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Abstract: The chemical zoning profiles of olivine xenocrysts in lithology A of the 

Elephant Moraine (EET) 79001 basaltic shergottite have been measured in order to 

investigate its cooling history. Olivines are zoned from Fa2, in the cores to Fa44 in the 

rims. The major and minor element compositions of olivine xenocryst cores in 

EET79001 correspond to those of homogeneous olivines in the lherzolitic shergottites, 

reconfirming the previous studies. We assume that the initial profile of olivine was 

uniform and it was modified by atomic diffusion due to contact with the Fe-rich sur­

rounding melt when olivine was incorporated as a xenocryst. Comparing the observed 

Fe zoning profiles with the calculated ones, we have estimated the minimum cooling 

rates of the xenocrystic olivines by numerically solving the diffusion equation. The 

inferred minimum cooling rates (0.07-0.5 °C) are faster than that for Zagami esti­

mated from the width of pyroxene lamella, consistent with a hypothesis that EET79001 

experienced significant undercooling unlike Shergotty and Zagami. We also performed 

the calculations by applying two different Fe-Mg interdiffusion coefficients to evalu­

ate them. There is no significant difference in the curvature of the calculated profiles 

between the two diffusion coefficients, whereas one gives roughly fivefold higher cool­

ing rates than the other. 

1. Introduction 

So far, twelve achondritic meteorites are recognized as SNC (Shergottites-Nakhlites­

Chassignite) meteorites, which are inferred to have formed on Mars. Nowadays, they 

are also called "martian meteorites" and classified into five rock types on the basis of 

their textures, mineral assemblages and chemical compositions, i.e., basalt, lherzolite, 

clinopyroxenite, dunite and orthopyroxenite (e.g., McSwEEN, 1994; YANAI, 1997). Sev­

eral lines of evidence for a martian origin of SNC meteorites are discussed over these a 

few decades. The hypothesis is now almost accepted and useful information about mar­

tian geology have been deduced (e.g., McSwEEN, 1994). Furthermore, recent announce­

ment of possible relict biogenic activity in a martian meteorite ALH84001 opened up a 

potential to discuss life on Mars (McKAY et al., 1996) although it has been under dispute 

(e.g., BRADLEY et al., 1997; McKAY et al., 1997). 

An Antarctic meteorite Elephant Moraine (EET) 79001 is one of the martian mete­

orites and classified as a basaltic shergottite along with Shergotty, Zagami and Queen 

Alexandra Range (QUE) 94201. It contains two distinct igneous lithologies (designated 

"A" and "B") with a planar, non-brecciated contact. Lithologies A and B of EET79001 

consist predominantly of clinopyroxene (pigeonite and augite) and mask el ynite ( shocked 
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plagioclase glass) and have many similarities in mineralogy to each other and to the 
other basaltic shergottites, but show textural and modal differences (STEELE and SMITH, 
1982; McSwEEN and JAROSEWICH, 1983). For example, the grain size of lithology A is 
significantly finer than that of lithology B. The amount of maskelynite relative to 
clinopyroxene is higher in lithology B than in lithology A. Lithology A is a little more 
magnesian than lithology B. In addition, lithology A contains large olivine, orthopyroxene 
and chromite reaching -5 mm across that are absent in the other basaltic shergottite 
including lithology 8 (STEELE and SMITH, 1982; McSwEEN and JAROSEWICH, 1983). Their 
compositions arc clearly out of equilibrium with the surrounding melt and considered to 
be xenocrysts as their huge sizes suggest (STEELE and SMITH, 1982; McSwEEN and 
JAROSEWICH, 1983). Both lithologies are suggested to be pctrogenetically related, prob­
ably through assimilation, fractionation from a similar parental magma, or partial melt­
ing of a similar source rock (McSwEEN and JAROSEWICH, 1983 ). It is also suggested that 
both lithologies probably formed from successive volcanic flows or multiple injections 
of magma into a small, shallow chamber (McSwEEN and JAROSEWICH, 1983). The 
xenocrysts in lithology A are important because they show a direct petrogenetic rela­
tionship to the lherzolitic martian meteorites as noted by McSwEEN and JAROSEWICH (1983). 
However, the origin of lithology A itself is still controversial due to their extremely 
small size of the grains and the presence of the xenocrysts. Recently, MITTLEFEHLDT et 
al. (1997) suggested that lithology A is a product of impact melting, whereas WARREN 
and KALLEMEYN ( 1997) argued that magma mixing is more likely than the impact melt 
(e.g., W ADHWA et al., 1994). 

