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Abstract : In situ ion microprobe analyses of various phases in Yamato-793605 (Y 

79) confirm that it is very similar to the other two lherzolitic shergottites, ALHA 77005 

and LEW88516. Differences in absolute REE abundances between bulk samples of 

these meteorites can be largely accounted for by sample heterogeneity. The three 

lherzolites were formed by essentially identical processes and they may even have 

originated from the same lithological unit on Mars. Preservation of major element 

zonation in olivines of Y79 indicates that it is less equilibrated than the other lherzolitic 

shergottites, and may have crystallized at shallower depth. The parent magmas of 

lherzolitic shergottites, like those of other shergottites, were derived by partial melting 

of a partly depleted martian mantle. 

1. Introduction 

All SNC meteorites are igneous rocks believed to have originated on Mars 

(McSWEEN, 1994 and references therein) and, until there is a sample return from this 

planet, they are the only samples of martian crust available for laboratory studies. As 

such, they provide valuable insights into the geological evolution of their intriguing 

parent body. Currently only 13 meteorites belong to the SNC group and, therefore, 

any recognition of new SNC meteorites is of great interest to meteoriticists and 

planetary scientists. 

The object of this study, the 16 g Yamato-793605 (hereon referred to as Y79) is a 

recent addition to the known SNCs. First classified as a diogenite, it was later correctly 

identified as a shergottite (YANAI, 1995), confirmed as a martian meteorite (MAYEDA et 

al., 1995), and recognized as strikingly similar to the two lherzolitic shergottites, ALHA 

77005 and LEW88516 (MIKOUCHI and MIYAMOTO, 1996). Because of its small size, the 

NIPR recognized the need for a consortium study, which was led by KOJIMA et al. 

( 1997). This multinational effort has already led to the publication of a number of 

studies including aspects of this meteorite's mineralogy and petrology (IKEDA, 1997; 

MIKOUCHI and MIYAMOTO, 1997), chemistry (EBIHARA et al., 1997; MITTLEFEHLDT et al., 

1997; WARREN and KALLEMEYN, 1997), descriptions of altered phases produced mainly 

by terrestrial weathering (IKEDA, 1997; MITTLEFEHLDT et al., 1997) and various isotopic 

properties (EuasTER and POLNAU, 1997; GRADY et al., 1997; MISAWA et al., 1997; NAGAO 

168 



Trace Element Distributions in Y-793605 169 

et al., 1997). Most of these studies have stressed the many characteristics that are 

common to all three martian lherzolites. 

In this paper, we present the results of in situ ion microprobe analyses of trace and 

minor element microdistributions in minerals of Y79; these analyses were made subse

quent to thorough petrographic and electron microprobe documentation. Our aim is to 

understand the petrogenesis of this meteorite and to discuss its relationship to the other 

two lherzolitic shergottites. As we will show, this study also strongly supports a close 

association of all three lherzolites. 

2. Sample Description and Analytical Methods 

One thin section of Y79 (Y793605,51-4) was studied. It consists predominantly 

( > 90%) of a poikilitic region, with sub-mm sized olivine grains enclosed within a large 

oikocryst ( - 6 mm across, composed of a zoned pigeonite grain surrounded by a rim of 

augite), and is similar to the "light" lithology previously described in ALHA 77005 

(LUNDBERG et al., 1990). Y79 also has a small non-poikilitic region with smaller grains 

of pyroxene ( mostly pigeonite), olivine, maskelynite, and opaque minerals present in 

regions interstitial to the poikilitic region. It is comparable to the "dark" lithology 

described in ALHA77005 (LUNDBERG et al., 1990). X-ray mapping and mineral iden

tification and analyses were first performed at the Johnson Space Center using a Cameca 

SX-100 electron microprobe. This information and additional petrologic observations 

were used to identify a diverse set of pyroxenes, olivines, melt inclusions, and feldspathic 

glass appropriate for trace element analyses. Concentrations of rare earth elements 

(REEs) and other selected trace and minor elements were then measured in situ in 

selected spots, using the Washington University modified CAMECA IMS-3f secondary 

ion mass spectrometer (SIMS). Analytical procedures for such measurements have 

been described in detail by ZINNER and CROZAZ (1986) and LUNDBERG et al. (1988). 

3. Results 

3.1. Petrography and electron microprobe results 

Our petrographic observations support the conclusion of M1KoucH1 and M1Y AMOTO 

( 1997) that Y79 is very similar to other Antarctic martian meteorites ALHA 77005 and 

LEW88516 (hereafter referred to as ALH and LEW, respectively). Because those 

workers and IKEDA ( 1997) have described the petrography of Y79 in detail, we will only 

report features that are pertinent to our SIMS study, plus some features that have not 

been previously described. The elemental maps in Fig. 1 show nearly the entire section 

Y793605,51-4. As reported by other workers (e.g., M1Koucm and MIYAMOTO, 1997), 

the sample consists of a poikilitic region that occupies most of the section, and a 

non-poikilitic region that appears only on the extreme right side of the maps in Fig. 1. 

