosphate and glass. Analyses with the 30 nA beam were used for the minor element 

chemistry. Typical detection limits (wt%) for 30 nA analyses are as follows: Na20, 

MgO, 0.003; Si02, Ab01 , 0.005; CaO, 0.006; Ti02, Cr:'.01, MnO, FeO, 0.01. 

There are five major types of pyroxene in ordinary chondrites: low-Ca 

clinopyroxene, low-Ca orthopyroxene, pigeonite, subcalcic augite and augites. low-Ca 

clinopyroxene and low-Ca orthopyroxene (Wod, which inverted from protoenstatite, are 

compositionally indistinguishable. In this study, followed by Noguchi (1989), we 
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classified pyroxene by their Wo contents (low-Ca clino/orthopyroxene, Wo<2; 
orthopyroxene, Wo2-s; pigeonite, Worn; subcalcic-augite, Wo1s2s; augite, Wo>2s). 

The shock stages of the clasts were determined using the criteria of Stoffler et al. 
(1991). 

3. Results 

3. I. Overview 
ALH-77252 consists of clasts, such as sub-angular lithic fragments (up to 3.5 mm in 

size), chondrules, melt rock fragments and mineral fragments (Fig. 1 ). Fine-grained 
mineral fragments up to a few tens of µm in size constitute the elastic matrix (Ashworth, 
1977). Some olivines show undulatory extinction, planar fractures and mosaicism. 
Maskelynized feldspar is virtually absent. These features indicate that ALH-77252 is 
composed of clasts with shock stages up to S4. 

The chemical compositions of constituent phases in representative clasts and elastic 

(b) 

1.5mm 

"unequilibrated" clast 
w� "equilibrated" clast 

Fig. 1. (a) Photomicrograph of ALH-77252 (PTS ,84-1, plane polarized light). (b) Sketch qf" 
identified clasts. Li1:ht-hatched areas represent equilibrated clasts, where olivine and low­
Ca pyroxene are equilibrated. The 100 Fe!(Fe+Mg) atomic ratios in olivine and in low­
Ca pyroxene are within the range of equilibrated L-group chondrites (i.e., Fa22_25, Fs19-22}. 

Dark hatched areas represent unequilibrated clasts, in which the JOO Fel(Fe+Mg) ratios (l 
olivine and low-Ca pyroxene are variable. The remainder is elastic matrix, which 
composed of fine-grained mineral fraf.:ments up to a few tens of" µm in size. 



Table 1. Average compositions (wt%) of constituent phases in representative clasts and elastic matrix. 

clast phase n Na20 MgO Al203 Si02 P205 K20 cao Ti02 V203 Cr203 MnO FeO coo 

#101 ol 21 0.00 39.1 0.01 38.9 n.a. 0.00 0.04 0.01 n.a. 0.02 0.43 22.0 n.a. 
( .00) ( .3) (. 02) (. 3) (. 00) ( .03) ( .01) (. 03 l ( .01) ( .3) 

low-Ca px 29 0.01 29.0 0.15 55.9 n.a. 0.00 0.74 0.17 n.a. 0.08 0.43 13.4 n.a. 
(. 01) (. 3) (.06) (. 3) (. 00) ( .13) (. 05) (. 04) (. 01) (. 5) 

fld 37 9.67 0.04 21.0 66.0 n.a. 0.94 2.05 0.02 n.a. 0.03 0.02 0.52 n.a. 
( .44) (.05) ( .4) (. 7) (. 31) ( .17) (. 02) (. 04) ( .02) ( .19) 

chr 13 0.01 2.95 5.73 0.11 0.01 0.00 0.03 3 .13 0.63 54.7 0.69 30.1 0.03 

(. 01) (. 27) (. 08) ( .10) (. 02) (.00) (. 03) ( .11) (. 04) (. 6) (.04) (. 5) (. 01) 

phos 3 2.59 3.47 0.00 0.01 46.2 0.04 47.1 0.00 n.a. 0.00 0.03 0.47 n.a. 
(. 06) (.04) (. 00) (. 02) (. 3) (. 01) ( .1) (. 00) (. 00) (. 01) (. 05) 