Several quantitative studies on thermal histories of the basaltic shergottites have 
been carried out (JoNES, 1986; BREARLEY, 1991; McCoy et al., 1992; TREIMAN and SUTTON, 
1992). Because they arc largely on the basis of the textures and compositions of py­
roxenes and/or maskelynites which are major minerals in these meteorites, estimation of 
cooling history using such procedures usually bears a large uncertainty. Thus, it is im­
portant to study zoning of olivine xenocrysts occurring in lithology A of EET79001 in 
the hope that they record an igneous history as well. The objective of the present study 
is to examine chemical zoning of olivine xenocrysts in lithology A of EET79001 
shergottite and to constrain its thermal history. So far no quantitative data for cooling 
rate of EET79001 has been submitted except for a brief estimate by JoNES (1986) and 
this study bears a great potential to constrain its cooling rate. 

2. Samples and Analytical Techniques 

EET79001 was found in a glacial moraine in Victoria Land, Antarctica, during the 
1979-80 field season and is a 7.94 kg basaltic shergottite (ScoRE and REID, 1981). Two 
polished thin sections of the meteorite (EET79001,88 and ,443) were supplied by the 
Meteorite Working Group. The EET79001 meteorite has been described in detail by 
STEELE and SMITH ( 1982) and McSwEEN and JAROSEWICH (1983). 

Mineral compositions were determined using a JEOL JCXA-733 electron micro­
probe at the Ocean Research Institute, University of Tokyo. The accelerating voltage 
was 15 kV and the beam current was 12 nA on a Faraday cage. Thirteen major elements 
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(Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, Cr, V, Ni and P) were analyzed. Counting times at 
peak wavelengths were 20 s (10 sx2). The background intensity of each element was 
counted on both sides of the peak wavelength. X-ray intensities were corrected using a 
method by BENCE and ALBEE (1968). The chemical zoning profiles of olivine xenocrysts 
in lithology A of EET79001 were measured by line analyses by focused beam at inter­
vals of 3 µm. The zoning profiles were measured along lines selected on the basis of 
backscattered electron images. 

3. Calculation Procedures 

It was assumed here that the compositional gradient of the Fa component ( = lOOxFe/ 
(Mg+Fe); mol%) of olivine xenocryst in EET79001 was controlled by atomic diffusion. 
In order to estimate the cooling rate of olivine xenocryst in EET79001, we analyzed the 
compositional gradient by solving the diffusion equation (MIYAMOTO et al., 1986; 
MIYAMOTO and TAKEDA, 1994). 

The diffusion equation was numerically solved by using a finite difference approxi­
mation in spherical coordinates, taking into consideration the shape of olivine xenocrysts 
in EET79001: 

ac 1 a 2 ac 
--=---{ �(r D�)}, 
at r2 ar ar 

where C, rand t are the Fa component, position in spherical coordinate and time, respec­
tively. 

Initial condition is 

C (r, 0) = C
1
(r), 

where C1 is an initial concentration profile. Diffusion calculations were started by using 
a uniform initial profile which is determined by the core Fa composition of each olivine. 

Boundary conditions are 

ac;__JO, t} = O 
ax 

C(R,t)=CB, 

where position R is at the interface between olivine and the adjacent matrix. C
B 

is the 
concentration at the grain boundary with the matrix. The constant concentration (C

B
) 

was fixed to the concentration at the extreme rim of each olivine during diffusion calcu­
lations. 

Although several expressions of the Fe-Mg diffusion coefficient have been reported, 
we have employed the ones determined by BUENING and BusEcK (1973) and MISENER 
(1974) here. The expressions of the Fe-Mg interdiffusion coefficient in olivine parallel 
to the c axis determined by BUENING and BusECK (1973) are 
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D Fe= l02(f 02)
116exp(-0.045CFe-3.47)exp[(-61.06+0.2214CFe)/RT] T�ll25°C, (1) 

where D Fe is the Fe-Mg interdiffusion coefficient in cm2/s,f 02 is the oxygen fugacity in 

atm, CFe is the Fa component in mol%, R is the gas constant and Tis temperature in K. 

The diffusion coefficient in the c direction was used, because it is the largest among 

three directions and diffusive modification tends to be dominated by the largest diffu­

sion coefficient among three directions although they do not differ greatly. 