The poikilitic region consists of a large poikilitic pigeonite grain rimmed by augite. 

Olivine and chromite are enclosed by pigeonite and augite. Olivine in the poikilitic 

region contains melt inclusions, which are well described by IKEDA ( 1997) and 

MIKOUCHI and MIYAMOTO ( 1997). The non-poikilitic region consists of olivine, 

maskelynite, pigeonite, and augite. 



170 M. WADHWA, G. A. McKAY and G. CROZAZ 

Fig. 1. Elemental maps of Y79. For all images except Ti, warmer colors indicate higher 

concentrations or values, with white being the highest. For the Ti image (on the right in the 

middle row), brighter blue indicates higher concentration. The first five images cover nearly 

the entire thin section, and are 6. 7 mm in width. The arrows in the top and bottom images 

at the left show the location of the profile shown in Fig. 3. The poikilitic region occupies 

most of the section, with the non-poikilitic region occupying only the extreme right portion, to 

the right of the poikilitic augite band that runs from top to bottom (bright yellow in the Ca 

image). Note the zoning in the large poikilitic pigeonite crystal that occupies the major 

portion of the thin section, especially the Mg/Fe zoning shown in the bottom left image. The 

Mg/Fe image also shows zoning in individual olivine crystals enclosed in the poikilitic olivine 

(Fo61-13). The bottom right image is 1.5 mm in width, and shows the intricate Ca zoning in 

poikilitic pigeonite adjacent to enclosed olivine crystals. 
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Fig. 2. Pyroxene compositions in Y79. Compositions of pyroxenes and o/ivines analyzed by SIMS 

are shown with colored symbols. Other poiki/itic pyroxenes are also shown ( + ), as are other 

non-poikilitic pyroxenes ( X), and are in agreement with compositions reported by previous 

workers (e.g., MIKOUCHI and MIYAMOTO, 1997). 
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Fig. 3. Zoning profiles from core to rim in poikilitic pigeonite of Y79, along traverse shown in Fig. 1. 

Our mineral analyses are in agreement with those of previous workers. Pyroxene 

compositions are shown in Fig. 2, which compares the major element compositions of 

pyroxenes we analyzed by SIMS (see Section 3.2 below) with a much larger number of 

analyses that represent nearly the complete range of pyroxene compositions in the 

sample. Poikilitic pigeonites tend to be more Mg-rich than those in the non-poikilitic 

region, and also extend to lower Ca contents. There is little difference in augite 

compositions between the poikilitic and non-poikilitic regions. Our SIMS analyses 

include pyroxenes that span the entire range observed in the sample. 

Much of the poikilitic region consists of a single large pigeonite crystal that is zoned 

from core to rim, as can be seen in both the Ca map and the Mg/Fe map in Fig. 1. 

Core-to-rim zoning along a traverse indicated by the arrows in Fig. 1 is illustrated in 

Fig. 3. This zoning is smooth and continuous, and likely represents primary igneous 

zoning. 

We observed olivines ranging from Fo61 to Fo14, in agreement with other workers. 

We observed one feature not previously reported by other workers, i. e., some of the 
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Fig. 4. Comparison of Al vs. Ti systematics of pyroxenes in smoothly zoned poikilitic crystals (e.g., 

Fig. 3) with pyroxenes in the irregular regions near enclosed olivine crystals (e.g., bottom 

right portion of Fig. ]). 

poikilitically enclosed olivine grains exhibit elemental zoning within individual grains, as 

can be seen in Fig. 1 (in the Mg/Fe map). In fact, the olivine near the bottom of the 

whole-section images displays zoning that spans nearly the entire compositional range of 

olivines observed elsewhere in the section. 

The smooth zoning pattern in the large poikilitic pyroxene is disturbed around the 

enclosed olivines, as can best be seen in the Ca maps in Fig. 1, especially the higher 

magnification image at the bottom right. These disturbances appear as "flame-shaped" 

regions emanating from the enclosed olivine crystals. However, the zoning trends in 

these "irregular" regions are indistinguishable from such trends in smoothly zoned 

regions. This is evident in Fig. 4 which compares Ti vs. Al variations for a traverse 

through the largest irregular region ( slightly left of center in the bottom right section of 

Fig. 1) with such variations in all other poikilitic pyroxene analyses. We further note 

that this is also the case for Ca vs. Mg/Fe, Al vs. Mg/Fe, and Ca vs. Al systematics in 

these pyroxenes. 

3.2. Ion microprobe results 

In the poikilitic region, we made ion microprobe analyses on 1 olivine (Fo73), 12 

pigeonite, and 2 augite spots. We also measured the REE concentrations of a glassy 

region within a melt inclusion present in a poikilitically enclosed olivine grain. This 

inclusion is very similar to the inclusion shown in Fig. 1 L of IKEDA ( 1997) and to the 

right inclusion in Fig. 9A of M1Koucm and MIYAMOTO (1997) . In the non-poikilitic 

region, we analyzed individual grains of maskelynite (1 spot, An66 Ab33 0r1) ,  olivine (1 

spot, Fo69) ,  and pigeonite (6 spots) . Major element compositions of analyzed pyrox

enes are shown in Fig. 2. 

