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Abstract: A lot of troilite and/or magnetite rimmed FeNi metal grains have 

been found in 22 C03 chondrites. The morphology of these grains is the most 

characteristic in opaque mineral assemblages in C03s. These could be formed by 

reactions of FeNi metals with S-rich and/or 0-rich gas. The number density of 

rimmed FeNi metals are correlated with subtype of C03s. The grain size and the 

rim thickness of these grains are not significantly correlated with subtype. 

Magnetite is dominantly found in lower subtype ( < 3.2) and troilite is abundant 

but magnetite does not occur except Isna (3.6) and Ornans (3.3) in higher 

subtype ( > 3.2). In the subtype less than 3.2, troilite as inner rim and magnetite 

as outer rim could coexist for some rimmed FeNi metals (ALH-77307 and Y-

81020). These textural variations were not formed by one series of thermal 

metamorphism but formed by ( 1) the differences of 0/S conditions at the time 

of thermal metamorphism on the parent body, (2) oxidation from intermediate 

subtype to lower type and sulfidation from intermediate subtype to higher 

subtype, or (3) thermal metamorphism of rimmed FeNi metals especially in 

chondrules enclosed in mafic silicates at lower subtype formed in the solar 

nebula. 

1. Introduction 

A lot of troilite and/or magnetite rimmed FeNi metals have been found from 

unequilibrated chondrites (e.g., Rubin, 1991; Imae, 1994). In some ordinary 

chondrites, metal accompanies carbides rim (Krot et al., 1997; Krot and Todd, 

1998). Allende (CV3) includes abundant magnetite rimmed FeNi metal grains 

(e.g., Rubin, 1989; Haggerty and McMahon, 1979), ALH-764 (LL3.2/3.4 breccia) 

and Y-791717 (C03.2) troilite rimmed FeNi metal grains (Imae, 1994; Lauretta et 

al., 1996a), and Semarkona (LL3.0) troilite rimmed FeNi metal grains (Rubin et 

al., 1999). Immiscibility of metal and magnetite has been proposed for the 

petrogenesis of magnetite rimmed FeNi metals in Allende (Haggerty and 

McMahon, 1979). While, the assemblages could be formed by metal-gas reaction 

(e.g., Rubin, 1991; Imae, 1994; Lauretta et al., 1996a; Rubin et al., 1999). Two 

layer structure, dividing the rim into inner and outer, seen in sulfide or magnetite 

rimmed FeNi metals in some unequilibrated chondrites suggest the petrogenesis of 

metal-gas reaction rather than the immiscibility since the experiments of metal-gas 

reaction have reproduced the texture (Imae, 1994; Lauretta et al., 1996b, 1997). 
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Metal grains in a lot of unequilibrated chondrites have thus experienced sulfidation, 

oxidation and carbidization. 

Shibata and Mastueda ( 1994) and Shibata ( 1996) have studied opaque mineral 

assemblages in C03s (Y-74135, -790992, -791717, -81020, -81025, -82050, -82094, 

and ALH-77307). Shibata (1996) has found cohenite in the least petrologic subtype 

C03s. Studies of opaque minerals in C03s have been limited. We have found that 

both troilite and/or magnetite rimmed FeNi metal grains are especially rich in C03. 

C03s have experienced thermal metamorphism, and metamorphic sequence (sub

type) has been proposed (McSween, 1977; Scott and Jones, 1990; Kojima et al, 
1995). Rubin ( 1989) has discussed that there is a relationship between chondrule 

size and metamorphic sequence in C03; when metamorphism proceeds, chondrule 

size tends to become larger. While, more recently, Rubin (1998) described that the 

correlation between chondrule size ( and the other features) and metamorphism may 

be an artifact resulting from the obliteration of small chondrules during metamor

phism. It has not been examined whether there is some relationship between the 

grain size and/or rim thickness of rimmed FeNi metals, and the metamorphic 

sequence or not. Since opaque minerals must be more sensitive to the temperature 

change than silicates, the grain size and rim thickness of rimmed FeNi metals, and 

the mineral assemblages might become a better indicator of metamorphism. 

