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Abstract: A total of nine silicate inclusions (6 gabbroic, 3 cryptocrystalline) 

were isolated from slab samples of the Miles IIE iron meteorite. They were stud­

ied petrologically and then analyzed by instrumental neutron activation analysis, 

along with the host metal. Based on the siderophile element abundances in the host 

metal phase, Miles can be classified as a IIE iron but in some aspects it does not 

match the siderophile abundances of either IIE or anomalous IIE (IIE-An) irons. It 

may be a member of a third group of IIE irons, tentatively named fractionated IIE. 

Compared with the average H chondrite, the highly siderophile elements (Re, Os, 

Ir) are relatively more depleted than the less refractory siderophiles, except for Cu 

which is as depleted as the highly siderophile elements. This suggests that the metal 

phase of Miles was not simply produced by a vaporization/fractional condensation 

process. Rather, it was produced by the melting of H chondritic materials, followed 

by melt-solid segregation. At least a part of the immiscible sulfide in which Cu was 

distributed to a considerable degree, was removed from the metal melt. Silicate 

inclusions have variable amounts of siderophile elements, but their relative abun­

dances are similar to those of the metal phase. This suggests that the siderophile 

elements in the silicate inclusions have the same genesis as those in the host metal. 

Plagiophile elements (Al, Na and K) are all enriched in the silicate inclusions, espe­

cially in the cryptocrystalline inclusions, with K being the most abundant, succes­

sively followed by Na and Al. This fractionation of the plagiophile elements must 

have occurred during the fractional crystallization process, when the silicate inclu­

sions formed. Rare earth elements (REE) are fairly enriched in the silicate inclu­

sions (especially in the gabbroic inclusions) but their concentrations are slightly 

lower than that expected from the degree of partial melting of H chondritic mate­

rials. A mechanical loss of Ca-phosphate in sampling is suggested for the incon­

sistency in the REE abundances. Based on the REE abundance variations in the sil­

icate inclusions of several IIE irons, including Miles, we infer that the degree of 

differentiation of the parental liquids from which silicate inclusions formed was 

highly variable; it increased from Watson to Weekeroo Station, with Miles being 

intermediate. 

1. Introduction 
Iron meteorites are genetically classified into two groups; magmatic and non-mag­

matic. Group IIE irons, together with IAB and IIICD irons, are considered to be non-. 

373 



374 M. EBIHARA, Y. IKEDA and M. PRINZ 

magmatic in ongm (SCOTT and WASSON, 1976), possibly formed from impact-pro­

duced melts (WASSON et al., 1980; WASSON and WANG, 1986), and generally charac­

terized by the presence of silicates inclusions. WASSON and WANG ( 1986) classified 

the IIE meteorites into two subgroups, normal IIE and anomalous IIE (hereafter IIE­

An), based on the degree of correlation between several pairs of elements in the metal 

phases. Based on the textures and mineral compositions of the silicate inclusions, 

McCoy (1995) separated IIE irons into the primitive and differentiated subgroups. In 

this classification, Netschaevo and Techado belong to the primitive IIE subgroup. 

Since IIE irons have silicate inclusions, the 0-isotope compositions and radio­

metric ages of these inclusions can be measured. The similarity in 0-isotope compo­

sition between IIE silicates and H chondrites suggests a genetic relationship (CLAYTON 

et al., 1983; RUBIN et al., 1986). Radiometric ages of the IIE silicates are spread in 

a wide range, from 4.5 Ga for Colomera (Rb-Sr age; SANZ et al., 1970), Weekeroo 

Station (Ar-Ar age; NIEMEYER, 1980) and Techado (Ar-Ar age; GARRISON and BOGARD , 

1995) to 3.5 Ga for Kodaikanal (K-Ar age; BOGARD et al., 1969) and Watson (K-Ar 

age; OLSEN et al., 1994), with other IIE irons falling within this range. One hypoth­

esis for the formation of IIE irons suggests that they were produced as impact melts 

near the surface of a parent body (ies) having an H chondritic composition (WASSON 

and WANG, 1986). This model was supported by other researchers (OLSEN et al., 1994; 

CASANOVA et al., 1995; IKEDA and PRINZ, 1996). McCoy ( 1995) proposed an alterna­

tive model that IIE irons were produced in the core-mantle region of a parent body 

and were heated by impacts at a later stage. 

Miles is the latest recognized IIE iron (WLOTZKA, 1994 ), and was found in 

Queensland, Australia in 1992, with a total mass of 265 kg. Based on the chemical 

composition of the metal phase (data by WASSON in WLOTZKA, 1994), Miles was rec­

ognized as a IIE iron. McCOY ( 1995) further grouped it as a differentiated IIE iron. 

IKEDA and PRINZ ( 1996) examined silicate inclusions of the Miles meteorite in detail 

and found that there are two types, having gabbroic and cryptocrystalline textures. 

These textures suggest that the silicates were melted and not primitive. 