The Fe-Mg interdiffusion coefficient reported by MISENER (1974) is 

DFc= 10-2(0.41 +0.01 l 2CFe) exp[(-58.88+0.0905CFe)/RT], (3) 

where 900 °C :s; Ts 1100 °C. The Fe-Mg interdiffusion coefficient in olivine depends on 

temperature, composition and oxygen fugacity (BUENING and BusECK, 1973; eqs. (1) and 

(2)), whereas MISENER (1974) did not report a dependence on oxygen fugacity condi­

tions for his experiments (eq. (3)). MIYAMOTO et al. (1986) corrected the eq. (3) to incor­

porate the f 02 term. However, there is a typographical error in eq. (8) of MIYAMOTO et 

al. (1986), that is, the term "3.4538" was omitted. The correct expression is: 

DFe = (/02) 116 exp[ln(0.0041 +0.000112CFc)-3.4538 ] exp[(-39.27+0.0905CFe)/RT] 

= 0.03163x10·2 (f02) 116(0.41+0.0112CFe) exp[(-39.27+0.0905CFe)/RT], (4) 

Because coexisting Fe-Ti oxide (titanomagnetite and ilmenite) compositions in 

EET79001 suggest oxygen fugacity equilibration near that of the quartz-fayalite-mag­

netite (QFM) buffer (McSwEEN and JAROSEWICH, 1983), we calculated the temperature 

dependence of the oxygen fugacity using the f 02-T relation for the QFM buffer assem­

blage in the temperature range of 600 °C to 1100 °C determined by WoNES and GILBERT 

(1969). 

log(f 02) = 9.00-25738/T. (5) 

The pyroxene ( core augite and pigeonite) compositions of lithology A of EET79001 

suggest that the temperature at which pyroxene crystallized is about 1200 °C from two 

pyroxene geothermometry (LINDSLEY and ANDERSEN, 1983) although its composition is a 

little scattered due to their irregular zoning patterns. The crystallization experiment of 

the basaltic shergottite composition (Shergotty and Zagami) showed that liquidus tem­

perature is around 1200 °C (STOLPER and McSwEEN, 1979). The compositions of coex­

isting Fe-Ti oxides in lithology A of EET79001 determine the temperature of 790 °C 

(McSwEEN and JAROSEWICH, 1983). Therefore, we calculated cooling rates in the tem­

perature range of 1200-800 °C. Although we calculated down to temperature of 800 °C, 

our calculation gave little change of the profile at temperatures lower than 800 °C be-
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cause atomic diffusion is only limited at low temperatures comparing with high tem­
peratures. Thus, we believe that the minimum temperature (800 °C) corresponds to 
"closure temperature". Because olivine in lithology A is incorporated into the melt as a 
xenocryst, it is expected that olivine experienced atomic diffusion from temperatures 
higher than 1200 °C. Some olivine grains suggest evidence for partial dissolution. There­
fore, the result from this calculation starting from 1200 °C gives the minimum cooling 
rate. 

4. Results 

4.1. Chemical zoning 
The olivine xenocrysts in lithology A of EET79001 that we analyzed range from 0.5 

mm to 3 mm in size. They are usually rounded in shape, suggesting interaction with the 
surrounding melt. Some olivines are faulted by shock. All the phases in lithology A, 
including the host pyroxene and maskelynite are severely shocked (i.e., undulatory ex­
tinction, polysynthetic twinning). The representative observed zoning profiles for oli­
vine xenocrysts are shown in Figs. I and 2. Decrease of Mg and increase of Fe from the 
Mg-rich cores to Fe-rich rims are apparent in Mg and Fe maps (Fig. 3). Their composi­
tional zoning ranges are Fa23_36, Fa28_43 and Fa39_44, respectively for a, b and c of Figs. l 
and 2. These compositional ranges are consistent with the analyses by STEELE and SMITH 
(1982) and McSwEEN and 1AROSEWICH (1983), whose maximum ranges of olivine compo­
sitions are Fa 19_45 and Fa22_47, respectively. Generally, larger grains have more magnesian 
compositions, indicating effect of off-center cut for grains. This caused more Fe-rich 
composition of olivine grain c than grains a and b in Figs. 1 and 2. 