Then we studied C03s in order to clarify the general relationship between 

rimmed FeNi metals and the metamorphic sequence (subtype). 

2. Experiments 

We examined polished thin sections (PTSs) of 20 C03 chondrites including 

two nonantarctic meteorites in National Institute of Polar Research (NIPR) and 2 

C03s in U. S. National Museum of Natural History in Smithsonian Institution 

(USNM) using an optical microscope and a SEM with EPMA (JXA-733 and JXA-

8800). Studied 22 C03s are ALH-77003, ALH-77307, Y-791131, Y-791433, Y-

791717, Y-791745, Y-791746, Y-791748, Y-794088, Y-81002, Y-81020, Y-81067, Y-

81068, Y-82004, Y-82050, Y-82094, Y-8339, Lance, lsna and Colony in NIPR and 

are Ornans and Kainsaz in Smithsonian Institution (Table 1 ). The group of Y-

791745, -1746, and -1748 or the group of Y-81067 and -068 may be paired judging 

from the proximity of the occurrence in Yamato bare ice field. 

Random analyses of olivine grains > about 5 µm in size to determine subtype 

were carried out by electron probe microanalyzer (EPMA) (JEOL JXA-733). 

Analyses of opaque minerals and the silicate minerals except the purpose of random 

analyses were done by EPMA (JEOL JXA-8800). 

We measured the grain diameter and the rim thickness under the optical 

microscope from one PTS (about 0.2-1 cm2). We defined the diameter as the 

average of the maximum size and the minimum size and the thickness as the average 

of the maximum thickness and the minimum thickness. Whether the iron-oxide 

occurs or not in one PTS was determined under the optical microscope. The 

iron-oxide phase was identified by EPMA. Corrosion texture of opaque minerals 
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Table 1. Studied 22 C03 samples. 

Name Abbreviation Source PTS No. 
-------�--�----

ALH-77003 A NIPR*1 > 89-2 
ALH-77307 B NIPR 85-1 
Y-791131 C NIPR 51-1 
Y-791433 D NIPR 51-1 
Y-791717 E NIPR 62-5 
Y-791745 F NIPR 51-1 
Y-791746 G NIPR 51-1 

Y-791748 H NIPR 51-2 

Y-794088 I NIPR 51-1 

Y-81002 J NIPR 51-1 
Y-81020 K NIPR 56 
Y-81067 L NIPR 51-1 
Y-81068 M NIPR 51-1 

Y-82004 N NIPR 51-1 

Y-82050 0 NIPR 101-2 

Y-82094 p NIPR 91-1 

Y-8339 Q NIPR 51-1 

Lance R NIPR 50-1 

lsna s NIPR 20-1 

Colony T NIPR 51-1 

Ornans u USNM*2> 1105-5 

Kainsaz V USNM 2486-9 
�-------- -�----* 1 > National Institute of Polar Research. * 1 > U.S. National Museum of Natural History, Smithsonian Institution. 

due to Antarctic weathering was excluded for the present study. The distinction 

between troilite and magnetite was not made in measuring the rim thickness since 

both can coexist as rim in one grain, but we checked whether magnetite is present 

in the PTSs ( the last column on Table 2). 

3. Results 

Troilite and/or magnetite rimmed FeNi metals commonly occur in all samples 

of available 22 C03s by the observation of PTSs (Fig. 1 and Table 2). Paragenesis 

of these metals can be divided into two: in chondrule (Fig. la) and in matrices (Fig. 

l b  and c). The rimmed FeNi metals in matrices are larger than those in chondrules. 

The number density of these metals in matrices is smaller than that in chondrules. 

Magnetite rimmed metals in chodrules dominantly occur in lower petrologic sub

type less than 3.2 (Fig. la). The shape of magnetite rimmed metals in chondrules 

is rounded. On the other hand the shape of rimmed metals in matrix is irregular. 