#201 ol 15 0.00 39.0 0.01 38.8 n.a. 0.00 0.02 0.01 n.a. 0.09 0.42 21. 9 n.a. 
( .00) ( .2) ( .03 l ( .2) ( .00) ( .01) ( .02 l (. 33) ( .01) ( .2) 

low-Ca px 23 0.02 28.9 0.15 55.9 n.a. 0.00 0.85 0.15 n.a. 0.08 0.43 13 .1 n.a. 
(. 01) (. 2) (.04) (. 3) (.00) ( .10) (. 04) (. 03) (. 02) (. 3) 

opx 2 0.03 27.5 1. 73 54.4 n.a. 0.00 1. 63 0.11 n.a. 1.18 0.38 12.8 n.a. 
(. 05) (. 3) (.36) (. 2) (.00) ( .18) (. 03) (. 01) (. 05) (. 2) 

fld 13 9.77 0.05 20.9 66.3 n.a. 0.60 1. 96 0.02 n.a. 0.03 0.02 0.28 n.a. 
(. 23) (. 06) (. 4) ( .6) ( .11) (. 20) (. 02) (. 03) (. 03) ( .12) 

chr 11 0.02 2.36 4.05 0.12 0.01 0.00 0.02 2.95 0.78 55.6 0.68 30.5 0.03 

(. 02) (. 37) (. 55) ( .11) ( .01) (. 00) i. 02) (. 45) (. 08) (. 7) i. 07) (. 6) (.02) 

#202 ol 30 0.01 40.0 0.01 38.8 n.a. 0.00 0.02 0.03 n.a. 0.01 0.42 20.9 n.a. 
(. 01) (. 3) ( .01) ( .2) (. 00) ( .01) (. 03) (. 01) (. 01 l ( .4) 

low-Ca px 22 0.01 30.4 0.24 56.3 n.a. 0.00 0.42 0.05 n.a. 0.22 0.35 11. 8 n.a. 
(.01) (1. 4) ( .19) (. 5) ( .00) (.38) (. 04) ( .13) ( .10) (1. 8) 

fld 2 5.11 0.08 28.8 55.0 n.a. 0.05 10.8 0.03 n.a. 0.03 0.05 0.25 n.a. 
(.65) (. 08) (. 4) (1. 3) ( .01) (. 5) (. 01) ( .02) ( .03) (.01) 

chr 9 0.03 1. 83 4.32 0.23 0.02 0.00 0.02 1. 57 0.70 57.7 0. 72 30.1 0.04 

(. 02) ( .11) (. 24) ( .17) (. 02) (. 00) (. 03) (. 09) (. 03 l (. 7) (.05) ( .4) (. 01) 

Numbers in parentheses represent standard deviations. n = number of analyses. ol = olivine, low-Ca px = low-Ca pyroxene, opx = orthopyroxene, 
pig = pigeonite, aug = augite, tld = feldspar, chr = chromite, sp = spine!, phos = Ca-phosphate, gl = glass. n.a. = not analyzed. 

NiO ZnO 
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Table 1. Continued. 

clast phase n Na20 MgO Al203 Si02 P205 K20 cao Ti02 V203 Cr203 MnO FeO coo NiO ZnO Total 

matrix ol 44 0.00 40.0 0.01 39.0 n.a. 0.00 0.04 0.02 n.a. 0.02 0.45 21. 7 n.a. n.a. n.a. 101. 2 
(. 01) (. 76) (. 02) (. 3) (. 00) (. 02) (. 03) (. 05) (. 02) (. 9) 

low-Ca px 56 0.02 29.6 0.19 56.2 n. a. 0.00 0.64 0.15 n.a. 0.17 0.46 13 .2 n.a. n. a. n.a. 100. 6 
(. 02) (1.1) ( .14) (. 6) (. 00) ( .19) ( .10) (. 22) (. 04) ( 1. 6) 

opx 3 0.06 28.5 1. 03 55.3 n.a. 0.00 1. 37 0.15 n.a. 0.53 0.46 12.3 n.a. n.a. n.a. 99. 7 >-3 

(. 04) (. 3) (. 98) ( 1. 3) (. 00) (. 41) (. 08 l (. 38) (. 01) (. 2) 
aug 2 0.25 22.8 0.29 55.0 n.a. 0.00 11. 8 0.29 n. a. 0.37 0.34 8. 91 n.a. n. a. n.a. 100.0 §. 

( .13) (3.1) (. 03) (. 7) (. 00) (4.2) (. 06) ( .11) (. 04) ( 1. 98) 
fld 43 9.50 0.07 21. 2 65.4 n.a. 0. 95 2.34 0.04 n. a. 0. 02 0.02 0.52 n.a. n. a. 0. 01 100.0 .?' 