As noted by previous workers (STEELE and SMITH, 1982; McSwEEN and JAROSEWICH, 
1983), the olivine compositions in the poikilitic area of the lherzolitic shergottites (Allan 
Hills (ALH) 77005, Lewis Cliff (LEW) 88516 and Yamato (Y)-793605) correspond to 
those of olivine xenocryst cores with the most magnesian compositions in lithology A of 
EET79001 (Figs. l and 2). Unlike olivines in lithology A of EET79001, those in 
lherzolitic shergottites are fairly homogeneous in chemical compositions and the aver­
age olivine compositions of ALH77005, LEW885 l 6 and Y-793605 are Fa26, Fa31 and 
Fa31 , respectively (McSwEEN et al., 1979; HARVEY et al., 1993; M1Koucm and MIYAMOTO, 
1997). Furthermore, minor element compositions of the olivine xenocrysts are also gen­
erally similar to those of olivine grains in the lherzolitic shergottites (Table 1 ). This fact 
reconfirms the idea that the xenocryst assemblage in lithology A of EET79001 repre­
sents a disaggregated plutonic rock (possibly the lherzolitic shergottites) assimilated by 
a basaltic shergottite magma (McSwEEN and 1AROSEWICH, 1983). 

4.2. Cooling rates 
Cooling rates that give the best fit between the calculated and observed profiles are 

provided in Table 2. Figure 1 shows the calculated and observed zoning profiles using 
two different diffusion coefficients. There are few differences in the curvature of the 
profiles between the Fe-Mg interdiffusion coefficient of BUENING and BusECK (1973) and 
that of MISENER ( 1974), while we obtained slightly different cooling rates of 0.5-3 °C/h 
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Fig. 1. Fe zoning profiles of the three different olivine xenocrysts in lithology A of the 

EET79001 basaltic shergottite. The compositional ranges are ( a) Fa23_361 (b) Fa28_43 

and (c) Fa39_44• Open circles indicate the Fa component. Curves show calculated 

diffusion profiles. Numbers show the cooling rates from 1200 °C to 800 °C. Fig­

ures a-c are obtained by using the diffusion coefficient of BUENING and BUSECK ( 1973) 

and Fig. d-f are obtained by using the diffusion coefficient of MISENER (1974). There 

is no significant difference in the curvature between Fig. a-c and Fig. d-f, whereas 

the cooling rates of Fig. d-f (MISENER, 1974) are slower than those in Fig. a-c 

(BUENING and BUSECK, 1973). 
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for BUENING and BusEcK (1973) and 0.07-0.6 °C/h for MISENER (1974) (Fig. 1). Because 
Fe-rich olivines generally give faster cooling rates, the line profile having the most Mg­
rich core gives the slowest cooling rate. Thus, the slowest cooling rates (0.5 °C/h from 
MISENER, 1974 and 0.07 °C from BUENING and BusEcK, 1973) correspond to the represen-
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Fig. 2. Fe zoning profiles of the same olivines as 

Fig. 1. Curves show the profiles calculated by 

applying the Rayleigh fractional crystallization 

equation. The calculated profiles disagree with 

the observed ones, suggesting that the chemical 

zoning is of metamorphic origin ( Fig. 1 ) .  

Fig. 3 .  Mg and Fe distribution maps of lithology 

A of EET79001. Brighter area shows higher con­

centration of each element. A large grain in the 

center is olivine. Note that olivine is zoned in 

both Mg and Fe from the Mg-rich and Fe-poor 

core to the Mg-poor and Fe-rich rim. 01: oli­

vine. Px: pyroxene. Ms: maskelynite. Scale bar 

is 500 µm. 

Table 1. Chemical composition of olivine in lithology A of EET79001 and lherzolitic 
shergottites (Core) . 

Fa CaO MnO NiO Cr203 

Lithology A 24 0.2-0 .3 0.45 0.05-0. 1 0.05-0. 1 

EET79001 

Lherzolitic 25-3 1 0.2-0.3 0.4 0-0 . 1  0-0.05 

shergottites 

CaO, MnO, NiO, Cr203 : wt% . 
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Table 2. Comparison of cooling rates reported for the basaltic shergottites. 
- --------

Cooling rate (0C/h) Temperature Method, mineral, etc. Meteorite 

0.02 1 1 00-950 pyroxene exsolution lamellae Zagami 1 

0 . 1 -0.5 plagioclase Zagami 2 

5-20 < 1 1 30- 1 200 pigeonite textures Zagami3 

0.07-0.6  1 200-800 Fe-Mg intcrdiffusion in olivine' EET79001 4 

0.5-3 1 200-800 Fe-Mg interdiffusion in olivinet EET79001 4 

'Diffusion coefficient of MISENER ( 1 974). 

toiffusion coefficient of BUENING and BusECK ( 1 973) .  
1 BREARLEY ( 1 991  ) ;  2McCoy et al. ( 1 992) ;  3TREIMAN and SUTTON ( 1 992); 4This study. 

tative cooling rate of lithology A. 

