Proc. NIPR Symp. Polar Biol., 7, 297, 1994

EFFECTS OF TEMPERATURE ON PHOTOSYNTHETIC RATES IN DIATOMS ISOLATED FROM THE SOUTHERN OCEAN (ABSTRACT)

Shigenobu Takeda¹, Isamu Sakaguchi¹, Kyoji Shinshima¹, Michiyasu Kiyono¹, Kentaro Watanabe² and Hideki Numanami³

¹Biology Department, Central Research Institute of Electric Power Industry, 1646, Abiko, Abiko 270–11

²National Institute of Polar Research, 9–10, Kaga 1-chome, Itabashi-ku, Tokyo 173
³Tokyo University of Fisheries, 5–7, Kounan 4-chome, Minato-ku, Tokyo 108

The rates of photosynthesis of Antarctic diatoms were determined as a function of temperature. Clonal cultures of diatoms were isolated from open surface waters (0 m, $-0.7 \sim 2.2^{\circ}$ C) in the Indian sector of the Southern Ocean (59 \sim 68°S) during the austral summer. Stock cultures were grown in f/2 medium at 1~4°C under 16:8 hr light:dark cycle at an intensity of 100~200 μ Einst m⁻² s⁻¹ for 7~11 months. For photosynthetic rate measurements in the land laboratory, the Antarctic diatoms were incubated in 100 ml polycarbonate bottles (three light and two dark) for 4 hr under a saturating intensity of 200 μ Einst m⁻² s⁻¹ at different temperatures of -2.5°C, 0°C, 3°C, 5°C, 7°C, 10°C, and 15°C. Photosynthetic rates, based on the stable ¹³C isotope method, increased by a factor of 2.3~5.9 with temperature from -2.5°C (0.16~0.64 μ gC μ gChl a^{-1} h⁻¹) to 7°C (0.58~1.89 μ gC μ gChl a^{-1} h^{-1}). At higher temperatures the photosynthetic rates of *Chaetoceros* sp. and *Nitzschia* sp.1 were decreased rapidly (0.20 and 1.04 μ gC μ gChl a^{-1} h⁻¹). On the other hand, photosynthetic rates of Nitzschia sp.2, Nitzschia sp.3, and Nitzschia sp.4 were either not decreased or slightly increased up to 15°C (0.76, 1.37, and 2.40 μ gC μ gChl a^{-1} h⁻¹). The temperatures of maximum photosynthetic rates in these species were clearly higher than those in situ $(-0.7 \sim 2.2^{\circ}C)$ and in stock culture $(1 \sim 4^{\circ}C)$. Nevertheless, these five species all stopped growing at 15°C within 24 hr, and Nitzschia sp.1 showed little growth even at 7°C. It thus seems that high photosynthetic rates observed above the natural ambient temperature $(-1.8 \sim 5^{\circ}C)$ may remain for the restricted period that can be endured by the cells.

(Received March 31, 1993; Revised manuscript received June 28, 1993)