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Abstract: We have undertaken U-Th-Pb isotopic studies on lherzolitic shergot­

tite, Yamato-793605. Four mineral separates ( olivine, plagioclase, and two phases 

of pyroxene) and a whole-rock sample were leached with dilute acid in order to 

remove secondary Pb contamination. However, preferential leaching of U and Th 

over Pb occurred. The Pb isotopic data points of five residue fractions scattered, 

and a calculated Pb-Pb age does not clearly indicate either crystallization from a 

melt or a later disturbance to the U-Pb system, in contrast with other shergottites. 

The chord through U-Pb data points for pyroxene (PX 1) leaches and residue inter­

sects concordia at 4439 ± 9 Ma and 212 ± 62 Ma, suggesting a young disturbance 

event resulting in Pb loss. The later disturbance event partially reset the U-Pb sys­

tem. The estimated 238U/2°4Pb ( = µ) value from the whole-rock residue for the source 

of Y-793605 is about 5, suggesting that Y-793605 was derived from a volatile-rich 

source environment and confirms a low-µ source for shergottites compared to vol­

canic rocks of the Earth. 

1. Introduction 

NAKAMURA et al. (l 982) first proposed from U-Pb and Sm-Nd isotopic studies 
that Nakhla came from a relatively large, well-differentiated parent body, such as the 
planet, Mars. It is now widely believed that the SNC (shergottites, nakhlites, 
Chassigny) meteorites and one orthopyroxenite, Allan Hills (ALH) 84001, came from 
Mars. After ALH84001 was recognized as belonging to the Martian group, Y ANAI 
(l 995) re-examined the meteorite collection at the National Institute of Polar Research 
(NIPR) and found that Yamato- (Y-) 793605 has similar mineralogical and petrologi­
cal characteristics to those of the shergottite meteorites. Oxygen isotopes of Y-793605 
also showed similar compositions with the other shergottites (MAYEDA et al., 1995). 

Although the shergottites can be divided into basalts (Shergotty, Zagami, 
EET79001, and QUE94201) and lherzolites ( or peridotites ), they are believed to be 
closely related (MCSWEEN, 1994, and references therein). The Y-793605 meteorite is 
a lherzolitic shergottite, similar to ALH77005 and Lewis Cliff (LEW) 88516 (Y ANAi, 
1995, 1996; MIKOUCHI and MIYAMOTO, 1996a, b). Chronological studies have already 
been carried out on both basaltic and lherzolitic shergottites (BOGARD et al., 1979; 
NYQUIST et al., 1979, 1984, 1987, 1995; SHIH et al., 1982; WOODEN et al., 1982; 
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JAGOUTZ and WANKE, 1986; CHEN and W ASSERBURG, 1986 a, b, 1993; JAGOUTZ, 1989; 
BORG et al., 1996, 1997). Because isotopic systems have been disturbed most likely 
by intense shock, interpretation of ages obtained using these different isotopic systems 
is very complex. Nakhlites, Chassigny, and ALH8400 I have an exposure age of -12 
Ma. The lherzolitic and basaltic shergottites yield exposure ages of 3.5 Ma (ALH77005 
and LEW88516) and 2.6 Ma (Shergotty, Zagami, and QUE94201 ), respectively, but 
EET79001 has a lower exposure age of 0.7 Ma (BOGARD, 1995; EuGSTER et al., 1996). 
Thus, at least three or four impact events are suggested. 

Chemical and isotopic studies of a new shergottite are of interest to the plane­
tary sciences and will provide valuable information about mantle evolution and mag­
matism on a large parent body. As part of a consortium study of this Martian mete­
orite organized by the NIPR, we have undertaken the U-Th-Pb isotopic analysis of 
the Y-793605 meteorite. 