4.3. Iron diffusion coefficients 
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The Fe-Mg interdiffusion coefficient in olivine estimated by BUENING and BusECK 

(1973) is about one order of magnitude larger than that by M1sENER (1974) in the tem­

perature range of this study. There is no significant difference in the curvature of the 

zoning profile between the two Fe-Mg interdiffusion coefficients, because both coeffi­

cients are formulated as a function of the Fe content in olivine. Since we assumed linear 

cooling, the difference in the cooling rates reflects the difference in the value of the 

diffusion coefficients. 

4.4. Fractional crystallization 

In order to test the validity of our assumption that the chemical zoning is of meta­

morphic origin, we also applied a methodology similar to that used in our previous study 

(KAIDEN et al., 1997), in which Rayleigh fractionation equation was employed (Fig. 2). 
From Figs. 1 and 2, it can be concluded that the zonation of the xenocrystic olivines is of 

metamorphic origin, and not the result of an igneous process. 

5. Discussion 

Several authors have investigated the basaltic shergottites, especially Zagami, in 

order to reveal their crystallization histories (e.g., STOLPER and McSwEEN, 1979; TREIMAN 

and SUTTON, 1992; McCoy et al. , 1992), and some of them have estimated the cooling 

rates (Table 2). 

For example, BREARLEY (1991) suggested that the cooling rate of the Zagami 

shergottite is about 0.02 °C/h through the temperature interval of 1100-950 °C/h on the 

basis of the width of pyroxene exsolution lamellae in the pyroxene core and that Zagami 

has originated from a lava flow significantly thicker than 10 m or comes from a shallow 

intrusive body such as a sill or dike. McCoy et al. (1992) estimated cooling rates of 0.1-
0.5 °C/h for Zagami based on sizes of the plagioclase (maskelynite) crystals and pro­

posed that the Zagami shergottite experienced a two-stage magmatic history in which 

slow cooling occurred in a deep-seated magma chamber followed by rapid cooling in a 

shallow intrusion or thick lava flow. Cooling rates of 0.1-0.5 °C/h correspond to crys-
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tallization .during the second stage in a near-surface environment. On the other hand, 
TREIMAN and SUTTON (1992) inferred cooling rates of 5-20 °C/h ( <1130-1200 °C) from 
the textural comparison of Zagami with products from crystallization experiments of 
some lunar rocks and they found little evidence of a multistage cooling history as sug­
gested McCoy et al. (1992). 

Our calculation gives the first quantitative cooling rate of EET79001 (lithology A). 
Our results that the minimum cooling rate of olivine xenocrysts in EET79001 is 0.07-
0.5 °C/h is clearly faster than the Zagami cooling rate (0.02 °C/h) estimated by BREARLEY 
(1991 ). Furthermore, our estimating cooling rate is as fast as that of Zagami (0.1-0.5 
°C/h) for the second stage (rapid cooling) by McCoy et al. (1992). This is consistent 
with the suggestion by MtKOUCHI et al. (1997) that both lithologies of EET79001 experi­
enced significant undercooling unlike Shergotty and Zagami as they show different tex­
tures and pyroxene and maskelynite zoning patterns from EET79001. However, our 
cooling rate is slower than fast cooling rate (5-20 °C/h) estimated by TREIMAN and SUTTON 
(1992), probably due to uncertainty of their indirect estimation method. 

6. Conclusions 

The present investigation leads to the following conclusions. 
(1) The compositions of olivine xenocryst cores in lithology A of EET79001 are 

similar to those of homogeneous olivines in the lherzolitic shergottites, reconfirming the 
idea that the xenocrysts represent disaggregated xenoliths of the lherzolitic shergottites 
as suggested by MCSWEEN and JAROSEWICH (1983). 

(2) We have estimated cooling rates of olivine xenocrysts in the EET79001 basaltic 
shergottite by analyzing their chemical zoning profiles. The cooling rates that we ob­
tained are faster than that for Zagami pyroxene core estimated by BREARLEY (1991) and 
roughly consistent with those for Zagami estimated by McCoy et al. (1992), who sug­
gested its relatively rapid cooling in a near-surface environment as the second stage. 
Such cooling rates coincide with significant undercooling of EET79001 unlike Zagami 
proposed by MIKOUCHI et al. (1997). 

(3) Two kinds of Fe-Mg interdiffusion coefficient in olivine we applied in the present 
study show no significant difference in the curvature of the profiles, whereas the coeffi­
cient reported by BUENING and BusECK (1973) gives about fivefold higher cooling rates 
than that by MISENER (1974). 
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