Proc. NIPR Symp. Polar Biol., 2, 213-215, 1989

VERTICAL DISTRIBUTIONS OF TEMPERATURE, SALINITY AND GEOSTROPHIC FLOW ALONG 37°E IN THE SOUTHERN OCEAN IN JANUARY–APRIL 1974 (EXTENDED ABSTRACT)

Mikio NAGANOBU*

Tokyo University of Fisheries, 5-7, Konan 4-chome, Minato-ku, Tokyo 108

There are large differences in macro-scale oceanic environments among sectors of Atlantic, Indian and Pacific in the Southern Ocean. The R.D. CONRAD of Lamont-Doherty Geological Observatory, Columbia University worked on oceanographic sections along 37°E between the African Continent and Antarctica in the Southern Ocean in January-April 1974 (S. JACOBS *et al.*: CONRAD 17, Hydrographic Stations Sea Floor Photographs Nephelometer Profiles in the Southwest Indian-Antarctic Ocean, Jan.-Apr. 1974, New York, LDGO, 1980) (Fig. 1). This paper describes vertical distributions of temperature, salinity and geostrophic flow, almost to the sea bottom, from

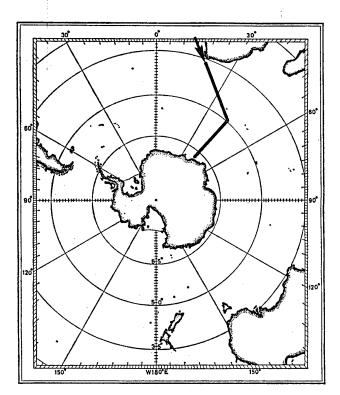


Fig. 1. Oceanographic sections along 37°E in the Southern Ocean surveyed by the R.D. CONRAD in January–April 1974.

^{*} Present address: Japan Marine Fishery Resource Research Center, 3-27, Kioi-cho, Chiyoda-ku, Tokyo 102.

35°S to 68°S near the continental shelf of Antarctica along 37°E.

The Antarctic surface water along this longitude occupies between $68^{\circ}20'S$ and $55^{\circ}30'S$ (Fig. 2). The temperature minimum was $-1.75^{\circ}C$ at the depth of 125 m in the Antarctic surface water. The temperature maximum was from $1.23^{\circ}C$ to $1.96^{\circ}C$ at the layer between 300 m and 600 m in the warm deep water. There was a sharp drop

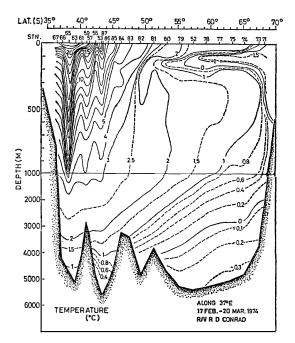


Fig. 2. Vertical distribution of temperature along 37°E in January-April 1974.

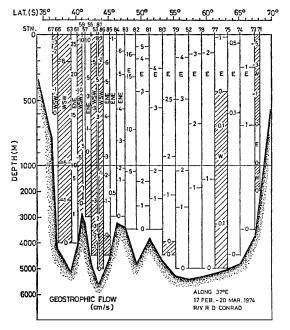


Fig. 3. Vertical distribution of geostrophic flow along 37°E in January–April 1974.

Depth					station				
(km)	67	66	63	61	59	57	55	53	8
0–1	-0.55	-21.56	21.47	-11.96	8.12	4.40	-4.30	5.37	
1-2		-9.55	7.47	-2.87	2.28	-0.83	—2. 70	2.77	
2-3		-2.92	2.11	-0.19	0.16	-0.33	-3.53	3.21	
3-4		-0.94	0.51				-3.22	1.89	
4–5							-0.55	0.23	
Total	-0.55	-34.97	31.56	-15.02	10.56	3.24	-14.30	13.47	
Depth	Station								
(km)	87	86	85	84	83	82	81	80	79
0-1	-2.25	9.41	1.62	8.55	20.54	7.39	7.75	5.49	
1–2	-1.36	4.05	1.55	2.59	6.52	4.99	4.06	3.37	
2-3	-1.16	1.97	0.59	0.70	1.92	2.69	2.02	1.67	
3–4	-0.76	0.31			0.26	0.33	0.23	0.36	
4–5	-0.26	-0.10						-0.01	
Total	-5.79	15.64	3.76	11.84	29.24	15.40	14.06	10.88	
Depth				Station				Tot	tal
-	79	52	78	77	75	74	73	71 67-	71
0–1	6.83	5.32	3.51	0.17	0.37	2.52	-1.01	77.2	20
1–2	3.83	2.91	2.30	-0.61	0.13	2.08	-0.04	32.	94
2-3	2.39	1.59	1.50	-0.64	0.09	0.87		14.	71
3–4	1.15	0.69	0.52	-0.24	0.09	0.07		1.2	25
4–5	0.28	0.17	0.14	-0.09	0.02			-0.	17
Total	14.48	10.68	7.97	-1.41	0.70	5.54	-1.05	125.9	93

Table 1. Geostrophic volume transport through 37°E in January-April 1974.

+: Eastward component. -: Westward component.

 $(10^6 \, \text{m}^3/\text{s})$

in surface temperature from 6.2° C at 48° S to 2.0° C at $55^{\circ}30'$ S. Between 100 m and 500 m, there was also a sharp drop of temperature from 4° C at 48° S to 2° C at 51° S. In the area having the sharp drop of temperature, a salinity minimum layer of 34.40% drops from the surface to 1000 m. On the other hand, a salinity maximum layer of 34.70% rises up from 3000 m at $36^{\circ}30'$ S to 500 m at 65° S. Geostrophic flow was calculated referring to the near bottom level. The water generally flows eastward with a maximum speed of 16.4 cm/s at the surface between 48° S and $49^{\circ}30'$ S (Fig. 3). The geostrophic volume transport through 37° E was $106.5 \times 10^{6} \text{ m}^{3}$ /s (eastward flow) between the Polar Frontal Zone at 48° S and 63° S (Table 1).

(Received March 25, 1988; Revised manuscript received October 1, 1988)