Chemical compositions of the silicate inclusions in a limited number of the IIE 

iron meteorites have been determined. This is especially true for the trace element 

compositions of the silicate inclusions in the differentiated IIEs. EVENSEN et al. ( 1979) 

determined rare earth element (REE) abundances in several silicate inclusions isolat­

ed from Weekeroo Station and found non-chondritic abundances. OLSEN et al. (1994) 

systematically analyzed a single, large silicate inclusion (-100 g) in Watson, not only 

for REE but also for other trace elements and found unfractionated, almost 

chondritic REE abundances. 

In order to increase our understanding of the chemical characteristics of the sil­

icate inclusions in the IIE irons, instrumental neutron activation analysis (INAA) was 

employed for analyzing separated silicate inclusions from the Miles IIE iron for the 

determination of major, minor and trace elements. These silicates were examined petro­

logically prior to INAA and these results are reported in a companion paper (IKEDA 

et al., 1997a). In addition to the silicate inclusions, the host metal was also analyzed 

by INAA. Based on these data, our aim in this study is to (i) characterize the chem­

ical composition of the Miles silicate inclusions, (ii) find relationships between the 
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chemical compositions and the petrological data, and (iii) elucidate the origin of Miles 

and the other IIE irons with silicates. 

2. Experimental Methods 

2. J. Samples 

Miles consists of an Fe-Ni metal host and many silicate inclusions. IKEDA and 

PRINZ ( 1996) petrologically examined 29 silicate inclusions in an earlier study, and an 

additional 20 inclusions were petrologically examined by IKEDA et al. (1997a) for this 

study. Of those, nine inclusions weighing 6.1 mg to 35.8 mg were analyzed by INAA. 

The textures and mineral assemblages of the silicate inclusions analyzed are summa­

rized in Table 1. The inclusions have been grouped into two types, gabbroic and cryp­

tocrystalline, based on their textures; the gabbroic ones are predominant (IKEDA and 

PRINZ, 1996 ). Of the nine inclusions analyzed, six are gabbroic and three are cryp­

tocrystalline in texture. 

2.2. Neutron activation analysis 

The silicate inclusions were separated from slab samples by using an instrument 

similar to a dental pick. Initially, each inclusion was mechanically purified by remov­

ing adhering metal using a scraper, and each was then rinsed in acetone with ultra­

sonication. After weighing, the incJusions were heat-sealed doubly in clean plastic 

bags. In addition to the silicate incJusions, the host metal was simultaneously ana-

. lyzed. A piece ( 11.2 mg) from the metal portion was prepared in the same way as for 

the silicate inclusions. The samples were irradiated in a TRIGA II reactor of the 

Institute for Atomic Energy, St Paul's (Rikkyo) University, along with chemical stan­

dards and the Allende reference standard (split 11, position 11) prepared by the 

Smithsonian Institution, and a basaltic standard rock sample, JB-1 of the Geological 

Table I. Mineral assemblages of the Miles inclusions analyzed by INAA. 

Inclusion Cpx IPig Opx P l  Ant-P Kf Tridy Cry-Ab Chm Rut Ami Ilm Wht Apt 01 
------------------------------------------------------ ---------------�----

Gabbroic 
IB ** ** * * * * * * 
IC ** ** ** * * * * * * * 
ID * * ** * * 
IF ** * ** * * * * * * 
II ** ** * * * ** * * * * * 
IJ * * ** * * * * * 

Cryptocrystalline 
IE * * ** * * * 
JG * ** * ** * * * 

* * ** * * * 

**: major,*: minor. 
Abbreviation: Cpx (high Ca pyroxene), IPig (inverted pigionite), Opx (orthopyroxene), Pl (Plagioclase), 
Ant-P (antiperthite, or anorthoclase}, Kf (K-feldspar), Tridy (tridymite), Cry-Ab (Cryptocrystalline albite), 
Chm (chromite}, Rut (rutile), Ami (armalcolite), Im (ilmenite), Wht (whitlockite), Apt (Cl-apatite), 
01 (olivine). 
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Survey of Japan. Irradiations were successively done two times, with different irradi­
ation times ( 100 s and 6 h). After the first irradiation, the metal samples were mea­
sured immediately, while the silicate samples were measured after cooling for a few 
minutes. The INAA method used in this work is essentially the same as that described 
in KONG et al. (1996). 

3. Results and Discussion 

3.1. Host metal 

The elemental compos1t1on of the host metal is shown in Table 2, which also 
includes the analytical data of Wasson (in WLOTZKA, 1994) for comparison. Our data 
are mainly consistent with those of Wasson, except for Ir, and especially Pt. Our Ir 

Table 2. Chemical compositions ( in ppm, or otherwise indicated) rf the metal r�f Miles and other 1/E iron 
groups. 