2. Experimental Procedures 

The petrography of Y-793605 has been described by Y ANAi ( 1995, 1996), 
MIKOUCHI and MIYAMOTO (1996a, b), and P. H. WARREN (personal communication). 
The rock consists mainly of olivine ( 40% ), orthopyroxene and pigeonite (33% ), augite 
(17% ), and maskelynite plagioclase (8%) with minor opaque minerals including 
chromite (MIKOUCHI, personal communication), and shows shock features. Yamato-
793605, 10 (408 mg) allocated from the NIPR through P. H. WARREN was composed 
of several fragments containing -10% fine-grained black material (shock melt). Under 
the binocular microscope, we recognized black-colored shock melt and numerous euhe­
dral chromite grains. The sample was gently crushed with a stainless steel mortar and 
divided into three sized fractions (<63 µm, 63-150 µm, 150-300 µm) using nylon 
cloth sieves. Olivine (OL) was hand-picked from the 150-300 µm fraction. Three sep­
arates (two pyroxene-rich phases: PX 1 and PX2, and maskelynitized plagioclase: PL) 
were obtained from the 63-150 µm fraction using a Frantz isodynamic separator 
equipped with an ethanol-filled chute. The PX 1 is more magnetic and dark in color 
(enriched in black material, shock-melt?) than PX2. It is expected that the non-mag­
netic fraction (PL) contains trace amounts of Ca-phosphates. The finest fraction ( <63 
µm) was used as a whole-rock sample (WR). 

The four separates and a whole-rock sample were first washed five times with 
ethanol. Then, they were leached three times in cold 0.0 IM HBr, rinsed twice with 
distilled water, leached three times in cold 0.1 M HBr, rinsed twice with distilled water, 
leached twice in IM HN01, and rinsed three times with distilled water. The washing 
and leaching were done in an ultrasonic bath for 10 min at each step. In previous U­
Th-Pb isotopic studies by CHEN and W ASSERBURG ( 1986 a, b, 1993), separated frac­
tions were first etched in a mixture of 2 ml IM HBr and 2 ml 2M HCl at -75

°
C for 

1 hour, and then the sample was etched again in 2 ml IM HN01 at -75
°
C for 1 hour. 

Compared to their etching, our leaching procedures were quite gentle. 
The leaches and residues were spiked with 21'U-236U-mTh-205Pb mixed tracer solu­

tions, dried, and then dissolved in a mixture of HNO, and HF. Chemical procedures 
for separation of U, Th, and Pb were described in MISAWA et al. ( 1993). Analytical 
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total Pb blanks were 26, 36, 27, 30, 20, 33 pg, for the fractions of O.OlM HBr leaches, 
0.1M HBr leaches, IM HN03 leaches, olivine and pyroxene residues, plagioclase 
residue, and whole-rock residue, respectively. Uranium and Th blanks were lower than 
1.5 pg and 0. 75 pg, respectively. 

3. Results and Discussion 

Isotopic compositions of U-Th-Pb isotopes were measured on an NBS-type tan­
dem mass spectrometer equipped with a counting system at the end of the second 
stage. Lead isotopic compositions in all fractions were corrected for analytical blank 
(2°6Pb/2°4Pb = 18.4+0.3, 207Pb/204Pb = 15.4+0.3, 208Pb/2°4Pb = 37.5+0.3), mass fraction­
ation (0.13 +0.03% per a.m.u.), and spike contribution using LuowIG's method (1989). 
Results of U, Th, and Pb analyses are presented in Tables 1 and 2. 

3.1. Leaching experiment 
For Antarctic meteorites, it is possible that some Pb contamination was incurred 

both from Antarctic ice and laboratory handling, including analytical blank. Moreover, 
shergottite meteorites contain trace amounts of secondary minerals of preterrestrial ori-

Table I. Elemental abundances in leachates and residues of separates. 

weight Pb* u* Th* 
(g) (ppb) (ppb) (ppb) 

-------�---------------------------------··----------

/st leaches 
OL 0.11344 7.08 (0.97)'11 1.33 (3.3) 1.64 (5.3) 
PX! 0.03093 13.6 (2.3) 4.88 (5.6) 8.42 (0.90) 
PX2 0.06910 80.2 (0.47) 3.07 (1.3) 4.36 (0.71) 
WR 0.10199 75.7 (0.54) 3.50 (0.36) 4.11 (0.71) 
PL 0.00609 64.0 (1.8) 30.9 ( 1.5) 98.4 ( 1.2) 
2nd leaches 
OL 0.11344 9.02(1.1) 0.294 (4.0) 2.76 (0.73) 
PX! 0.03093 14.3 (2.2) 1.99 (1.6) 13.1 (0.70) 
PX2 0.06910 failed 0.618 (1.8) 5.34 (0.73) 
WR 0.10199 59 .2 (0.49) 6.51 (0.38) 26.2 (0.69) 
PL 0.00609 6.7 (27) 3.17 (4.0) 28.7 (1.2) 
3rd leaches 
OL 0.11344 2.84 (2.4) 0.0568 ( 15) 0.488 ( 1.8) 
PXI 0.03093 17.0 (1.4) 0.573 (5.3) 3.35 ( 1.2) 
PX2 0.06910 10.3 (1.2) 0.229 (5.1) 1.28 ( 1.3) 
WR 0.10199 37.6 (0.49) 0.800 (I.I) 15.1 (0.76) 
PL 0.00609 18.2 (6.6) 1.01 ( 14) 4.56 ( 1.6) 
Residues 
OL 0.11047 12.3 (2.4) 0.554 ( 1.2) 0.863 (1.4) 
PX! 0.02644 40.0 (0.81) 1.44 (1.9) 3.84 (0.95) 
PX2 ().()6227 19.9 (0.83) 0.745 (1.5) 1.23 (0. 88) 
WR 0.09424 75. 2 (0.47) 1.95 (0.79) 3.08 (0.73) 
PL 0.00473 276 (0.63) 4.62 (7.8) 4.32 ( 1.6) 