Rimmed metals in chondrules are rare in higher petrologic subtype more than 3.2. 

Troilite rimmed metals are dominant at higher petrologic subtype more than 3.2 

(Fig. le). In some cases (less than 3.2), mixed rims of troilite and magnetite occur 

(ALH-77307 and Y-81020) (Fig. lb). In rimmed FeNi metals for which magnetite 
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Name 

ALH-77003,89-2 
ALH-77307,85-1 
Y-791131,51-1 
Y-791433,51-1 
Y-791717,62-5 
Y-791745,51-1 
Y-791746,51-1 
Y-791748,51-2 
Y-794088,51-1 
Y-81002,51-1 
Y-81020,56 
Y-81067,51-1 
Y-81068,51-1 
Y-82004,51-1 
Y-82050, 101-2 
Y-82094,91-1 
Y-8339,51-1 
Lance,50-1 
lsna,20-1 
Colony,51-1 
Ornans, 1105-5 
Kainsaz,2486-9 

N. Imae and H. Kojima 

Table 2. Results. 

Sur face area Mea
b
sured

f 
Su btype 

2 num er o Mt*3l (mm ) rimmed FeNi Fa (mol%) Fa* 1
J Fa*2

l TL *2l Rec.*2J 

56 
41 
26 
24 

172 
47 
33 
21 
29 
20 
89 
51 
15 
19 
3 

130 
14 
51 
74 
61 
33 
96 

22 
81 
6 
4 

10 
15 

7 
30 
22 
15 
17 
69 
20 
17 
4 

16 
23 
15 
3 
0 

37 
31 

18.8 
8.9 

18.1 
19.5 
14.6 
15.2 
15.2 

9.5 
13.0 

7.1 
11.6 
14.2 

7.8 
12.0 
15.0 

1.7 
12.0 
12.9 
27.0 
3.9 

16.0 
13.1 

3.4 
3.0 
3.3 
3.4 
3.2 
3.2 
3.2 
3.0 
3.1 
3.0 
3.1 
3.2 
3.0 
3.1 
3.2 
3.0 
3.1 
3.1 
3.6 
3.1 
3.3 
3.1 

3.5 
3.2 

xx 

3.5 
3.8 
3.2 
3.4 
3.1 

3.2 

3.5 

3.4 
3.8 
3.0 
3.4 
3.5 

3.4 

-
*3

) 

3.1 +*3
) 

3.5 

+ 
+ 
+ 
+ 
+ 
+ 

+ 
3.4 + (minor) 
3.7 +(minor) 
3.0 ( + )*4

) 

3.4 + 
3.2 

*1 l Based on the mean fayalite contents determined in the present study according to the 
definition by Scott and Jones (1990). 

*2l Su btype from mean fayalite (Fa), thermoluminescence (TL), and recommendation (Rec.) by 
Sears et al. ( 1991). 

*3l Mt= magnetite, - shows magnetite a bsent, + shows magnetite appearing. 
*4l Weathered. 

and troilite coexist, inner rim is troilite and outer rim is magnetite (Fig. la in this 

paper and Fig. 6 in Shibata, 1996). 

The number of measurable grains was limited to be from a few to about 80 per 

one PTS (Table 2). The measured grain diameter is the range of 20-180 µm in 

average, and the measured rim thickness is the range of 4-50 µm in average for 22 

C03s. The measured diameter and the measured rim thickness are positively 

correlated (Fig. 2). 

The mean fayalite contents of 22 C03s were determined by random analyses 

using an electron microprobe analyzer (Table 2). Each chondrite was assigned a 

subtype based on the mean fayalite content and the criteria of Sears et al. (1991). 
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Fig. 1. Images of representative rimmed Fe Ni metals. M =, Fe Ni metal. Tr = troilite. Mgt = 

magnetite. (a) Magnetite rimmed FeNi metals in chondrule (Y-81002). Under optical 
microscope (reflected light). Scale bar corresponds to 75 µm. (b) Image under optical 
microscope (reflected light) of (a). (c) Troilite and magnetite rimmed FeNi metal in 
matrix (Y-81020). Back scattered electron image. (d) Troilite rimmed FeNi metal in 
matrix (Y-791717). Back scattered electron image. 