Fe(%) Co Ni(%) w Mo Re Os Ir Ru 
Miles 

This studl 91 . 2(1) 4580(1) 7. 55(1) 0.81 8(2) 5. 95([) 0. 1 02(4) 1 . 24( 13) 0. 894(1) 4. 25(13) 
Literatureb 4430 7.96 0. 86 0. 1 00 1 . 1 2  

1/E irons C 

Normal IIE 4500 8. 49 1 .20 0. 569 5. 8 
/50 0.56 0./2 0./41 /.4 

Anomalous IIE 4350 8. 1 5 1 . 1 4  0.51 5 4. 5 
/RO 0.42 0./5 0.215 1.7 

Ungrouped 5370 9. 38 0.44 0. 096 0.70 
5350. 5380 9.25. 9.50 0.37. 0.50 0.091. 0./00 0.69, 0. 71 

H chondrites 
Bulkct 27. 5 810 1.60 0.1 6 1 . 7 O. o70 0. 82 0. 76 1 . 1 1  
Metale 87. 1 4400 9. 8 0. 61 3. 8 0. 361 3. 1 6  3. 40 5. 4 

Pt Rh Pd Au Cu As Sb Ga Ge 
Miles 

This work 7. 06(4) 1 . 47(7) 2. 99(6) 0. 976([) 1 72(5) 1 0.4o > 0. 384(5) 29. 8(1) 70. 8(17) 
Literature 4. 6 1 . 1 3  1 82 9. 52 26. 6 

IIE irons 
Normal IIE 1 . 29 220 1 1.7  24. 6 70. 6 

0.32 56 3.5 2.8 3.4 

Anomalous IIE 1 . 1 9 279 1 0. 6  24.6 65. 5 
0.25 58 3.7 2.5 1.3 

Ungrouped 2. 1 3  1 50 20.6 25. 4 66. 2 
2.06, 2.20 142, /58 18. 7, 22.4 25.0, 25.7 62.1, 70.2 

H chondrites 
Bulk 1 . 40 0. 22 0.87 0. 21 5 82 2.05 0. 070 6. 0 1 3  
Metal 8. 6 1 . 1 5. 0 1 . 34 520 1 2.6 0. 55 9.7 63 

aValues in parentheses are errors due to counting statistics (in %; la). bData by WASSON (WLOTZKA, 1 994). 
cMean values and standard deviations (in italics; 1 a) for normal IIEs (n=8) and anomalous IIEs (n=4 ). For 
ungrouped irons, mean values and individual data (in italics) are shown. Data from WAssoN and WANG 
( 1986). dW ASSON and KALLEMYN ( 1 988). eKONG and EBIHARA ( 1 997). 
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value is -20% lower than the Wasson value. A similar variation of Ir contents was 
observed by WASSON and WANG ( 1986) in their duplicate analyses of the Netschaevo 
IIE iron, suggesting that Ir is heterogeneously distributed in the metal portion of IIE 
irons. Our Pt value is about 50% higher than that of the WASSON value and since no 
systematic determination of Pt has been carried out for IIE irons we cannot evaluate 
the discrepancy. Based on the siderophile abundances in their metal analyses, WASSON 
and WANG ( 1986) classified the potential IIE irons into three groups, normal IIE, HE­
anomalous (IIE-An) and ungrouped iron. In Table 2, mean values and standard devi­
ations (1 a) of the individual data are cited from WASSON and WANG (1986) for these 
three groups. 

It can be noted in Table 2 that the Re and Ir contents in Miles are extremely low 
compared with those in both normal IIE and IIE-An irons. They are rather close to, 
or nearly equal to, the values for the Seymchan and Lonaconing meteorites, which 
were considered to be ungrouped irons, rather than IIE-An, by WASSON and WANG 
(1986). These two meteorites are characterized by low abundances of not only Re and 
Ir, but also W, compared with other IIE irons (normal IIE and IIE-An) (WASSON and 
WANG, 1986). Miles shows a depletion of W compared to other IIE irons (Table 2). 
Thus, the Re, Ir and W contents in Miles metal are lower than the IIE average, and 
close to the average values for the Seymchan and Lonaconing irons. 

Figure 1 shows element-Ni diagrams for eight elements in Miles (this study) and 
those in other group IIE irons (WASSON and WANG, 1986). The Miles data of WASSON 
also are shown in this figure for comparison. The composition of the Miles iron is 
generally close to that of the normal IIE irons except for Ir and W. The Ir and W val­
ues in Miles differ from the trend defined by the normal IIE irons, being depleted in 
those elements. The two ungrouped irons also have lower Ir and W contents, but their 
compositions are far from that of Miles. It may be worth pointing out that Weekeroo 
Station, an anomalous IIE, is between the normal IIE band and Miles on the Ir-Ni and 
W-Ni plots. Our Ga and As values of Miles are also slightly off the IIE band, being 
located above the IIE band, although their absolute contents are within the ranges for 
IIE irons. One may suspect that our data are biased at least for these two elements. 
Considering that the same analytical procedure yielded very consistent data of Ga and 
As for reference materials (KONG et al., 1996), chemical heterogeneity rather than 
interlaboratory bias can explain such an inconsistency for Ga and As data. The Miles 
iron may be grouped with the IIE irons but cannot be designated either normal IIE or 
IIE-An. The Low abundances of Re and Ir (and possibly Os) in Miles are close to 
those of the ungrouped irons (Table 2), but these meteorites are not located at iden­
tical positions on Fig. 1. Based on these considerations, Miles may be part of a third 
group of IIE irons, which is tentatively named fractionated IIE. 