---�---------·--------------------�-----�-- -------�----

§ U, Th, and Pb concentrations are calculated against the starting weight. 
� Errors are 95% confidence limits (in percent). 



Sample 204Pb/ 206Pb 

1st leaches (0.0JM HBr) 
OL 0.05929 (O. l 3)'ll 

PXl 0.05971 (0.56) 
PX2 0.04919 (0.065) 
WR 0.05483 (0.072) 
PL 0.06065 (0.33) 
2nd leaches (0.JM HBr) 
OL 0.06768 (0.51) 
PXl 0.06032 (0.52) 
WR 0.05789 (0.23) 
PL 0.0817 (14) 
3rd leaches (]M HN03) 
OL 0.07330 (0.64) 
PXl 0.06076 (0.19) 
PX2 0.06693 (0.37) 
WR 0.06054 (0.098) 
PL 0.06333 ( 1.1) 
Residues 
OL 0.0731 (2.8) 
PXl 0.06696 (0.18) 
PX2 0.07504 (0.27) 
WR 0.06907 (0.18) 
PL 0.073630 (0.14) 
Tota/7 

OL 0.06825 ( 1.5) 
PXl 0.06335 (0.92) 
WR 0.06053 (0.36) 
PL 0.07080 ( 1.2) 

Table 2. U-Th-Pb isotopic data for leaches and residues of separates. 

201Pb/ 206Pb 20sPb/ 206Pb 23gU/ 204Pb 

0.8707 (0.068) 2.169 (0.092) 11.2 (3.5) 
0.8642 ( 1.8) 2.137 (0.97) 21.1 (6.3) 
0.7687 (0.047) 1.944 (0.085) 2.533 (1.3) 
0.8593 (0.77) 2.094 (0.71) 2.916 (0.49) 
0.8662 (0.12) 2.224 (0.36) 28.5 (2.9) 

0.9157 (0.12) 2.363 (0.28) 1.81 (4.2) 
0.8694 (0.18) 2.182 (0.41) 8.18 (3.5) 
0.8613 (0.18) 2.158 (0.34) 6.690 (0.51) 
0.985 (6.1) 2.60 (8.4) 23 (49) 

0.9450 (0.33) 2.476 (0.61) 1.06 (16) 
0.8787 (0.16) 2.214 (0.15) 1.99 (5.6) 
0.8996 (0.33) 2.324 (0.42) 1.23 (5.3) 
0.8801 (0.094) 2.219 (0.14) 1.263 (1.2) 
0.8812 (0.52) 2.306 (0.90) 3.22 ( 17) 

0.9784 (0.16) 2.434 (0.15) 2.38 (3.9) 
0.9085 (0.076) 2.367 (0.12) 2.02 (2.1) 
0.9604 (1.2) 2.469 (0.49) 1.948 (1.7) 
0.9363 (0.082) 2.391 (0.10) 1.425 (0.83) 
0.9616 (0.12) 2.484 (0.10) 0.887 (7.8) 

0.9314 (1.5) 2.353 ( 1.5) 3.93 (2.3) 
0.8883 (0.92) 2.265 (0.92) 6.01 (3.2) 
0.8850 (0.36) 2.214 (0.36) 3.057 (0.37) 
0.9399 (1.2) 2.428 (1.2) 5.884 (1.8) 