( 1. 31) (. 09) (1. 9) (3 .1) (. 30) (2.28) (. 04) (. 05) (. 02) (. 25) (. 03) 
> 

chr 43 0.02 2.72 5.38 0 .13 0.02 0. 00 0.03 2.63 0. 66 55.5 0.71 30.0 0.03 0.03 0. 33 98.1 
><:: (. 02 l (. 55) (. 95) ( .13) (. 02) (. 00) (. 04) (. 45) (. 06) ( 1. 5) (. 08) (. 9) (. 02) (. 04) ( .17) s:I> 

sp 1 0.00 11. 5 45.9 0.08 0. 00 0. 00 0.00 0 . 11 0.13 19.7 0.27 20.6 0. 00 0.00 0.83 99.0 � 

#154 ol 4 0.00 56.7 0.31 43.1 0.00 0. 53 0.08 0. 06 0.01 0.45 101. 2 n.a. n.a. n.a. n.a. n. a. F-
(. 00) (. 1) ( .11) (. 4) (. 00) (. 06) (. 02) (. 03) (. 01) ( .11) 

;ii::: 
gl 3 7.80 0.37 29.5 57.8 n. a. 0. 99 0.58 1. 28 n. a. 0.23 0.07 1. 80 n.a. n. a. n.a. 100. 4 

( .46) (.16) ( 1. 8) (3.0) (. 44) (. 31) ( .14) (. 03) (. 02) (. 34) 

#209 ol 5 0.01 42.4 0.14 39. 8 n.a. 0. 00 0. 17 0. 02 0. 28 0.21 17.6 100. 6 
� 

n. a. n. a. n. a. n.a. s:I> 
(. 01) ( 10. 6) ( .14) (2.4) (. 00) (. 07) (. 02) (. 27) ( .15) (12. 6) § 

opx 1 0.12 32.0 1. 50 56. 5 n. a. 0.00 1. 24 0.18 n.a. 0.99 0.34 7.48 n.a. n.a. n.a. 100.3 0.. 

:I: pig 1 0.08 30. 8 2.21 56.2 n.a. 0.00 3.67 0.31 n.a. 1. 51 0.49 4.56 n.a. n. a. n.a. 99.8 
fld 2 3.56 0.42 30.0 51. 2 n.a. 0.09 13. 2 0.08 n.a. 0.08 0.03 0.65 n.a. n.a. 0.07 99.4 ;ii::: 

..9. ( .18) (. 24) (. 2) ( .4) (. 04) (. 6) (. 04) (. 01) (.00) (. 22) ( .10) 
s· gl 3 8.06 2.20 24.5 59.4 n.a. 0.33 0. 54 1. 02 n.a. 0.85 0.03 2. 35 n.a. n.a. 0.03 99.3 � 

(. 39) (. 51) (. 2) (. 7) (. 03) (. 37) (. 02) ( .19) (. 06) ( .18) (. 02) 

#134 ol 8 0.01 40.0 0.04 39.4 n.a. 0.00 0.05 0.02 n.a. 0.03 0.02 21.1 n.a. n.a. n.a. 101.1 
(.01) (. 3) (.04) (. 3) (. 00) (. 02) (. 01) (. 02) (.45) (. 3) 

low-Ca px 3 0.01 34.5 0.29 58.1 n.a. 0.00 0.38 0.07 n.a. 0.34 0.24 7.08 n.a. n.a. n.a. 101. 0 
(. 02) (3. 9) (. 07) (2. 5) (. 00) (. 04) (. 06) ( .14) ( .14) (5. 64) 

pig 1 0.12 29.55 1.10 56.1 n.a. 0.00 3.26 0.21 n.a. 0.70 0.40 8. 96 n.a. n.a. n.a. 100.4 
aug 4 0.33 19.9 4.47 52.8 n.a. 0.00 17.8 0.97 n.a. 1. 32 0.40 1. 73 n.a. n.a. n.a. 99.7 

( .18) (2. 7) (1.33) (1. 6) (. 00) ( 1. 8) (. 22) ( .11) (. 06) (. 28) 
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matrix are shown in Table I. In most clasts, the 100 Fe/(Fe+Mg) atomic ratios of olivine 

and low-Ca pyroxene are within the range of those in equilibrated L-group chondrites 

(i.e., Fa22-2s and Fs 19d. Thus they are fragments of equilibrated L-group chondrtite. 

Some clasts contain olivine and low-Ca pyroxene with wider ranges of Fe/(Fe+Mg) ratios, 

suggesting that they are fragments of less equilibrated chondrites. The "equilibrated 

clasts" are defined as clasts with both equilibrated olivine and low-Ca pyroxene in which 

the Fe/(Fe+Mg) ratios are characteristic of equilibrated L-group chondrites. The 

"unequilibrated clasts" are defined as clasts with unequilibrated olivine and/or low-Ca 

pyroxene (Fig. I). 