The elemental abundances in the Miles host metal are shown in Fig. 2, where 
their abundances are normalized to the H chondrite average (WASSON and KALLEMEYN, 
1988) and bulk H chondrite metal (KONG and EBIHARA, 1997) (Table 2). Both abun­
dance patterns are roughly parallel to one another. The data appear to be divided into 
two groups of elements; a Re-Os-Ir-Cu group, and the others. Elements in each group 
have similar H chondrite-norrnalized abundances. Interestingly, the highly refractory 
siderophile elements (Re, Os, Ir) are depleted compared with the less refractory 
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Fig. 1. Element-Ni diagrams for eight elements in Miles and those in other group JIE irons 
(WASSON and WANG, 1986). The data of Miles from this study and WASSON are indi­
cated by solid and open stars, respectively. For comparison, normal JJE (solid cir­
cles), JIE-An (open circles) and the ungrouped irons Seymchan and Lonaconing (solid 
triangles) are shown separately as well as shaded bands corresponding to one stan­
dard deviation of the normal JJE data (all these data from WASSON and WANG, 1986). 
The composition <�l the Miles iron is generally close to that <f the normal /IE irons 
except for Jr and W, which are depleted in Miles. The Miles iron may be grouped 
with the 1/E irons hut cannot be designated either normal /IE or anomalous /IE. Miles 
may be tentatively grouped with the .fi'actionated /IE irons, which is a third group <f 
JJE irons. 
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Fig. 2. Elemental abundances in the Miles metal normalized to the H chondrite average (WASSON and 
KALLEMEYN, /98R) and bulk H chondrite metal ( KONG and EB/HARA. 1997). The highly refracto­
ry siderophile elements (Re, Os, Ir) and Cu are relatively depleted in the Miles host metal com­
pared with those in the H chondrite metals. It is inferred that the Miles host metal is residual 
metal afier segrexation of solid metal. Probably, Cu was preferentially taken into sulfide under 
reducing conditions, which is suggested by the considerably higher abundance of Ga in the Miles 
metal than that in the H chondrite metal. 

siderophiles. As the partition coefficients of these elements, between metal and sili­

cates, are very high or at least higher than those for the less refractory elements (PEACH 

and MATHEZ, l 993 � O' NEILL et al ., 1 995) ,  the Miles host metal cannot be the prod­

uct of the metal/si licate partitioning of H-chondritic materials. 

RUBIN ( 1 995) determined the refractory siderophile element abundances in metal 

separates from the Rose City meteorite, which is an H chondritic impact breccia, and 

discussed the fractionation of these elements during fractional crystal l ization. Although 

only nine elements were determined for the metal separates from Rose City, compar­

ing with 1 7  elements for the Miles metal , the siderophile abundance patterns (nor­

malized to the mean bulk composition of H chondrite metal) are surprisingly similar 

for the "refractory-poor" metal separates of Rose C ity and Miles. RUBIN ( 1 995) esti­

mated the distribution coefficients between solid and l iquid metal for the H 

chondritic material ; 4.7 for Ir and Os, 1.5 for W, 1 .2 for Co, l for Ni and Fe, 0.90 

for As, 0.5 for Au and 0.27 for Ga. If these values and the H bulk metal-normalized 

abundance patterns of the Miles host metal (Fig .  2) are considered, Miles is residual 

metal after an equil ibrium ( or quasi-equil ibrium) di stribution. RUBIN ( 1 995) interpret­

ed the abundance patterns of the siderophi le elements, similar to that in Miles host 

metal , in the context that they were established by vaporization followed by fraction­

al condensation . If this hypothesis can be appl ied to the Mi les host metal, the low 

abundance of Cu, which is less refractory than the siderophile elements, can be 

explained by invoking another process which must have occurred prior to the frac­

tional condensation . It may be worth pointing out that a depletion of Cu was also 
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observed in the metal nodules and veins in heavily shocked ordinary chondrites 

(WmoM et al., 1986). In those metal samples, Ir and Re were also found to be severe­

ly depleted, as in the case for the Rose City metal. No data for Cu were presented 

for the metal from Rose City in RUBIN ( 1995). 

Presumably, the Miles host metal was produced by melting of H-chondritic mate­

rial. The siderophile elements are quantitatively enriched in the metal-sulfide melt, 

without significant fractionation. With cooling, solid metal is segregated from the resid­

ual metal melt. Assuming that the solid and melt metal formed equally, the (relative) 

elemental abundances in this melt can be calculated to be Ir/Ni/Ga =0.35/ 1.0/1.6 by 

using distribution coefficients estimated by RUBIN ( 1995). This is roughly consistent 

with the H-normalized abundances of these three elements in the Miles host metal, 

suggesting that the Miles host metal was the residual melt fraction after partial seg­

regation of solid metal from the metal-sulfide liquid, which was probably produced 
by shock heating. Copper is a siderophile element in ordinary chondrites but becomes 

partly chalcophile in enstatite chondrites (ALLAN and MASON, 1973), suggesting that 

Cu behaves as a chalcophile element when the redox state becomes reductive. Probably, 

Cu was preferentially taken into sulfide in Miles, resulting in the depletion of Cu in 

the metal phases. Such a preferential uptake of Cu from metal into sulfide must also 

have occurred in the heavily shocked meteorites. At least, a part of the immiscible 

sulfide melt, in which Cu was distributed to a considerable degree, was separated and 

removed from the metal melt. 