4. Discussion 

4.1. The relationship between size and thickness 
The apparent diameter (D) and rim thickness ( d) are positively correlated 

(Fig. 2). However, to test whether the real values of these parameters are correlated 

we consider the effects of observing in sections. 

We therefore take into consideration the effect of the cross section of grains, 

when we observe thin sections, in order to obtain the real distribution of the grain 

size and the rim thickness (e.g., Hughes, 1978; Eisenhour, 1996). For the simplest 

case, we consider the cross section of a constant sphere with a constant rim 

thickness. Then the apparent rim thickness and grain diameter would be related by 

the eq. (1), 

D D2 

I 
- -----

d = 2- - 4- - Dreal ·dreal +dieal , (1) 



70 N. Imae and H. Kojima 

35 r-T""T"-r-.,....,.....,....,...........,.....,....,.�...,......,....,.....,,...,.....r--r-,........,...., 

30 

25 

E 20 
� 
"'O 15 

10 

5 

• 

• 
• • • • 
.. , • • 

20 40 60 80 100 120 
D (µm) 

40 ....,....,,...,.....""T-T" .......... T""'T"'ir-T""T ............ .,.....,....,.....,.... ......... -r-r.......,..-.-, 
35 
30 

E 
25 

� 20 
"'O 15 

10 
5 

25 

20 
E 
_..a, 15 

"'O 10 

5 

• 
• • 

• 

• • 
·- . 
• 

• • 

• 

20 40 60 80 100 120 140 

• 

50 

D (µm) 

100 150 
D (µm) 

• 

200 

8���,...,.......,..............-,-,...,....,.......,.......,...,.......,............,....,...,...,....,.........,...., 

7 
6 
5 

E 4 � 
"'O 3 

2 •• 

5 1 0 1 5 20 25 30 35 
D (µm) 

-100 
E 
:::i. 

50 

(5) 

. . .. 

• 

• 

• 
• 

0 IL...L..JU-L...J......L...L.L..J....LJL..,j_J.--'-'--'-'-.L...1..J'-L-L-L-L-L-L--'-' 

0 50 100 150 200 250 
D (µm) 

16 ,.......,r,-r...,.....,..,.....,-T""T",,...,..,....,....,...,........,.......r-T""T-r-r....,.........,.., 

14 (6) • 
12 

E 10 
:::i. 8 

"'O 6 
4 •• 

2 • 

• 
• • • • 

• • 
• 

20 40 60 80 100 120 140 
D (µm) 

20 r,-r--r,--,,....,.-r,-.--,-,--r-r,c,-,--,-,-,-r-rm"T"T""r-rT-n 
• 

15 

E 
:::i. 10 

"'O 
5 

• 
20 40 60 80 100 120 140 160 

D (µm) 
14 rrr-rn-i...,...,....,-r-rr-TTT"rrr-r-rnrrrr-r-rrTTT"rrr-r-rn""r-i 

12 

10 
E 8 

_::; 6 
"'O 

4 

2 

• 
• 

10 20 30 40 50 60 70 80 
D ( µm) 

Fig. 2. The relationships between the grain diameter and the rim thickness of rimmed FeNi 
metals for 22 C03s. The straight line of each figure shows d = D/2. (1) ALH-77003,89-2. 
(2) ALH-77307,85-1. (3) Y-791131,51-1. (4) Y-791433,51-1. (5) Y-791717,62-5. (6) 
Y-791745,51-1. (7) Y-791746,51-1. (8) Y-791748,51-2. (9) Y-794088,51-1. (10) Y-
81002,51-1. (11) Y-81020,56. (12) Y-81067,51-1. (13) Y-81068,51-1. (14) Y-
82004,51-1. (15) Y-82050,101-2. (16) Y-82094,91-1. (17) Y-8339,51-1. (18) Lance, 
50-1. (19) Jsna,20-1. (20) Ornans,1105-5. (21) Kainsaz,2486-9. Colony was not meas
ured since opaque minerals were heavily weathered. 
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Fig. 2. (continued). 