3.2. Clasts 

Three chondritic clasts, #IOI, #201 and #202 (Fig. 2) are large enough to define their 

petrologic type (Van Schmus and Wood, 1967) and shock features. Clasts #101 and # 

201 are petrographically indistinguishable from average LS and L6 chondrites, 

respectively. They contain olivine and low-Ca pyroxene with compositions within the 

ranges of equilibrated L-group chondrites (Fig. 3). Chondrules in clasts #101 and #201 

exhibit recrystallized boundaries and do not contain any glass. Chondrules in clast #IO I 

are readily delineated, whereas those in clast #20 I are fragmented and poorly defined. 

The presence of undulatory extinction and planar fractures in olivine grains indicates that 

the shock stage of clasts #10 I and #201 is S3. As shown in Figs. 2 and 3, clast #202 is 

a fragment of an L4 chondrite, consisting of homogeneous olivine with heterogeneous 

low-Ca pyroxene (Fs9 7_21). Chondrule-matrix boundaries are sharply defined. Mesostases 

of chondrules are devitrified and mainly of feldspar composition (An,1 sriOr0 i). Olivine 

shows undulatory extinction, planar fractures and mosaicism, indicating that the shock 

stage of clast #202 is S4. 

2mm 

Fig. 2. Photomicrographs of three large clasts in ALH-77252 (plane polarized light). a) #JOI, type-5 
chondritir clast. h) #201, type-6 chondritic clast. c) #202, type-4 chondritic clast. 
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Fig. 3. Histograms qf Fa and Fs contents in olivine and low-Ca pyroxene in the clasts and elastic matrix. 
(a) #101, (b) #201, (c) #202 and (d) elastic matrix. Analytical points were selected by randomly. 
Ranges of average L-group chondrite are shown by arrows. n=number <�f analyses, avg=average, 
PMD=percent mean deviation. 

U nequilibrated clasts are occasionally surrounded by fine-grained iron-rich olivine 
aggregates, which are similar to fine-grained matrices/rims found in some UOCs 
(Ashworth, 1977; Huss et al., 1981). Olivine and low-Ca pyroxene in unequilibrated 
clasts exhibit a wide range of Fe/(Fe+Mg) ratios (F� 14-49 and Fso.817) and most grains are 
less Fe-rich than those in equilibrated L-group chondrites. Normal Fe-Mg zoning is 
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Fig. 4. Backscattered electron 
images of unequilibrated clasts 
in ALH-77252. ( a )  # 154, 
fragment <Jf BO chondrule with 
slightly zoned olivine ( of) and 
glass (gl). (h) #209, POP-BO 
compound chondrule with 
unequilihrated olivine and low­
Ca pyroxene surrounded by 
discrete Fa-rich olivine rim (ol­
rim). (c) #/34, fragment of 
POP chondrule with equili­
brated olivine, unequilibrated 
low-Ca pyroxene and augite 
(aug). 

85 
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preserved in most unequilibrated olivine and low-Ca pyroxene grams. In some cases, 
unequilibrated chondrules contain mesostasis glasses. 

Barred olivine (BO) chondrule fragment #154 is one of the least metamorphosed 
clasts we examined. It is composed of clear glass and iron-poor (Fao4 in the core) olivine 
(Fig. 4a). Olivine shows Fe-Mg zoning of less than 2 µm-width from the contact with 
elastic matrix. A compound porphyritic olivine-pyroxene (POP) chondrule #209 contains 
a BO chondrule (Fig. 4b). Iron-rich olivine rim is observed in the outer parts of the POP 
chondrule. The inner BO chondrule has glassy mesostases and the outer POP chondrule 
contains calcic feldspar (An67). Both olivine and low-Ca pyroxene in #209 show normal 
Fe-Mg zoning. In a fragment of a POP chondrule #134, olivine compositions are 
homogeneous (Fan-21) as in equilibrated L-group chondrites, while low-Ca pyroxenes are 
heterogeneous (Fs4720) (Fig. 4c). Augite (Wo1xFS2 9) and olivine (Fa22_21) grains are 
poikilitically enclosed by several twinned grains of low-Ca clinopyroxene. low-Ca 
clinopyroxene is rimmed by pigeonite. 