Figures 5 and 6 and Table 1 present representative REE abundances in minerals of 

Y79 (filled symbols) . For comparison, REE concentrations in minerals of ALH 

(HARVEY et al., 1993) are also shown in Figs. 5 and 6 (open symbols) . Note that 

HREEs in maskelynite and LREEs in olivine are not included since these REEs are 
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Table 1. Representative rare earth element (REE) abundances (in ppb) in pyroxenes, plagioclase and 

olivine of lherzolitic shergottite Yamato-793605; REE concentrations (in ppm) in the glassy 

region of a glass-rich melt inclusion within a poikilitica/ly enclosed olivine grain are also 

given. Errors are 1 a based on counting statistics only. 

Poikilitic Poikilitic Poikilitic Non- Plagioclase Olivine Glass in 
Pigeonite P igeonite Augite Poikilitic Melt 

{Corel {Riml {Riml Pigeonite Inclusion 
La 3.1 ± 0.9 10.l ± 2.1 41.0 ± 4.9 31.2 ± 3.9 60.4 ± 2.5 n.d. 0.61 ± 0.03 
C e  39.8 ± 4.5 44.7 ± 5.0 192 ± 21 121 ± 8 116 ± 5 n.d. 1.65 ± 0.08 
P r  2.0 ± 0.6 4.8±1.l 36.4 ± 5.3 20.3 ± 3.2 14.7 ± 1.1 n.d. 0.24 ± 0.01 
NI 8.8 ± 1.9 17.3 ± 3.0 259 ± 15 133 ± 10 65.5 ± 3.0 n.d. 1.46 ± 0.05 
Sm 3.7 ± 2.1 24.7 ± 4.3 211 ± 16 163 ± 12 23.3 ± 2.9 n.d. 0.99 ± 0.05 
Eu 1.0 ± 0.5 6.4 ± 1.2 81.4 ± 6.9 42.3 ± 4.2 401 ± 12 2.8 ± 0.5 0.40 ± 0.02 
Gd 16.7 ± 2.6 63.2 ± 6.5 513 ± 43 433 ± 36 32.6 ± 3.2 11.9 ± 1.8 2.24 ± 0.10 
Tb 4.1 ± 0.9 15.2 ± 1.9 134 ± 12 117 ± 12 4.3 ± 0.7 2.8 ± 0.5 0.50 ± 0.03 
Dy 39.8 ± 3.5 152 ± 8 790 ± 38 920 ± 39 28.8 ± 2.0 26.4 ± 1.8 3.61 ±0.10 
Ho 11.2 ± 1.5 33.5 ± 2.9 161 ± 14 202 ± 16 n.d.* 8.0 ± 0.8 0.77 ± 0.04 
Er 38.3 ± 3.3 128 ± 8 491 ± 25 661 ± 39 n.d. 33.5 ± 2.1 2.04 ± 0.07 
Tm 5.3 ± I.I 17.2±2.8 59.9 ± 6.4 97 ± 7 n.d. 5.2 ± 0.7 0.29 ± 0.02 
Yb 40.9 ± 4.7 138 ± 11 475 ± 30 705 ± 41 n.d. 51.8 ± 3.0 l .92 ± 0.08 
Lu 9.8 ± 1.8 20.6 ± 3.3 55.5 ± 8.0 103 ± 13 n.d. 12.6 ± 1.3 0.32 ± O.D3 

*n.d. = not detectable . 

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb 

Fig. 5. REE abundances (normalized to the CI chondrite values of EBIHARA and ANDERS, 1982) in 

olivine, maskelynite, and glass in a melt inclusion in Y79 (solid symbols); for comparison, 

data for maskelynite (open triangles) and olivine (open diamonds) in ALB are also shown 

(HARVEY et al. , 1993). Errors are la from counting statistics only. Filled squares are 

whole rock data for Y79 (WARREN and KALLEMEYN, 1997) whereas the solid line represents 

whole rock data for ALH (SMITH et al. , 1984). 
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Fig. 6. Representative REE abundances (normalized to the CJ chondrite values of EBIHARA and 

ANDERS, 1982) in pyroxenes of Y79 (solid symbols; this work) and ALH (open symbols; 

HARVEY et al., 1993). Errors are la from counting statistics only. Squares represent 

low-Ca poikilitic pyroxenes; triangles high-Ca poikilitic pyroxenes; and circles low-Ca 

non-poikilitic pyroxenes. Note that the two REE patterns shown for low-Ca poikilitic 

pyroxenes in Y79 are representative of the cores (with lower REE abundances) and the rims 

(with higher REE abundances). REE compositions of Y79 pyroxenes shown here are also 

given in Table 1. 

present in these minerals below the detection limit of the ion microprobe. 