232Th/ 204Pb 

14.3 (5.4) 
37.6 (2.9) 
3.710 (0.27) 
3.540 (0.37) 

93.9 (2.7) 

17.56 (l .4) 
55.6 (3.1) 
27 .81 (0.35) 

220 (49) 

9.42 (3.6) 
12.0 (2.1) 
7.069 (1.8) 

24.62 (0.43) 
15.0 (10) 

3.84 (3.9) 
5.558 ( 1.1) 
3.326 (1.0) 
2.333 (0.35) 
0.857 ( 1.6) 

10.49(1.9) 
20.07 (0.79) 
12.01 (0.52) 
20.84 (1.2) 

238U/ 206Pb *§ 

1.48 (3.5) 
2.83 (6.4) 
0.2298 (1.3) 

20,Pb 
• 
po6Pb *§ 

0.5810 (0.23) 
0.562 (6.4) 
0.4838 (0.16) 

0.3265 (0.49) 0.602 (2.3) 
3.97 (3.2) 0.5552 (0.50) 

0.331 (4.4) 0.5916 (0.79) 
1.12 (3.8) 0.5665 (0.78) 
0.8397 (0.54) 0.5755 (0.63) 
8.0 (100) 0.602 (18) 

0.245 (16) 0.5993 (0.93) 
0.278 (5.7) 0.5827 (0.53) 
0.218 (5.4) 0.5586 ( 1.5) 
0.1752 (1.2) 0.5884 (0.34) 
0.496 (18) 0.5584 ( 1.5) 

0.546 (6.6) 0.706 (3.4) 
0.359 (2.2) 0.5816 (0.31) 
0.485 (2.0) 0.623 (5.9) 
0.2755 (0.89) 0.6309 (0.42) 
0.208 (7.8) 0.6471 (0.49) 

0.736 (4.7) 0.627 (3.8) 
0.928 (3.9) 0.576 (3.1) 
0.4238 (0.91) 0.6000 (0.42) 
1.22 (3.9) 0.6191 (0.49) 

= 
201Pb * ;mu§ 

2osPb * /'32Th § 

54.1 (3.5) 0.497 (5.4) 
27.3 (9.1) 0.168 (6.8) 

290.2 ( 1.3) 2.708 (0.45) 
254 (2.3) 2.46 (3.1) 
19.3 (3.3) 0.0766 (3.4) 

247 (4.6) 0.310 (3.4) 
69.5 (4.0) 0.120 (4.4) 
94.50 (0.91) 0.2805 (1.9) 
10 (100) 0.011 (120) 

337 (16) 0.457 (5.7) 
289 (5.7) 0.5789 (2.3) 
353 (5.7) 0.742 (3.8) 
463.1 (1.2) 0.2915 (0.94) 
155 (19) 0.462 (11) 

178 (9.6) 0.99 (22) 
223 (2.2) 1.056 (1.5) 
177 (6.2) 1.03 (5.2) 
315.7 (1.1) 2.204 ( 1.3) 
430 (7.8) 4.969 ( 1.8) 

118(6.6) 0.477 (11) 
85.5 (4.7) 0.313 (5.2) 

195.2 (1.3) 0.5910 (2.0) 
69.9 (5.5) 0.212 (8.5) 

� Data are corrected for initial Pb isotopic composition using Canon Diablo Troilite (CDT) Pb (206Pb/204Pb=9.307, 207Pb/204Pb=I0.294, 
208Pb/204Pb=29.476); TATSUMOTO et al. (1973). 
1 Errors are 95% confidence limits (in percent) . 
., Combining U, Th, or Pb in the leaches with those in the residue. 
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gin (GOODING, 1992). In order to remove any preterrestrial and terrestrial contamina­

tion, we carried out acid leaching experiments on all separates. It has been shown that 

acetone and ethanol washing followed by acid leaching can eliminate large amounts 

of contamination. However, preferential elemental extraction occurred and U/Pb or 

Th/Pb were fractionated during leaching (e.g., MISAWA et al., 1993). The leaching pro­

cedure seemed to dissolve a phase (or phases) rich in U and/or Th, but poor in Pb. 