It should also be noted that the relative abundance of Ga is higher than the expect­

ed value on the H metal-normalized pattern (Fig. 2). Such a high abundance cannot 

be the result of a vaporization/fractional condensation model. Gallium contents in metal 

are relatively low compared with those of the other siderophile elements such as As 

and Sb, which have similar volatilities to Ga in ordinary chondrites (KONG and 

EBIHARA, 1997). Thus, a considerable amount of Ga is present in non-metallic, pos­

sibly silicate phases. The partition coefficient of Ga between metal and silicate varies, 

depending upon the oxygen fugacity (SCHMITT et al., 1989), from 10 for f0
2 
= 10 -- 1 2  

atm to 1.8 for 10- 1 1  atm at 1300
°
C. The metal/silicate partition coefficient of Ga in 

the least metamorphosed ordinary chondrites is 0.5 or less (KONG and EBIHARA, 1996, 

1997), suggesting that the distribution of Ga occurred under highly oxidizing condi­

tions. If  melting occurred under more reducing conditions, the Ga distributed in the 

non-metal phases would be moved into metal phases. This can be an explanation for 

the higher than expected abundance of Ga in the Miles host metal. An unfractionat­

ed value of Ga which falls on the H chondrite-normalized abundance pattern suggests 

that Ga quantitatively resides in the metal phase. 

3.2. Silicate inclusions 

The chemical compositions of nine silicate inclusions in the Miles meteorite are 

shown in Table 3. The data are separated into gabbroic inclusions and cryptocrys­

talline inclusions, and the mean values are also given. 
3.2.1. Siderophile elements 

The siderophile elements are generally depleted in the silicate inclusions com­

pared with those in H chondrites (Fig. 3). There seems to be no apparent difference 
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Table 3. Chemical compositions (in ppm, or otherwise indicated) of silicate inclusions in the Miles IIE iron. 

____ weight(mg) Na,% Mg,% __ A_I_,9i_o K,% Ca,% Sc Ti V Cr Mn Fe,% Co Ni,% 
Gabbroic 

1 8  
IC 
ID 
IF 
I I  
IJ 

b mean 

26. 2 2.07 
60.4 3.90 

5.08 1 . 68 0. 31 
4. 20 5. 55 

3. 39 1 9. 5  2020 70 41 40 2350 1 1 . 4 378 0. 80 
4. 47 24. 1 1 08  4070 1 31 0  7. 4 302 0. 64 

10.0  5. 37 0. 97 7. 90 3. 30 2.50 1 0. 0  3230 52 2060 620 3. 0 1 04 0. 1 49 
5.6 0. 529 1 1 . 3 0. 91 0. 24 1 . 67 23.3 21 20 1 31 5320 3830 1 4. 7  427 1 . 1 5  

1 9. 5  0. 923 10 . 0  1 . 57 2. 45 1 4. 3  4320 41 0 541 0 4030 1 3. 9  343 0. 70 
1 3.9  4. 77 1 . 59 6. 67 2. 69 8.47 51 1 660 505 5. 0 220 0. 46 

2.9 5.5 4. 1 1.28 2.9 /6. 6  2900 137 3800 2110 9.2 300 0.65 
Cryptocrystalline 

IE 1 0. 3  6.34 
J G  
IH 
mean 

30. 2 3. 23 
8. 8 5. 1 0  

4.9 

0. 84 8. 45 0. 68 0.43 4. 43 2350 - 427 378 3. 3 1 41 0.81 
6. 51 4. 37 0. 56 3. 05 25. 0 2730 1 1 3  5550 2070 9. 0 263 0. 90 
0. 45 6. 02 1 . 26 6. 1 3  3360 1 5  1 770 283 25. 9 1 31 0  2. 50 
2. 6 6.J 0. 84 1. 7 I J .9 2800 64 2600 9/0 12. 7 570 1. 4 

I 3-9 2 2-1 4 4-22 I 5-1 0 3-1 3 2-4 1 -9 1 -2 

Gabbroic 
1 B  
IC 
ID 
IF 
l l  
IJ 

Zn As 

37. 3 0. 55 
1 4  
1 6. 6  
69.3 0. 55 

1 240 1 . 56 

mean 275 0.89 
Cryptocrystalline 

IE 30. 3 
J G  
IH 
mean 
Error 

1 39 

85 
1 -1 9  

2. 34 
2.34 

Se La Ce Sm Eu Yb Lu,ppb Hf l r,ppb Au,ppb 

1.46 0. 76 4. 0 l . 04 0. 21 1. 1 8  1 81 0. 45 
0. 59 2.4 0. 73 0. 37 0. 73 1 38 