REE abundances in maskelynite and olivine of Y79 and ALH (Fig. 5) are the same 

within 2a errors (errors plotted in Fig. 5 are la from counting statistics only). Also 

shown in Fig. 5 are REE concentrations in a glassy area of the melt inclusion referred 

to above. The melt inclusion is predominantly glassy, although other minerals such as 

pyroxene (20-30 vol%) are also present. The REE patterns of the glass in this 

inclusion, the Y79 whole rock (filled squares; WARREN and KALLEMEYN, 1997) and the 

ALH whole rock (solid line; SMITH et al., 1984) are all similar, although absolute 

abundances in the whole rocks are somewhat lower. 

As in ALH, pyroxenes in Y79 have characteristic LREE-depleted patterns with 

small Eu anomalies (Fig. 6). However, there is an indication that the REE patterns of 

the low-Ca pyroxenes of ALH (CI-normalized Tm/La-40-60) are somewhat steeper 

than those of Y79 (CI-normalized Tm/La< 40). In addition, five of the twelve low-Ca 

poikilitic pyroxenes analyzed in Y79 have positive Ce anomalies (Ce/Ce* -1.5-4, where 

Ce* is the interpolated value between chondrite-normalized abundances of La and Pr). 

No Ce anomalies were found in low-Ca non-poikilitic and high-Ca poikilitic pyroxenes, 

probably because fewer of these two types of pyroxenes were analyzed. Pyroxenes of 

other Antarctic shergottites commonly display Ce anomalies (negative and positive; e.g., 
WADHWA et al., 1994) which are caused by REE mobilization in the Antarctic weather-
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Fig. 7. Y versus Ti concentrations in low-Ca pyroxenes of Y79 (filled symbols) and ALH (open 

symbols). Squares represent poikilitic pyroxenes and circles non-poikilitic pyroxenes. 
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Fig. 8. Zr versus Ti concentrations in low-Ca pyroxenes of Y79 (filled symbols) and ALH (open 

symbols). Squares represent poikilitic pyroxenes and circles non-poikilitic pyroxenes. 
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ing environment (Fwss and CROZAZ, 1991). 

Figures 7 and 8 respectively show Y and Zr abundances vs. Ti concentrations in 

low-Ca pyroxenes, both poikilitic and non-poikilitic, of Y79 as well as ALH (HARVEY et 

al., 1993). It is evident that trace and minor element abundances in pyroxenes of Y79 

and ALH are similar. 

4. Discussion 

Because there are only rather subtle compositional differences (HARVEY et al., 1993; 

TREIMAN et al., 1994) between the two other lherzolites, ALH and the 13 g LEW88516 

(LEW) for which less extensive data are available, we will, in the following discussion, 

emphasize mainly similarities and differences between Y79 and ALH. 

4.1. Implications of major and minor element zoning in olivines and pyroxenes of Y79 

In view of the high diffusivity of Fe and Mg in olivine, the fact that this zoning is 

preserved at all in this mineral suggests that Y79 could not have undergone extensive 

sub-solidus equilibration. It is noted that such zoning is not observed in olivines of 

ALH and LEW, which have uniform major element compositions (e.g., HARVEY et al. , 

1993). There is no apparent correlation between the composition of olivine crystals 

and the pyroxene immediately surrounding each crystal. This suggests that olivines 

crystallized prior to pyroxenes, and were incorporated in the growing pyroxene crystals. 

In fact, the rounded texture of the olivine crystals suggests that they have been partially 

resorbed prior to incorporation with the pyroxene, as if they were in a reaction 

relationship with the melt. 

As noted earlier, even though the smooth zoning pattern in the large poikilitic 

pyroxene appears to be disturbed around the enclosed olivines, the distributions of major 

and minor elements in these "irregular" patches are similar to those in the smoothly 

zoned regions of these poikilitic pyroxenes. In fact, it is clear from Fig. 4 that there is 

no significant difference in Ti vs. Al systematics between the irregular patches and the 

smoothly zoned portions of the large poikilitic crystal. Similarities in zoning patterns 

for both major and minor elements suggest that, despite their irregular shapes, these 

patches are nevertheless similar in origin to the smoothly zoned regions, and are thus 

probably primary igneous features. We interpret the presence of these irregular 

pyroxene regions as indicating crystallization of pyroxene from a small volume of liquid 

around the olivines at the time they were trapped in the large pyroxene crystal. 

4.2. REE in the three martian lherzolites 

In all other SNC meteorites studied so far, with the exception of ALHA84001, the 

main REE carrier is calcium phosphate, either merrillite or apatite (WADHWA et al., 

1994; WADHWA and CRozAz, 1995, 1998). Therefore, we would expect Ca-phosphate 

to be the main REE carrier in Y79 as well. However, like other investigators before of 

us, and despite extensive mapping with the electron microprobe, we were unable to 

locate any grairis of merrillite or apatite in our thin section of Y79. The lack of 

detection of this mineral does not mean that it was never present in this meteorite. As 

in the case of the other two lherzolitic shergottites, Ca-phosphate in Y79 is most likely 
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heterogeneously distributed and occurs only in the non-poikilitic lithology. Therefore, 

it is possible that the thin sections studied so far by us and other workers ( which all 

appear to be dominated by the poikilitic lithology) are lacking in this mineral. 