3.3. Clastic matrix 
The elastic matrix consists mainly of olivine, pyroxene, feldspar, iron-sulfides and Fe-

Low-Ca pyroxene in unequi l ibrated clasts 
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Fig. 5. Plots of minor element contents ( a, CaO; h, Al 201: c, Cr20,; d, Ti02) against the Fs composition 
of low-Ca pyroxene in unequilibrated clasts. 
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Ni metal with minor phases such as chromite, Ca-phosphate and Mg-rich spinel. The 

elastic matrix is dark in color under the transmitted light because of the presence of fine­

grained opaque minerals. Unequilibrated olivine and low-Ca pyroxene are observed in 

the elastic matrix (Fig. 3). During the course of random analyses of elastic matrix, we 

found slightly Mg-enriched olivine (Fa20) and Mg-rich low-Ca pyroxene (Fs3_0) .  

3.4. Mineral chemistry 

low-Ca pyroxene: low-Ca pyroxene in equilibrated elasts is dominantly orthopyroxene, 

whereas unequilibrated elasts both orthopyroxene and clinopyroxene occur. Twinned 

clinopyroxene occasionally occurs in equilibrated elasts and is frequently observed in 

unequilibrated ones. Some low-Ca pyroxenes are surrounded by pigeonite or augite rims 

up to Wo46 • Compared with low-Ca pyroxene, pigeonite and augite are rich in Ab03 , 

Cr203 and TiOz. 

In Figs. 5-7, CaO, Al203 , Cr203 and Ti02 contents in low-Ca pyroxene in 

unequilibrated elasts, equilibrated elasts and elastic matrix are plotted against Fs contents. 

In general, CaO and Ti02 contents in low-Ca pyroxene in equilibrated clasts are higher 

than in low-Ca pyroxene in unequilibrated elasts (Table 2). On the other hand, Al203 and 

Low-Ca pyroxene in equil ibrated clasts 
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Fig. 6. Plots of minor element contents (a, CaO; b, Al203; c, Cr203; d, TiOz) against the Fs composition 
of low-Ca pyroxene in equilibrated clasts. 
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Low-Ca pyroxene in elastic matrix 
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Fig. 7. Plots of minor element contents (a, CaO; b, Al203; c, Cr203; d, Ti02) against the Fs composition 
of low-Ca pyroxene in the elastic matrix. 

unequilibrated clast 

equil ibrated clast 

elastic matrix 

Talbe 2. Average concentrations (wt%) of minor elements. 

n 

1 5 6  

1 3 3  

5 6  

cao 

0 . 3 1 ( 0 . 2 0 )  

0 . 7 3 ( 0 . 1 6 )  

0 . 6 4 ( 0 . 1 9 )  

Al203 

0 . 2 4 ( 0 . 1 6 )  

0 . 1 8 ( 0 . 1 2 )  

0 . 1 9 ( 0 . 1 4 )  

Ti02 

0 . 0 3 ( 0 . 0 3 )  

0 . 1 7 ( 0 . 1 0 )  

0 . 1 5 ( 0 . 1 0 )  

Numbers in parentheses represent standard deviations. n = number of analyses. 

cr203 

0 . 3 9  ( 0 . 2 3 )  

0 . 1 3 ( 0 . 1 9 )  

0 . 1 7 ( 0 . 2 2 )  

Cr2Q3 contents in low-Ca pyroxene in equilibrated clasts are similar to or somewhat lower 

than those in unequilibrated clasts (Figs. 5 and 6). The trends of minor element contents 

in low-Ca pyroxene are similar to those observed in Weston, an H3-7 regolith breccia 

(Noonan and Nelen, 1976). The minor element signatures of most low-Ca pyroxenes in 

the elastic matrix are indistinguishable from those in equilibrated clasts (Fig. 7). In the 

titanium versus aluminum and titanium versus chromium diagrams, two distinct clusters 

are observed (Fig. 8) .  Low-Ca pyroxene in unequilibrated clasts has a low Ti/Al ratio 

(-0.07), while Ti/ Al ratio of most low-Ca pyroxene in equilibrated clasts are high (-0.5). 

In both equilibrated and unequilibrated clasts, Ti/Cr ratios of low-Ca pyroxene are 



Minor element chemistry of low-Ca pyroxene in ALH-77252 

0.1 0-r--------------, 

a Unequllibrated clast 

:::, ...:o.os-
ftS 
-

: . . \ . , ·....!.- - - · · ··· ·· =- · 
o.oo..µM1•�1�::.:._:....:;__1 �-..-, ---l 

0.00 0.05 0. 1 0  0. 15  

Al (a.f.u.) 
0.1 0-,---------------. 

C Equilibrated clast 

=hos-
ftS 
-

i= 
... 