2. 67 2. 5 0. 75 0. 23 0. 66 96 0. 33 
3. 88 1. 06 3. 8 1 . 07 1 . 61 220 1 . 1 3  

1 . 39 0. 50 0. 1 5 0. 42 
1 . 35 0. 33 0. 36 0. 31 36 0. 26 
2.34 0.95 3.2 0. 74 0.27 0.82 /42 0.54 

2. 69 0. 084 0. 42 58 0. 98 

63 49 
36 25 

1 0. 0  
30 

89 70 
27 1 7. 9  
54 34 

8. 4 
- 0. 20 0. 1 0  0. 29 

3. 00 3. 08 6. 9 0. 68 0. 48 
2.85 3. / 6.9 0.32 0.26 0. 38 

64 0. 66 30 22 
71 0. 63 298 250 
64 0. 76 /64 94 

3-1 7  4-1 0 5-1 0 1 -8 2-24 3-1 6 3-1 8 3-20 2-7 1 -1 4  
aBel ow detection l imit. bMeans of quantitative val ues. cErrors due to counting statis tic s ( in %; Irr). 

in the siderophile element contents between the gabbroic and cryptocrystalline inclu­

sions. Both types of inclusions contain tiny metal grains (both taenite and kamacite 

in the gabbroic inclusions, and kamacite in the cryptocrystalline inclusions) (IKEDA 

and PRINZ, 1 996). Cryptocrystalline inclusion l H  consists of kamacite, orthopyroxene 

( opx), whitlockite, small chromite grains and cryptocrystalline albite groundmass 

(IKEDA et al., 1997a) and has the highest abundances of siderophile elements of the 

inclusions studied. The siderophile abundances in the host metal are compared with 

those in the silicate inclusions in Fig. 3, and it can be seen that the siderophile abun­

dance patterns for inclusion I H  and the host metal are very similar. 

Except for I H, the other two cryptocrystalline inclusions have relatively lower 

contents of siderophiles than those in the gabbroic inclusions. This is consistent with 

the petrologic observation that the gabbroic inclusions generally have higher contents 

of metal. In spite of the difference in absolute content, the abundance patterns of the 

siderophile elements, including that for the host metal, are similar to one another, as 
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Fig. 3. Siderophile element abundances in the silicate inclusions normalized to the H chondrite 
average. There is no apparent difference in siderophile abundances between gabbroic 
inclusions (open symbols) and cryptocrystalline inclusions (closed symbols). They are 
generally similar to that for the host metal (star). It is suggested that the siderophile 
elements in the silicate inclusions have interacted with the host metal and the two appear 
to be genetically related. 

shown in Fig. 3. This suggests that the siderophile elements in the silicate inclusions 

have interacted with the host metal and the two appear to be genetically  related. A 

part of the Fe is  contributed by mineral phases which do not contain siderophiles, such 

as silicates (olivine and/or orthopyroxene) and oxides (chromite and/or ilmenite). This 

may explain the relatively high abundance of Fe in the (normal) silicate inclusions 

( except for I H), when compared with that in the host metal and inclusion l H. 

3.2.2. Non-siderophiles 

The H chondrite-normalized abundances of the non-siderophile elements, exclud­

ing the REE, in the silicate inclusions are shown in Fig. 4. Only Mg shows a deple­

t ion in all of the inclusions, when compared with the bulk H content . Magnesium is 

generally more depleted in the cryptocrystalline inclusions than in the gabbroic inclu­

sions. The Mg depletion is  consistent with the low abundance of olivine (and opx) in 

the Miles silicate inclusions; olivine was mostly held in the silicate residue in impact 

melting ( IKEDA et al., 1997a). The inclusions which have a relatively high content of 

Mg ( l F, 11, 1 G, l B and 1 C)  all have a high occurrence of opx (Table 1). This group­

ing of inclusions can also be found for Mn, Cr, and V, suggesting that these elements 

are largely hosted in the opx. An exceptionally high content of V and Zn (Table 2) 

in l I may be due to chromite, which was observed to occur most abundantly in the 

inclusion (Table l ), and has a high ZnO content ranging from 1.4 to 2.0 wt% ( IKEDA 

et al ., 1997a). Chromium contents are also contributed by chromite, but the degree of 

its contribution must be lower for Cr than for Zn and V because Cr is  also contained 

in other phases such as clinopyroxene (cpx) and armalcolite (IKEDA and PRINZ, 1996). 
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Fig. 4. H chondrite-normalized abundances of non-REE lithophile and chalcophile elements (left) and 
plagiophile elements ( right) in the silicate inclusions o.l Miles. Only Mg shows a depletion in all 
of the inclusions, when compared with the bulk H content. The Mg depletion is consistent with 
the low abundance <d' olivine in the Miles silicate inclusions; olivine was mostly left in the sili­
cate residue <iter impact melting. Plagiophile elements are generally enriched in the Miles sil­
icate inclusions, but are fractionated among them. Such fractionation must have occurred dur­
ing the fractional crystallization process, when silicate inclusions formed. 