Alternatively, igneous calcium phosphate in Y79 may be less abundant than in the other 

lherzolitic shergottites due to loss by dissolution during terrestrial weathering; this 

suggestion is consistent with the occurrence of "partly decomposed" Ca phosphate 

grains in chips of Y79 (MITTLEFEHLDT et al. ( 1997, Fig. 1 D). In ALH and LEW, 

merrillite is the mineral with the highest REE abundances and its REE pattern is 

essentially flat from La to Pr, then increases smoothly, has a small negative Eu anomaly, 

and finally slightly decreases from Gd to Lu (LUNDBERG et al., 1990; HARVEY et al., 

1993). There is no reason to believe that the REE pattern of Y79's calcium phosphate 

would be any different, although we were not able to locate, and thus analyze, any 

phosphate grain in this meteorite. The reasons for this assertion are indirect but 

convincing. 

Since merrillite is the main REE carrier in the shergottites (WADHWA et al., 1994), 

if this mineral in Y79, ALH, and LEW has the same REE pattern, we would expect the 

whole rock patterns to be essentially identical. And, indeed, this appears to be the case. 

EBIHARA et al. (1997), MITTLEFEHLDT et al. (1997), and WARREN and KALLEMEYN 

( 1997) all reported that the range of REE abundances in different samples of Y79 

generally overlap those measured in ALH and LEW. Variations in absolute REE 

abundances in various aliquots of the same lherzolite are largely explained by the 

heterogeneous distribution of calcium phosphate, which dominates the REE budget in 

ALH and LEW. However, EBIHARA et al. (1997) noted that their ICPMS analyses of 

Y79 whole rocks are somewhat more LREE-depleted compared to those of ALH. 

Additionally, WARREN and KALLEMEYN (1997) also found their Y79 sample to be 

slightly depleted in La relative to the average of all bulk analyses of the three lherzolitic 

shergottites. 

We performed simple mixing calculations, results of which are shown in Fig. 9, to 

better understand the cause of the variations in the REE abundances of measured Y79 

bulk samples. We assume that, to first order, the bulk REE composition of Y79 is 

defined by three components, i. e., (I) a REE-rich mineral having the same composition 

as that of merrillite in ALH (taken from HARVEY et al., 1993), (II) a LREE-depleted 

component which is composed mostly of poikilitic pigeonite, but also contains smaller 

amounts of poikilitic augite as well as non-poikilitic pyroxenes (taken as the average 

composition of the Y79 pigeonites analyzed by us), and (III) a REE-poor component 

that is comprised mainly of olivine, but also other minerals found in lesser abundance 

such as maskelynite and opaque phases ( the total REE contents of which are taken to be 

negligible). Figure 9 shows the results of three calculations ( indicated by a solid thick 

line, a solid thin line and a dashed line) made using different proportions of components 

I, II and III; for comparison, Y79 bulk rock data from WARREN and KALLEMEYN ( 1997) 

(solid squares) and EBIHARA et al. (1997) (solid triangles) are also shown. Note that 

the results of the two calculations shown by the solid lines ( mainly characterized by a 

variation in component I, i. e., merrillite) can successfully reproduce the middle and 

heavy REE (Sm to Yb) abundances in the bulk rock data of WARREN and KALLEYMEYN 

(1997) and EBIHARA et al. (1997). However, these two calculations overestimate the 
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Fig. 9. Results of calculations to reproduce the REE abundances measured in Y79 bulk samples by 

mixing three end member components I, II and III; see text for details. Solid squares and 

triangles respectively show the bulk rock data of WARREN and KALLEMEYN (1997) and 

EB/HARA et al. (1997). 

LREE (particularly La) concentrations. The third calculation ( the dashed line in Fig. 

9) illustrates that the apparent LREE depletion in the Y79 bulk samples may be due to 

an enrichment in the LREE-depleted component II ( mostly poikilitic pigeonite). How

ever, although an enrichment of component II can indeed produce the LREE depletion 

evident in the bulk data of EBIHARA et al. ( 1997), it is not as successful at reproducing 

the abundances of the middle REEs (particularly Nd to Tb). This, however, may be an 

artifact of the simple approximations made in assuming the compositions of the end 

member components. Thus, overall, variations of REE concentrations in whole rock 

samples can satisfactorily be accounted for by different proportions of the three 

components used in the mixing calculations. 