The amounts of sample lost during leaching vary from 3% for the OL fraction to 22% 

for the PL fraction. As shown in Fig. 1, 75-85% of the U and 85-95% of the Th are 

leachable in O.O IM HBr, O. lM HBr, and IM HN03, compared to 25-70% of 204Pb 

(Fig. 2). The 238U/2°4Pb or 232Th/204Pb ratios of the leaches are in general high in the 

first and second leaches, and then decrease in the third leaches, indicating that U, Th­

rich phases were mainly dissolved by the HBr leaching. The leaches have high 
232Th/238U (u) ratios which are not similar to the residue values, indicating some U-Th 

fractionation also occurred during leaching. The total u value of the Y-793605 whole­

rock is 3. 9 when calculated from the combined data of leaches and residue, and is 
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Fig. I. Abundances of U and Th in the five fractions from Yamato-793605 at 
different leaching steps. Values in parentheses are total amounts of U 
or Th (in nanomoles). Up to 85% of the U and 95% of the Th are leach­
able in 0.0/M HBr, O.JM HBr, and IM HN03. 
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Fig. 2. Abundances of 20

4Pb (in picomoleslg) in the five fractions from Yamato-793605 at d(fferent leach­
ing steps. Isotopic measurement of the second leach of PX2 failed due to unstable ion-beam sig­
nals. 

similar to those of other shergottites (x = -3.8-4.4; CHEN and WASSERBURG, 1986a, b, 
1993). The whole-rock residue of Y-793605 has 238U/2°4Pb (µ) = 1.4, which is similar 
to other shergottites, EET7900I, LEW88516, Shergotty, and Zagami (µ= 1.5-3. l; 
CHEN and W ASSERBURG, 1986 a, 1993), but is much lower than the residue value of 
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ALH77005 (µ= 10.3� CHEN and WASSERBURG, 1987). The PL residue is high in U, 
Th, and Pb contents and has the lowest 238U/204Pb and 232Thf2<l4Pb values compared to 
other fractions. The OL residue has low U, Th, and Pb contents and the highest 
238U/204Pb and 232Th/2<l4pb values. Uranium, Th, and Pb contents of the PXl residue are 
about twice those of the PX2 residue. 

3.2. Lead isotopes 
The Pb isotopic compos1t1ons of mineral fractions are plotted in a diagram of 

207Pb/204Pb vs 206Pbf2<l4Pb (Fig. 3). The data for leaches and residues from each fraction 
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Fig. 3. Lead isotope correlation diagrams for olivine ( OL), pyroxene ( PX 1 and PX2 ), plagioclase ( PL) 
separates, and a whole-rock (WR) fraction. The data points for leaches and residues are almost 
collinear between blank Pb and residue Pb. 
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are almost collinear with blank, except the first leach of PX2 and second leach of PL. 
The first leaches, except PX2, are less radiogenic than blank Pb, indicating that indige­
nous Pb is leached out with 0.01M HBr. Lead in all residues, except PL, is less radi­
ogenic than Pb in leaches, indicating that more U-rich components (grain surface?) 
were leached out. The Pb concentration of the first leach of PX2 is higher than those 
of the third leach and residue, indicating PX2 contained a U-rich component. The third 
leach ( IM HNQ3) of PL is more radiogenic than the second (0. l M  HBr) leach or 
residue, suggesting that this separate contains another U- and Th-rich component 
(238U/204Pb = 3, 232Th/204Pb = 15) that dissolved in dilute HNQ3. 

Lead isotopic data of Y-793605 are plotted in Fig. 4, and compared with .exist­
ing data of Shergotty, Zagami, EET79001, ALH77005, and LEW88516 from CHEN 
and WASSERBURG ( 1986 a, b, 1993). The Pb isotopic difference among the shergottite 
whole-rocks suggests that they could not be derived from a single parental source 
reservoir. The data points of the first leaches of Y-793605 plot close to blank Pb ( or 
modem terrestrial Pb, STACEY and KRAMERS, 1975). Lead isotopic compositions of 
residues are getting less radiogenic, but plot above the mixing line between CDT 
(Cafion Diablo troilite) and blank Pb, suggesting that the contribution of terrestrial 
contamination in these residues is negligible. The data points for the residues scatter 
due to open system behavior of U-Pb system. A calculated Pb-Pb "age" using five 
residues is 3800 Ma with a large error ( + 870 Ma) and does not clearly indicate nei­
ther crystallization from a melt nor later disturbance on the U-Pb system, in contrast 
with other shergottites. 