Scandium shows a fairly small variation among the elements plotted in Fig. 4. Note 

that some values are missing for Ti and Se. The grouping of inclusions that is observed 

for Mg, V, Cr and Mn can be also found for Sc, but the order of the contents among 

the groups differs. Scandium is probably mainly present in cpx rather than opx. This 

is consistent with the distribution of these elements in equilibrated ordinary chondrites 

(MASON and GRAHAM, 1 970; ALLEN and MASON, 1 973). 

As observed in silicate inclusions in Weekeroo Station and Kodaikanal (BUNCH 

and OLSEN, 1968), Na, K and Al are also enriched in the Miles silicate inclusions. As 

expected, these plagiophile elements are generally more abundant in the cryptocrys­

talline inclusions than i n  the gabbroic inclusions (Fig. 4 ). Inclusions I F, I I  and l B 

contain plagioclase only as a minor constituent mineral (Table I ), and the plagiophile 

elements are accordingly relatively depleted. Nevertheless, their H-normalized abun­

dance is about unity or more than that, showing no absolute depletion. Potassium is 

the most abundant of the three plagiophile elements concerned and is successively fol­

lowed by Na and Al. This order is consistent with the order of crystaJJization sequence 

postulated for the Miles gabbroic inclusions (IKEDa and PRINZ, 1996). Fractionation 

among these plagiophile elements must have occurred during the fractional crystal­

lization process, when the silicate inclusions formed. 

3.2.3. Rare earth elements 

Rare earth elements are generaJly enriched in the Miles silicate inclusions com­

pared with chondritic abundances (Fig. 5). The REE in the gabbroic inclusions are lit­

tle fractionated and are concentrated by a factor of 3.2 to 4.6. IKEDA and PRINZ ( 1 996) 
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Fig. 5. CI-normalized REE abundance patterns for gabbroic inclusions ( open symbols) 
and cryptocrystalline inclusions (closed symbols). REE are generally enriched in 
the Miles silicate inclusions compared with chondritic abundances. The REE in 
the gabbroic inclusions are little fractionated whereas those in the cryptocrys­
talline inclusions are highly fractionated and variable. Based on the REE abun­
dance variations in the silicate inclusions, it is inferred that the degree cf dif­
ferentiation of the parental H chondritic material to form silicate inclusions is 
variable in the /IE irons; it increases from Watson to Weekeroo Station, with 
Miles being intermediate. 

calculated the degree of partial melting to be -25%. If we assume that the initial 

material was H chondritic, and that the REE were quantitatively taken into the melt 

in partial melting, from which silicate inclusions formed, the H chondrite-normalized 

REE abundances should be at least -5 X chondritic average or higher. This is slight­

ly higher than the observed values for the gabbroic inclusions. Compared with the 

REE abundances in the gabbroic inclusions, those in the cryptocrystalline inclusions 

in Miles are highly fractionated and variable. The Sm in the gabbroic inclusions varies 

by a factor of 3.3, whereas it is 8. 1 in the cryptocrystalline. 

The REE are highly enriched in Ca-phosphate in the ordinary chondrites (CURTIS 

and SCHMITT, 1 979; EBIHARA and HONDA, 1 983). When the H chondritic parent body 

was heated, metal and sulfide were first to melt. With further heating, Ca phosphates 

were melted. Under the reducing conditions when melting occurred, as suggested by 

the redistribution of Ga, the P was reduced and incorporated into the metal-sulfide 

melt whereas the REE enriched in the Ca-phosphate were taken into the silicate melt. 

Later, the P in the metal melt reacted with the silicate melt (having CaO) to form Ca­

phosphate. This process is discussed in the companion paper in detail (IKEDA et al., 

1 997a). With the formation of Ca-phosphates, the REE partitioned in the silicate melt 

were redistributed into the Ca-phosphates. 

It is highly probable that the gabbroic inclusions were derived from such a sin­

gle parental silicate melt, where the REE abundances were unfractionated and con-
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centrated by a factor of 5 to 6. With the crystallization of phosphate, the Ca-phos­
phate must accommodate the REE in the individual inclusions, but its content is not 
necessarily correlated with the REE abundances. If the cryptocrystalline inclusions are 
assumed to have resulted from a higher abundance of residual melt and a smaller 
amount of phenocrysts than those for the gabbroic inclusions (IKEDA et al., 1 997a), a 
slightly higher abundance of REE can be expected for the cryptocrystalline inclusions . 

The cryptocrystalline inclusions studied were all found to contain whitlockite as 
seen by microscopic observation of the polished sections, but the INAA data for REE 
in the isolated inclusions are not so high, especially for inclusions 1 E and 1 G (Fig. 
5). It is therefore highly possible that Ca-phosphate was partly lost in sampling, con­
sidering that phosphates tend to be located at the margins of the inclusions rather than 
inside them (IKEDA et al., 1 997a). A slightly lower abundance of the REE in the gab­
broic inclusions than that expected from the degree of partial melting could also be 
explained by a mechanical loss of phosphates from the silicate inclusions when they 
were isolated from the slab samples . As the cryptocrystalline inclusions are rounded­
shaped whereas the gabbroic inclusions have irregular outlines, the phosphate in the 
cryptocrystalline inclusions was more easily lost than that in the gabbroic inclusions. 