We note that the frequent occurrence of Ce anomalies in Y79 pyroxenes, as well as 

observations of numerous alteration phases and "partly decomposed" calcium phos

phates (MITTLEFEHLDT et al., 1997), are consistent with extensive weathering of this 

meteorite while it resided in Antarctica. Still, despite this alteration, the REEs appear 

to be mobilized (if at all) only over small (i.e. ,  µm- to mm-scale) distances, such that 

bulk concentrations of REEs remain largely unaffected. We conclude that all three 

lherzolites have similar REE abundances and that differences in previously reported 

whole rock analyses (EBIHARA et al., 1997; MITTLEFEHLDT et al., 1997; WARREN and 

KALLEMEYN, 1997) are due to sample heterogeneity. 

4. 3. Similarities between Y- 793605 and other lherzolitic shergottites 

In addition to the REE abundances and the many textural, petrologic, and chemical 
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similarities between Y79 and the other two lherzolites already reported (EBIHARA et al., 

1997; IKEDA, 1997; MIKOUCHI and MIYAMOTO, 1997; MITTLEFEHLDT e t  al., 1997; WARREN 

and KALLEMEYN, 1997), there is yet additional compositional evidence that supports a 

close association between these three meteorites. 

Practically all elemental abundances for olivine, plagioclase, and pyroxene reported 

here for Y79 are indistinguishable from equivalent data for ALH and LEW and the 

same chemical zoning patterns are observed in the pyroxene of all three meteorites. 

The only exception may be an indication that the REE patterns of the low-Ca poikilitic 

pyroxenes of Y79 (CI-normalized Tm/La< 40) are less steep than those of ALH 

(Cl-normalized Tm/La-40-60). However, the lower HREE/LREE ratio in these 

Y79 pyroxenes could also be attributed to calcium phosphate weathering and dissolution 

which locally remobilized REE, some of which may have been transported to these 

pyroxenes, thus lowering the Tm/La ratio in this mineral. REE transport and mobili

zation in Y79 pyroxene was likely facilitated by the intricate micro-crack network in this 

mineral (a feature commonly observed in other shergottites as well), which was most 

likely produced by the intense shock suffered by this meteorite during the impact that 

launched this sample from Mars. 

Impressed by all the similarities between martian lherzolites and noting that 

peridotitic portions of layered terrestrial intrusions typically feature systematic hetero

geneity down to cm-scales, WARREN and KALLEMEYN ( 1997) suggested that martian 

lherzolites are derived not only from a single layered intrusion, but from the same small 

region in the intrusion. If this is the case, we expect the three lherzolites to have 

identical cosmic ray exposure ages. And, indeed, the evidence (EuosTER and POLNAU, 

1997) points in that direction, although uncertainties on cosmic ray exposure ages are 

relatively large ( 4.4 + 1.0 Ma) and N1sHIIZUMI and CAFFEE ( 1997) could not "completely 

eliminate the possibility of a short pre-irradiation ( of Y79) in the surface of the parent 

body." 

In addition, since each of the three lherzolites was collected from a different ice field 

in Antarctica, it is unlikely that they are paired (i. e., are fragments from the same fall). 

This was confirmed by N1sHIIZUMI and CAFFEE ( 1997) who measured the 36Cl concentra

tions in all three meteorites and concluded that the terrestrial age of ALH (210 + 80 Ka) 

is significantly longer than those of the other two meteorites ( < 70 Ka). This situation 

is analogous to that of the three nakhlites (Nakhla, Lafayette, and Governador 

Valadares). Although these fell in different regions of the world, they exhibit striking 

petrographic and geochemical similarities and have the same exposure age of -11 Ma 

(as reported in SCHULTZ and KRUSE, 1978) which led HARVEY and MCSWEEN (1992) and 

WADHWA and CROZAZ (1995) to suggest that all nakhlites could have originated from 

within the same lithologic unit on Mars. 

4. 4. Petrogenesis of the three martian lherzolites 

In HARVEY et al. (1993), we outlined a model for the formation of ALH and LEW 

that can now be applied to Y79, as also done by M1KoucH1 and MIYAMOTO (1997). 

After initial crystallization of olivine and chromite, low-Ca pyroxene formed and 

enclosed the cumulus phases. The coherent trends for trace and minor elements in 

pyroxenes are consistent with progressive fractional crystallization from a single magma 
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reservoir. Continued crystallization included the onset of augite and then plagioclase 

formation, followed by more evolved phases such as merrillite. Finally, some 

reequilibration of major elements in the cumulus phases occurred, although preservation 

of zoning within individual olivine crystals in Y79 suggests that this reequilibration was 

not extensive, at least in this sample. If these three lherzolitic shergottites did indeed 

originate from the same lithologic unit on Mars (as indicated above in Section 4.3), the 

preservation of major element zoning in Y79 olivines may indicate that this sample 

crystallized at a shallower depth (relative to ALH and LEW) in this lithologic unit. 

The lherzolite parent melt compositions were LREE-depleted (LUNDBERG et al., 

1990; HARVEY et al., 1993). For Y79, as for the other two lherzolites, this can be 

inferred both by "inverting" the core low-Ca pyroxene composition and from the REE 

pattern of the glassy region of the melt inclusion in the poikilitically enclosed olivine. 