'. :: 5 .  ·. . . . . . . . .. 
0.00-+-----,--1 ----,-, -----I 

0. 1 0---------------, 

0.05 

Unequilibrated clast 

0.05 0. 10  

Cr (a.f.u.) 
0. 15  

0. 1 0---------------, 

0.05 

d 

. . . 

Equilibrated clast 

' 

o.oo-------,------.-----
0.00 0.05 0. 1 0  0. 1 5  0.00 0.05 0. 10  0. 1 5  

Al (a.f.u.) Cr (a.f.u.) 

89 

Fig. 8. Interrelation of atomic number ratios between titanium versus aluminum and titanium versus 
chromium of unequilibrated clasts (a, b) and equilibrated clasts (c, d). Both diagrams show two 
distinct clustering of equilibrated and unequilibrated low-Ca pyroxenes. a.f.u. =atomic formula unit 
per 24 oxygen. 

variable. 

Olivine: In Fig. 9, CaO, Al203• Cr203 and Ti02 contents in olivine in unequilibrated 

clasts, equilibrated elasts and elastic matrix are plotted against Fa contents. Olivine is 

generally poor in Al203 and Ti02• especially in equilibrated elasts. Some olivines with 

iron-poor compos1tions in unequilibrated elasts are rich in CaO. Olivine in 

unequilibrated clasts is rich in Cr203 in comparison with that in equilibrated elasts. 

Feldspar: Compositions of feldspar in equilibrated clasts are generally within a narrow 

range of An10_ 150r0_ 10 (Fig. I 0), which is consistent with those in equilibrated L-group 

chondrites (Brearley and Jones, 1 998). Some unequilibrated clasts contain more calcic 

feldspars (up to An67) similar to those in unequilibrated L-group chondrites (Brearley and 

Jones, 1 998). Among the elasts we examined (#IO I ,  #201 and #202), there is no 

relationship between petrologic type and feldspar composition. 

Chromite: Compositions of chromite in equilibrated elasts are less variable and tend to 

have higher AI203 than those in elastic matrix (Fig. 1 1  ). Chromites in the unequilibrated 

clast #202 are poorer in A}z03 and similar to some chromites in the elastic matrix. 
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olivine in equilibrated elasts are poorer in these minor elements in comparison with unequilibrated 
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Fig. JO. Feldspar compositions in unequilibrated elasts, equilibrated elasts and elastic matrix. Distribution 
patterns of equilibrated elasts and unequilibrated elasts are consistent with typical composition of 
feldspar in L3 and those in L4-6 chondrites, respectively (Brearley and Jones, 1998). 

4. Discussion 

4. 1. Major element compositions of olivine and pyroxene 

ALH-77252 is composed of clasts of various metamorphic grades from type-4 to -6 . 
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Fig. 11 .  Chromite compositions in the unequilibrated elast (#202), equilibrated elasts and elastic 
matrix. Some chromites in the elastic matrix are poorer in Alz03 than those in the 
equilibrated elasts. The similarity in composition indicates that the matrix chromites are 
fragments of unequilibrated elasts. 
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We also found type-3 like clasts which consist of heterogeneous olivine and/or glass. 

They are consistent with previous observations (Scott, 1 984) . Compositional ranges of 

minor elements in olivine, pyroxene and feldspar seem to simply reflect an admixture of 

EOC fragments with minor UOC fragments. No foreign clast with different 

characteristics from L-group chondritic materials was observed in this study. 

The effect of thermal metamorphism in OC is the chemical homogenization of 

constituent olivine and low-Ca pyroxene . During thermal metamorphism, Fe-Mg in 

olivine and low-Ca pyroxene are homogenized progressively but not simultaneously. 

ALH-77252 is dominated by fragments of EOCs with equilibrated olivine and low-Ca 

pyroxene, which may have suffered prolonged/intense thermal metamorphism. Because 

the diffusion rate of Fe2+ in olivine is much higher than in low-Ca pyroxene (Ganguly and 

Tazzoli, 1 993), Fe/(Fe+Mg) homogenization in olivine progresses more rapidly than that 

in coexisting low-Ca pyroxene (Dodd et al. ,  1 967 ; Scott, 1984; Tsuchiyama et al., 1 988; 

McCoy et al., 199 1 ) . The presence of equilibrated olivine coexisting with unequilibrated 

low-Ca pyroxene in some unequilibrated clasts indicates that these clasts suffered thermal 

metamorphism, but the degree of thermal metamorphism was insufficient to homogenize 

low-Ca pyroxene. Thus, the effects of thermal metamorphism vary among unequilibrated 

clasts and on to equilibrated clasts in ALH-77252, which is consistent with the complete 

metamorphic sequence of petrologic type-3 to -6. We found ( 1 )  olivine with a wide 

range of Fa contents, (2) unequilibrated clasts containing clear glasses and (3) Fe-Mg 

zoning of olivine at the margin of the least metamorphosed clast #1 54. These features 

indicate that ALH-77252 did not suffer significant thermal metamorphism after they were 

agglomerated into the present condition. Thus the observed variations of metamorphic 

grades in the clasts reflect primary features caused by thermal metamorphism of individual 

clasts prior to brecciation. 