where DreaI is a sphere diameter and dreaI is a sphere thickness. The distribution is 

graphically shown in Fig. 3. The end point shown in Fig. 3 gives (DreaI, drea1). D-d 

distribution in Fig. 2 is clearly different from that of Fig. 3 even if the shape is taken 

into account. It implies that the real D and d distributions in C03s are not 

three-dimensionally uniform. If we assume that rimmed FeNi metals in C03s are 
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Fig. 3. Schematic distribution of apparent 
diameter D and rim thickness d in 
arbitrary cuts through a sphere of 
diameter (D,,a1) with a constant rim 
thickness (d,,a1) . 

spherical and that the rims are uniform in thickness, the D and d distribution of the 

obtained data means the assemblages of rimmed FeNi metals with various D and d. 
We can interpret the distribution in Fig. 2 into two cases as Fig. 4 in more detail. 

One interpretation is shown in Fig. 4a. D and d are distributed with the relation that 
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Fig. 4. Possible two interpretations of the D-d distribution. (a) d,,a1 is constant irrespective of D. 

(b) d,,a1 is a function of D,,aI with positive slope. 
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dreaI is constant irrespective of the grain diameter D. Another is shown in Fig. 4b. 

This case, D and dare distributed such that DreaI and dreaI have a positive correlation. 

Whether each case is correct can not be judged for all figures since the data points 

are restricted for each PTS. Thus in the present study, we simply averaged the 

measured size (Dmean) and rim thickness (dmean). In the following discussion, Dmean 

and dmean are used. 

4.2. Compilation of the D and d with the subtype 

We determined the number density of rimmed FeNi metals since it is expected 

that the number density of these metals is related to the size and thickness 

distribution. The relationship between the number density and Dmean and dmean in 

Fig. 5a and 5b, respectively, shows that the number density of rimmed metals in 

each C03 is lower for a larger grain and for a thicker rim. 

The compilation of the diameter and the thickness of rimmed metals with the 

subtype for each C03 is shown in Fig. 6a and 6b, respectively. Dmean and dmean are 

not significantly correlated with subtype (n = 21, r = 0.27 for Dmean; n = 21, r = 0.15 

for dmean). It has been known that Y-82094 and Lance include fizzed troilite 

suggesting shock melting (Scott et al., 1992; Imae and Kojima, 2000), this D and d 

distribution of these meteorites must have been modified by the shock melting. 

When Y-82094 and Lance are excluded, the correlations become larger (n = 19, r = 

0.52 for Dmean; n = 19, r = 0.30 for dmean). The relationship between the subtype and 

the number density of rimmed metal grains was also shown (Fig. 7). In Fig. 7, the 

number density decreases with the increase of subtype. Inverse correlation between 

minimum number density of these metals and subtype is consistent with positive 

correlation between Dmean-dmean and subtype. 

4.3. Implication of the present results 

If magnetite and troilite in rimmed metals should be all produced by a series of 

thermal metamorphism (3.0 to 3.4 ), magnetite rimmed metals might be replaced to 

troilite rimmed metals proceeding by the thermal metamorphism. In this case, 

troilite rim might occur as outermost rim. However, the observation shows that 

outermost rim is magnetite and inner rim is troilite (Fig. 1 b). Thus the morphology 
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metal grains. (b) The relationship between dmean and the minimum number density of 
rimmed FeNi metal grains. Open symbol: magnetite can be observed contained in PTS. 
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of inner troilite and outer magnetite rim cannot be explained by one series of 

thermal metamorphism determined subtype. The textural variation seen in each 

subtype could be formed by one of the following ways. 

( 1) 0/S conditions at the time of thermal metamorphism on the parent body were 

different, that is, 0/S was higher for lower subtype, 0/S intermediate for 

intermediate subtype, and 0/S lower for higher subtype. 