As shown in Fig. 5, the latter is LREE-depleted and parallel to the REE pattern of the 

Y79 whole rock. This is expected if Y79 consists of a cumulate portion (that contains 

only a small fraction of the overall REE budget of this rock) and a trapped melt 

component (with the composition of the parent melt) that essentially crystallized as a 

closed system. The REE composition of the glass in the melt inclusion, thus, approx

imately reflects the composition of the parent melt of Y79. This indicates that, like 

those of other shergottites, the parent magma of Y79 was derived by partial melting of 

an already depleted martian mantle. 

5. Conclusions 

( 1) Major, minor and trace element abundances in individual grains of 

maskelynite, olivine, glassy melt inclusion, and pyroxene show striking similarities, 

including zoning patterns in pyroxene, to those in other lherzolitic shergottites. 

(2) The common occurrence of Ce anomalies in low-Ca pyroxenes indicates that 

severe weathering occurred after Y79 fell in Antarctica. Weathering in the Antarctic 

may have been responsible for the dissolution of calcium phosphate (as previously noted 

by MITTLEFEHLDT et al., 1997) and localized mobilization of REEs. 

(3) Variations in the absolute REE abundances between various whole rock 

measurements of all three lherzolites can be largely accounted for by heterogeneity in 

the distribution of merrillite . Additionally, the LREE depletion noted in several bulk 

samples of Y79 may be due to an enrichment of poikilitic pyroxene. 

( 4) The data presented here are consistent with the view that all martian lherzolites 

may have come from the same lithologic unit within a single layered intrusion. 

However, unlike ALH and LEW, some olivines of Y79 have retained major element 

zonation suggesting that this sample did not undergo significant sub-solidus reequilibra

tion, and may have originated at a shallower depth in this lithologic unit than ALH and 

LEW. 

(5) The magma from which these cumulates formed was derived by partial melting 

of already depleted material and fractional crystallization in a closed system played an 

important role in the formation of these meteorites. 



Trace Element Distributions in Y-793605 1 8 1  

Acknowledgments 

We would like to thank the National Institute of Polar Research (NIPR) for 

providing a sample of Y-793605, as well as H. KonMA, P. WARREN, M. MIYAMOTO, and 

K. YANAI who organized the consortium to study this meteorite. The constructive 

comments and suggestions of two anonymous reviewers are much appreciated. This 

work was funded by NASA grants NAG5-4326 to MW, NAGW-337 1  to GC, and 

RTOP 344-3 1 -20-23 to GM. 

References 

EBIHARA, M. and ANDERS, E. ( 1982 ) :  Solar system abundances of the elements. Geochim. Cosmochim. 
Acta, 46, 2363-2380. 

EBIHARA, M., KONG, P. and SHINOTSUKA, K. ( 1 997 ) :  Chemical composition of Y-793605, a martian 

lherzolite. Antarct. Meteorite Res. , 10, 83-94. 
EUGSTER, 0. and POLNAU, E. ( 1997 ) :  Mars-Earth transfer time of lherzolite Yamato-793605. Antarct. 

Meteorite Res., 10, 143- 149. 

Fwss, C. and CROZAZ, G. ( 1 99 1 ) :  Ce anomalies in LEW85300 eucrite: Evidence for REE mobilization during 

Antarctic weathering. Earth Planet. Sci. Lett. , 107, 13-24. 
GRADY, M.M., VERCHOVSKY, A.B. , WRIGHT, LP. and PILLINGER, C.T. ( 1 997) : The light element geochemis

try of Yamato-793605. Antarct. Meteorite Res., 10, 1 5 1 - 162. 
HARVEY, R.P. and McSWEEN, H.Y., Jr. ( 1 992) :  Petrogenesis of the nakhlite meteorites: Evidence from 

cumulate mineral zoning. Geochim. Cosmochim. Acta, 56, 1 655 - 1 663. 

HARVEY, R.P., WADHWA, M., MCSWEEN, H.Y., Jr. and CROZAZ, G. ( 1 993 ) :  Petrography, mineral chemistry, 

and petrogenesis of Antarctic shergottite LEW885 1 6. Geochim. Cosmochim. Acta, 57, 4769-4783. 
IKEDA, Y. ( 1 997) :  Petrology and mineralogy of the Y-793605 martian meteorite. Antarct. Meteorite Res., 

10, 1 3-40. 
KOJIMA, H., MIYAMOTO, M. and WARREN, P.H. ( 1997) :  The Yamato-793605 martian meteorite consortium. 

Antarct. Meteorite Res., 10, 3- 12. 
LUNDBERG, L.L. ,  CROZAZ, G. , McKAY, G. and ZINNER, E. ( 1 988) :  Rare earth element carriers in the 

Shergotty meteorite and implications for its chronology. Geochim . Cosmochim. Acta, 52, 2 147-

2 1 63. 
LUNDBERG, L.L. ,  CROZAZ, G. and MCSWEEN, H.Y., Jr. ( 1 990) : Rare earth elements in minerals of the ALHA 

77005 shergottite and implications for its parent magma and crystallization history. Geochim. 