4.2. Minor element compositions of low-Ca pyroxene 

As shown in Fig. 8, interrelationships of aluminum, titanium and chromium are 

different between equilibrated and unequilibrated low-Ca pyroxenes. If the minor 

element compositions of low-Ca pyroxene changed gradually during thermal 
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Fig. 12. The diffusion distance of cations in pyroxene within JO Myr. The diffusion 
coefficients of Fe2 + -Mg2+ and Ca 2 + -(Fe 2+, Mg 2+) are given by Ganguly and Tazzoli 
(1992) and Brady and McCallister (1983), respectively. The diffusion coefficient 
of Al 3+ is calculated from the diffusion coefficient at 1180 ° C in clinopyroxene and 
activation energy in omphacite (Sautter et al., 1988; Carpenter 1981). Diffusion 
distance is given as ./Di, where D is diffusion coefficient and t is time. 
Metamorphic temperatures of type-4 chondrite are from Dodd ( 1981 ). 

metamorphism, the observed distribution of minor elements is hard to explain. The 

simplest explanation is that this compositional gap could be resulted from the 

unrepresentative sampling of the source regolith. However, similar trends are clearly 

observed in the published database of low-Ca pyroxene in LL-group chondrites (Jones and 

Scott, 1989; Jones, 1990, 1994; Heyse, 1978; McSween and Patchen, 1989; McCoy et 
al., 1991). Thus we suggest that the observed differences between equilibrated and 

unequilibrated low-Ca pyroxenes in ALH-77252 clasts are not special but may represent 

chemical characteristics of OCs. 

There are two possibilities for the large differences in minor element compositions in 

low-Ca pyroxenes: ( 1 )  minor elements were redistributed during thermal metamorphism, 

or (2) low-Ca pyroxene preserved its initial signature of minor elements to some extent. 

In the former case, both equilibrated and unequilibrated low-Ca pyroxenes were derived 

from similar initial compositions, i.e. , poor in calcium and titanium, and rich in aluminum 

and chromium. During thermal metamorphism, calcium and titanium were incorporated 

into low-Ca pyroxene whereas chromium and aluminum were not. Diffusion of calcium, 

titanium and aluminum should have occurred at higher temperature than Fe-Mg 

homogenization. In the latter case, the observed differences between equilibrated and 

unequilibrated low-Ca pyroxene were inherited mainly from different conditions of low-Ca 
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pyroxene crystallization. Because most of the low-Ca pyroxenes we examined would be 

derived from chondrules and their fragments, minor element compositions of low-Ca 

pyroxene could reflect primarily the bulk chemistry of chondrule melts along with redox 

conditions and cooling histories during chondrule formation. 

Metamorphic redistribution of minor elements in low-Ca pyroxene would have been 

caused by subsolidus diffusion of cations. Mittlefehldt and Lindstrom (2001 )  found a 

difference in Alffi ratios between an L 7 chondrite and a clast-poor impact-melt breccia, 

and attributed the difference to the result of crystallization zoning and diffusional 

equilibration. Unfortunately, diffusion coefficients in low-Ca pyroxene of minor 

elements, such as calcium, aluminum, titanium, and chromium have not yet been precisely 

determined. The temperature dependence of the diffusion coefficient D is described by 

an Arrhenius equation D = Do exp ( - Q !RT), where T is temperature, D0 is a pre­

exponential factor and R is the gas constant. Calcium in clinopyroxene (Nao. 1Cao.53Mg1 . 1 
Feo 11Alo iSi2 006) has a pre-exponential factor D0 = 10 - 6432 m2/s with an activation energy of 

Q = 360.87 kJ/mol (Brady, 1 995). If calcium in low-Ca pyroxene has a similar 

diffusivity, a metamorphic temperature of 770-90D
°
C is required to achieve the significant 

mobility ( 10-100 µm/10  Myr) of calcium in the pyroxene structure. Aluminum and 

titanium are not so diffusive in the pyroxene structure (Huebner, 1980). Aluminum 

diffusivity of D =  3.2 x 10- 2 1 m2/s at 1 180
°
C in diopside (Sautter et al. ,  1988) and the 

activation energy of Q =300 kJ/mol in omphacites (Carpenter, 198 1 )  were obtained 

experimentally. Figure 12 illustrates the relations between the inferred diffusion distance 

of aluminum, calcium, iron and magnesium wihin 10 Myr, and ambient temperature. 