"'-

1 .0  
Shergottites 

Y -793605 
• residues 
• leaches 

0.9 

D 

blank 

I O�:
R

1 a
C 

PL,Re PX2,R/" 
D • • CDT-blank 

mixing line 

D Shergotty 
a Zagami 
+ ALH77005 
0 EET79001 
o LEW88516 

Chen & Wasserburg 
( 1 986a. h, 1991) 

0.8 1--___ __._ ____ ....._ ____ ....._ ___ ,_.... 

0.05 0.06 0.07 0.08 0.09 
204pbJ206pb 

Fig. 4. 207Pb/206Pb vs 204Pbf21!6Pb diagram for Yamato-793605 and other shergottites. Zagami, 
Shergotty, ALH77005, EET79001, and LEW88516 data are from CHEN and WASSERBURG 
( 1986a, b, 1993). A 4560-Ma reference line through primordial Canon Diablo troilite 
(CDT) Pb (TATSUMOTO et al., 1 973). Similar to other shergottites, the data point of 
whole-rock residue of Yamato-793605 plots near the 4560 Ma isochron. All residues 
of Yamato-793605 yield an age of 3812  ± 870 Ma using regression treatments of 
LUDWIG (1 991). 
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3.3. U-Th-Pb system 
The relationship of the Pb isotopic compositions with 238U/204Pb and 232Th/204Pb 

for the leaches, residue, and calculated total (U and Pb in the leaches are combined 
with those of the residues) of the whole-rock sample is shown in Fig. 5. These whole­
rock data indicate that U- and Th-rich components are less abundant in Y-793605 than 
in ALH77005. Although we could not obtain any linear trends from neither the U-Pb 
nor the Th-Pb systematics, we can estimate upper limits of initial ratios of the reser­
voir (2°6Pb/204Pb = 1 3.6, 207Pb/204Pb = 1 3. 1, and 208Pb/204Pb = 33.8) from the PL residue 
analysis (i.e., the lowest 238U/204Pb phase). These values are within the range of those 
estimated for Shergotty, Zagami, and EET79001 at -200 Ma ago (CHEN and 
WASSERBURG, 1986). 
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Fig. 5. (a) 206Pb/204Pb vs 238U/2°4Pb and (b) 208Pb/2°4Pb vs 232Th/204Pb correlation dia­
grams for lherzolitic shergottites. Data of ALH77005 and LEW88516 are 
from CHEN and WASSERBURG ( 1 986b, 1 993). 
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Fig. 6. Modified concordia diagram (TERA and WASSERBURG, 1 972) after correction for initial Pb 
using Canon Diablo troilite Pb ( TATSUMOTO et al. , 1973). All analyses hut five plot to the 
left of concordia, suggesting preferential extraction (d U from the fractions during leach­
ing. A chord through U-Ph data points for PX/ ,  LI ;  PX/, L2; PX/ ,  L3; and PX/, R inter­
sects concordia at 4439± 9 Ma and 212 ± 62 Ma, suggesting a two-stage evolution of an 
old parent body which had experienced Pb loss due to a young disturbance event. Because 
of large analytical errors, the data point <f PL, L2 is not shown in this figure. 

In Fig. 6, the U-Pb data of the leaches and residues are plotted on a modified 
concordia diagram (TERA and W ASSERBURG, 1972) after correction for initial Pb using 
the CDT Pb composition (TATSUMOTO et al. ,  1973). All analyses but five (PL, L 1; 
PX 1, L 1; OL, L 1; PL, L2 and PX 1, L2) plot to the left of concordia. We interpret 
this behavior partly as the result of preferential extraction of U from the fractions dur­
ing leaching. 

A chord through the U-Pb data for both PX 1 leaches and residue (PX 1, L 1 ; PX 1, 
L2; PXI ,  L3; PXI ,  R) intersects concordia at 4439 + 9  Ma and 212 + 62 Ma. Because 
the PXI separate contains abundant black glassy material, possibly impact melt, we 
interpret these intercept ages as suggesting a two-stage evolution whereby a 4400-
m.y.-old lherzolite parent suffered a 200-m.y.-old disturbance (shock event ?). The data 
from the OL and WR leaches fall close to the line but that of the OL, PL and WR 
residues do not, probably due to an old Pb component in olivine which did not equi-
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librate with other phases during a young disturbance event, and some radiogenic Pb 
components which may have incorporated into the maskelynitized plagioclase during 
shock events. 