(2) Coexisting rims of magnetite and troilite (Y-81020 and ALH-77307) were 

pristine. This conclusion obtained in the present study is consistent with previous 

studies (Shibata, 1996) that ALH-77307 and Y-81020 are least metamorphosed 

C03. Oxidation on the parent body formed lower subtype, and sulfide formation 

on the parent body formed higher subtype. 

( 3) Some of rimmed metals, especially, magnetite rimmed metals in chondrules 

which are enclosed in mafic silicates, at lower subtype were formed in the solar 

nebula. Other rimmed FeNi metals were formed during thermal metamorphism 

similar to the mechanism of ( 1). 



(a)  1 00 

160 

140 

120 

E 
100 

2_: 80 
C: 
co 
(1) 

CI
E 60 

40 

20 

Relationship between rimmed FeNi and subtype in C03s 

V 
• 

• 
E 

• 
• 

3 0 3 . 1 3 2  3 3  3 .4 3 .5 

Subtype 

s 

3.6 

o l  

3.0 3 . 1  3 .2 3 .3  

Subtype 

(b) 60 .....--...----,---�---r---.---.--� 

50 

E 4o 
::i 

- 30 C: 

"OE 20 

10 o____,===----=---

�= • 
3 0 3 . 1 3.2 3 3  3.4 3.5 

Subtype 

s 

C 
• 

O U  

3 0 3. 1 3 .2 3 .3 

Subtype 

A 

• 

3.4 

A 

• 

D 
• 

3.4 

3 5  

3 . 5  

75 

60 

55 

50 

45 

40 

35 

30 

25 

20 

1 0  

9 

8 

7 

6 

5 

4 

3 

Fig. 6. [JJ shows least square lines including all data, and [2] shows square lines except Y-82094 
and Lance. Closed symbol: magnetite is not observed in PTS but sulfide is dominant. 
(a) The relationship between Dmean and subtype in C03 chondrites. r =0.27 for [J] and 
r =0.52 for [2]. (b) The relationship between dmean and subtype in C03 chondrites. Open 
symbol: magnetite is observed in PTS. r =0.15 for []] and r =0.30 for [2]. 

2 

I.... <> 
1 . 5 H 

.0 � M  
L 

E - • 

:::::, C;I 
0 

<> z E N 

E S  <> 

:::::, �  
J <> <>1 

E ·- A ·c � 0.5 F 
e
v C • 

·- Cl) • 
� o  p K <>R e G  • 

• o  • E 
0 

3 3 . 1  3.2 3.3 3 .4 3 .5 3 .6 
Subtype 

Fig. 7. The relationship between subtype and number density. Open symbol: magnetite is 
observed in PTS. Closed symbol: magnetite is not observed in PTS. 



76 N. Imae and H. Kojima 

It is difficult to determine which model is correct. In addition, oxide in Isna 

might be formed by the hydrothermal metamorphism during the increase of subtype 

more than 3.4 (Rubin, 1 998). 

5. Summary 

1 )  Troilite and/or magnetite rimmed FeNi metals commonly occur m 22 

C03 chondrites. 

2) Grain size and rim thickness of rimmed metals in a C03 chondrite are 

positively correlated. This does not directly mean that the grain size and rim 

thickness three-dimensionally have a positive correlation. 

3) In C03 chondrites of petrologic subtype less than 3.2, magnetite can be 

found. Magnetite rimmed metals are abundant and number density of the grain is 

higher. In chondrites with higher petrologic subtype more than 3.2, magnetite is 

poor, but troilite is abundant. Troilite rimmed metals are predominant, and number 

density of the grain is lower. Both the grain size and the rim thickness of these 

grains are not significantly correlated with subtype. 

4) In subtype C03s less than 3.2, troilite as inner rim and magnetite as outer 

rim could coexist for some rimmed metals (ALH-77307 and Y-81020). These 

textural variations of rimmed FeNi metals were not formed by one series of thermal 

metamorphism. 
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