Although the uncertainties in evaluation of diffusivities for these elements could be large, 

aluminum and calcium seem to diffuse very slowly in the pyroxene structure. When 

these evaluations are applied to low-Ca pyroxene, a metamorphic temperature of 790-

950
° 
C is required for significant mobilization of aluminum. Because Ti4+ and Ti3+ in the 

octahedral site of pyroxene have larger ionic radii than AI3+ in the same site, titanium is 

also regarded as an immobile element. The immobility of minor elements in low-Ca 

pyroxene would provide considerable restriction for the thermal history of OCs. 

4.3. Implications for thermal history of L chondrite parent body 

The clasts with different metamorphic grades in ALH-77252 could not have 

coexisted during thermal metamorphism. Thus they should have originated from separate 

locations on the parent body. In order to explain the coexistence of clasts with different 

metamorphic degrees in some chondritic breccia and the lack of any correlation between 

metallographic cooling rates and petrologic types of OCs, break-up and reassembly of 

chondrite parent bodies were proposed (Keil, 1982; Scott and Rajan, 198 1 ;  Taylor et al., 

1 987). Break-up of a parent body could have been induced by disruptive collision of 

planetesimals of comparable sizes. Subsequent reassembly would be driven by 

gravitation within a short time scale, resulting in a rubble-pile parent body (Grimm, 1985). 

The surface of rubble-pile body would have contained clasts of various metamorphic 

grades from extensive region of the parent body. ALH-77252 would have been lithified 

on the surface regolith of the rubble-pile body. 

Correlation between petrologic type and shock degree, and some lines of petrologic 

evidence for localized thermal metamorphism induced by impact support the idea that 
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impact could be heat source of thermal metamorphism of OCs (e.g . ,  Rubin, 1 995). 

Thermal metamorphism with initially higher temperature induced by impact seems to be 

somewhat reasonable to explain the rapid diffusion of minor elements in low-Ca 

pyroxene. However, there is considerable difficulty in the parent body sizes, because 

both single disruptive collision and cumulative multiple impacts can cause only a limited 

scale of thermal effect on the parent body of less than a few hundreds of kilometers (Keil 

et al . ,  1 997). Although impacts could have played an important role for the thermal 

history of OCs with structural modification of parent body by disruptive collision, impact 

heating itself seems to have been ineffective for the global heating of parent body of OCs. 

The most plausible heat source for thermal metamorphism of chondrite parent bodies 

is short-lived radioactive nuclides 26Al (e. g., Lee et al . ,  1 976; Mcsween et al . ,  1 988). If 
we suppose such internal heat source for the thermal metamorphism, the parent body 

would have primarily an onion-shell structure in which rocks were highly metamorphosed 

at the inner core and least affected at the outer rim (e. g . ,  Miyamoto et al., 1 98 1 ; Bennet 

and McSween, 1 996). Thermodynamic model calculation showed that thermal 

metamorphism induced by the heat from 26Al decay would have continued for 10  Myr for 

type-3 to -5 OCs and for 1 00 M yr for type-6 OCs (Miyamoto et al . ,  198 1  ; Bennet and 

Mcsween, 1996) . If this was the case, type-4 and type-5 OCs have suffered from 

thermal metamorphism for - 10  Myr with temperature of 600-70Q
°

C and 700-75Q
°

C 

(Dodd, 1 98 1  ), respectively. However, the metamorphic temperature of more than -800
° 

C 

is required to obtain enough mobility of titanium and aluminum in low-Ca pyroxene with 

the size of a few tens of micrometers (Fig. 1 2). It appears that drastic changes in Ti/ Al 

ratios of low-Ca pyroxene was hardly attained during thermal metamorphism. Thus we 

suggest that the minor element signatures observed in equilibrated and unequilibrated low­

Ca pyroxenes were not established during thermal metamorphism, but due to the pre­

metamorphic differences in low-Ca pyroxene. If this has occurred, materials generated in 

the nebula differing in conditions of low-Ca pyroxene crystallization have accreted onto 

the different locality of the parent body. 
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