3.4. Isotopic characteristics of the source reservoir and age of Y-793605 
As shown in Fig. 7, the Pb isotopic compositions of Y-793605 indicate that a 

source reservoir evolved in a low-µ (-5) environment. This µ-value is similar to or 
higher than those estimated for lherzolitic shergottites, ALH77005 (µ�5) and 
LEW88516 (µ<5). 

Although extensive chronological studies have already been carried out on 
Shergotty, Zagami, ALH77005, EET7900I, LEW885 I6, and QUE94201, the time of 
crystallization of shergottites has been controversial. Shergottite meteorites have a 
model isotopic age of -4500 Ma, which will represent an early initial differentiation 
of the parent body. Rubidium-Sr data for mineral separates of each analyzed shergot­
tite have plotted along lines corresponding to ages of - I 80 Ma. Similar to the U-Th­
Pb systems, the initial Sr isotopic ratios of shergottites differ considerably, suggesting 
that they were not comagmatic at - 180 Ma ago. Earlier work by SHIH et al. ( 1 982) 
and by WOODEN et al. ( 1982) suggested that the young age more likely represented 
impact-related resetting than a melting event. However, JONES ( 1986, 1989) conclud­
ed that the thermal effects of the shock event were insufficient for isotopic equilibra­
tion, and that 180 Ma was the crystallization age and not the time of shock meta­
morphism. On the basis of a 187+37-Ma Sm-Nd isochron age of Zagami, NYQUIST 

et al. ( 1995) concluded that basaltic shergottite Zagami crystallized from a melt at 
- 180 Ma ago. 

As mentioned earlier, a chord through the U-Pb data points for both PXl leaches 

l .2 

0.8 

0.02 

Shergottites 
µ=20 

",. 1 5  
1 0  

// >.-- CDT 

// // 
Zag/ / 

/ She ,_;'.'.s,Y-LEW / ,/ j EET1oo i ALH 

I I / 
/ /� Y-793605 
t,/ 4560 Ma 

0.04 0 .06 0.08 0. 1 0  0. 1 2  

Fig. 7. w7pbf2'!6Pb vs w1Pbf!i16Pb correlation diagram for whole-rock residues of 
shergottites. A single-stage evolution curves for samples f�f d(fferent 
23RU/2°4Pb ( =µ) values from Canon Diablo troilite Pb are shown. Shergotty 
(She), Zagami (Zag), ALH77005 (ALH), and LEW88516 (LEW) data are 
from CHEN and WASSERBURG ( 1 986, 1 987, 1 993). 
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WR residues of Yamato-793605 as well as some data points of Shergotty plot 
close to the trend of this mixing line, suggesting a young event of U-Pb frac­
tionation. 

and residue intersects concordia at 4439 + 9 Ma and 2 12 + 62 Ma. If a tie line between 
a 2 10-m.y.-old radiogenic Pb (207Pb/206Pb = 0.05) and the olivine residue (OL, R) is 
drawn on a 207Pb/206Pb-204Pb/2°6Pb diagram (Fig. 8), data points of the PX 1 and WR 
residues of Y-793605 as well as the whole-rock leaches (3C, L l ;  3C, L2), whole-rock 
(3A), whole-rock residue (3C, R), and plagioclase residue (PL, R) of Shergotty (CHEN 
and W ASSERBURG, 1986a) plot close to this mixing line, suggesting a young event for 
U-Pb fractionation. The plagioclase and less-magnetic pyroxene separates (PL, R and 
PX2, R) did not show such a trend, implying a greater disturbance during shock events 
or incomplete isotopic equilibrium in the U-Pb system. 

4. Conclusions 

The Pb isotopic compositions of Y-793605 indicate that a source reservoir evolved 
in a low-µ (-5) environment. Because of the open-system behavior owing to a dis­
turbance in the U-Th-Pb system, the time of crystallization of Y-793605 was not 
uniquely determined in this study. Uranium-Pb data points for both leaches and residue 
of the most magnetic fraction, which contains abundant shock-melt glass, define a 
chord which intersects concordia at 4439 + 9 Ma and 212 + 62 Ma, suggesting a two­
stage evolution whereby a 4400-m.y.-old lherzolite parent suffered a 200-m.y.-old dis­
turbance with Pb loss. The later disturbance event partially reset the U-Pb system. The 
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U-Th-Pb isotopic systematics of Y-793605 and its interpretations are generally follows 
those of other shergottites (CHEN and WASSERBURG, 1986a, b, 1993). 
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