The phosphates in ordinary chondrites are l ikely to quantitatively accommodate 
the l ight and middle REE, but are less accommodating to the heavy REE (EBIHARA 
and HONDA, 1 984 ). Thus, if some phosphates were lost in sampling, the REE pattern 
would be characterized by a lower abundance of REE, especially of the l ight REE, 
and an increasing inclination. Inclusions 1 B and IF  show a sl ightly increasing incli­
nation with increasing atomic number, but show still higher REE abundances. This 
suggests that the degree of mechanical loss may, in fact, have been smal l, if any, espe­
cially for the gabbroic inclusions. 

Phosphate was found to be relatively enriched in the silicate inclusions of the 
Watson IIE iron, with nearly chondritic REE abundances (OLSEN et al., 1 994) . In con­
trast, highly fractionated REE patterns were observed in the silicate inclusions sepa­
rated from Weekeroo Station (EVENSEN et al., 1 979). Based on the REE abundance 
variations in the silicate inclusions, it is inferred that the degree of differentiation of 
the parental H chondritic material to form silicate inclusions is variable in the IIE 
irons. It increases from Watson to Weekeroo Station, with Miles being in between. 

3.3. Formation of Miles and other IIE irons 

It has been proposed that the IIE irons were produced by impact in the near-sur­
face region of a chondritic parent body (e.g . ,  WASSON and WANG, 1 986). McCoy 
( 1 995) presented an alternative hypothesis for the formation of IIE irons that the metal­
silicate mixing occurred in a core-mantle environment. As previously discussed, ele­
mental abundances in the Miles silicate inclusions are considerably fractionated, plac­
ing this meteorite in the differentiated IIE group (McCOY, 1 995) .  A similar variation 
was found by petrologic observation (IKEDA and PRINZ, 1 996; IKEDA et al., 1997a) . In 
contrast, some IIE irons preserve chondritic characteristics in their silicate inclusions. 
The silicate portion of Netschaevo has chondritic elemental abundances, contains some 
chondrules, and contains uniformly distributed metal whose composition is  similar to 
that of the surrounding metal matrix (B ILD and WASSON, 1 977). Yamato-79 1 093 also 
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has a silicate portion which has unfractionated, chondritic elemental abundances (IKEDA 

et al., 1 997b). Watson is less primitive, compared with these two meteorites, having 

lost metal/sulfide phases after nearly total melting, but it stil l preserves chondritic char­

acteristics (e.g., unfractionated REE) in the silicate inclusions, showing no differenti­

ation (OLSEN et al., 1994 ). Thus, there are large variations in the degree of differen­

tiation in the silicate portions of IIE irons. If IIE irons were formed at the core­

mantle boundary, the parent body must have been large enough for its center to be 

entirely melted, possibly larger than the ordinary chondrite parent bodies if they formed 
at nearly the same time. With such a large parent body, it would appear to be impos­

sible to keep undifferentiated silicate material at the core-mantle boundary. Rather, a 

surface or near-surface origin for the IIE irons and their silicates seems to be more 

plausible. Considering the similarity in the chemistry and mineralogy between the 

silicate inclusions of the IIE irons and the H chondrites, the parent body of the HE 

irons must have been H chondritic. Since the silicates in Miles was melted, the sur­

face material must have been heated. The heat source is tentatively ascribed to impact. 

In this case, individual IIE irons could be derived from separate cratering events (RUBIN 

et al ., 1 986). 

IIE irons have a large variation of radiometric ages, from 3.5 Ga for Kodaikanal 

to 4.5 Ga for Colomera. Both of these IIE meteorites are classified as highly differ­

entiated. The most primitive IIE iron recovered so far, Netschaevo, has a young age 

of 3.74 Ga (NIEMEYER, 1980). These facts indicate no correlation between the degree 

of differentiation and the age of the si licate portions. Apparently, the degree of dif­

ferentiation is dependent on the scale of the impact. In the case of Miles, impact was 

moderately severe and a melt sheet was formed at the base of the impact site. The 

metal/sulfide phases were totally melted, whereas the silicates were partly melted 

(about 25% according to IKEDA and PRINZ, 1996) and the residual silicate was removed 

from the melt. When the metal melt was partly solidified, solid-melt separation 

occurred in the metal phase. At least, a part of the immiscible sulfide was separated 

and removed from the metal melt . After the segregation of solid metal, the partly 

recrystallized silicates were mixed with the metal melt. At this stage, equilibration was 

established between the silicate portion and the metal matrix. Finally, the P in the 

metal melt was exsolved and reacted with CaO in the si licate melt to form Ca-phos­

phates, which tend to be located in the outer parts of the silicate inclusions. 
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