Cosmochim. Acta, 54, 2535-2547. 
MAYEDA, T.K., YANAI, K. and CLAYTON, R.N. ( 1995 ) :  Another martian meteorite. Lunar and Planetary 

Science XXVI. Houston, Lunar Planet. Inst. , 9 1 7-9 1 8. 

McSwEEN, H.Y., Jr. ( 1994) : What we have learned about Mars from SNC meteorites. Meteoritics, 29, 

757-779. 
MIKOUCHI, T. and MIYAMOTO, M. ( 1 996) : A new member of lherzolitic shergottite from Japanese Antarctic 

meteorite collection: Mineralogy and petrology of Yamato-793605. Antarctic Meteorites XXI. 
Tokyo, Natl Inst. Polar Res. , 104- 106. 

MIKOUCHI, T. and MIYAMOTO, M. ( 1 997 ) :  Yamato-793605 : A new lherzolitic shergottite from the Japanese 

Antarctic meteorite collection. Antarct. Meteorite Res., 10, 41 -60. 
MISAWA, K. , NAKAMURA, N., PREMO, W.R. and TATSUMOTO, M. ( 1 997) :  U-Th-Pb isotopic systematics of 

lherzolitic shergottite Yamato-793605. Antarct. Meteorite Res., 10, 95- 108. 
MITTLEFEHLDT, D.W., WENTWORTH, S. J., WANG, M.-S., LINDSTROM, M.M. and LIPSCHUTZ, M.E. ( 1997 ) :  

Geochemistry o f  and alterations phases in martian lherzolite Y-793605. Antarct. Meteorite Res., 
10, 109- 124. 

NAGAO, K., NAKAMURA, T. , MIURA, Y.N. and TAKAOKA, N. ( 1 997 ) :  Noble gases and mineralogy of primary 
igneous materials of the Yamato-793605 shergottite. Antarct. Meteorite Res., 10, 125-142. 



182 M. WADHWA, G. A. McKAY and G. CROZAZ 

NISHIIZUMI, K. and CAFFEE, M.W. (1997) : Exposure history of shergottite Yamato 793605. Antarctic 

Meteorites XXII. Tokyo, Natl Inst. Polar Res., 149-151. 

SCHULTZ, L. and KRUSE, H. (1978) : Light noble gases in stony meteorites -A compilation. Nucl. Track 

Detection, 2, 65-103. 

SMITH, M.R., LAUL, J.C., MA, M.-S., HUSTON, T. , VERKOUTEREN, R.M. , LIPSCHUTZ, M.E. and SCHMITT, R. 

A. ( 1984) : Petro genesis of the SNC ( shergottites, nakhlites, chassignites) meteorites: Implications 

for their origin from a large dynamic planet, possibly Mars. Proc. Lunar Planet. Sci. Conf., 14th, 

Pt. 2, B612-B630 (J. Geophys. Res., 89 Suppl.) . 

TREIMAN, A.H., McKAY, G.A. , BOGARD, D.D., MITTLEFEHLDT, D.W., WANG, M.-S., KELLER, L., 

LIPSCHUTZ, M.E., LINDSTROM, M.M. and GARRISON, D. (1994) : Comparison of the LEW88516 and 

ALHA77005 martian meteorites: Similar but distinct. Meteoritics, 29, 581-592. 

WADHWA, M. and CROZAZ, G. (1995) : Trace and minor elements in minerals of nakhlites and Chassigny: 

Clues to their petrogenesis. Geochim. Cosmochim. Acta, 59, 3629-3645. 

W ADHW A, M. and CROZAZ, G. ( 1998) : The igneous crystallization history of an ancient martian meteorite 

from rare earth element microdistributions. Meteorit. Planet. Sci., 33, 685-692. 

W ADHWA, M., MCSWEEN, H.Y., Jr. and CROZAZ, G. ( 1994) : Petrogenesis of shergottite meteorites inferred 

from minor and trace element microdistributions. Geochim. Cosmochim. Acta, 58, 4213-4229. 

WARREN, P.H. and KALLEMEYN, G.W. (1997) : Yamato-793605, EET79001, and other presumed martian 

meteorites: Compositional clues to their origins. Antarct. Meteorite Res., 10, 61-81. 

YANAI, K. (1995) : Re-searching for martian rocks from diogenite-diogenitic achondrites. Lunar and 

Planetary Science XXVI. Houston, Lunar Planet. Inst., 1533-1534. 

ZINNER, E. and CROZAZ, G. (1986) : A method for the quantitative measurement of rare earth elements in the 

ion microprobe. Intl. J. Mass. Spectrom. Ion Proc., 69, 17-38. 

(Received October 20, 1998; Revised manuscript accepted January 28, 1999) 


