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Abstract: Nitrogen isotopic compositions were determined with stepped com

bustion method for three Antarctic eucrites (Allan Hills-76005, Yamato (Y)-

792510 and -82066) and two non-Antarctic eucrites (Juvinas and Camel Donga). 

The abundances of indigenous nitrogen in these eucrites are from 0.05. to 1.3 ppm, 

much lower than that in ordinary chondrites. The less abund:ince of nitrogen for 

eucrites is due to thermal events on the parent body. Isotopic ratios of the trapped 

nitrogen are also considered. Contribution of terrestrial nitrogen (b 15N from Oo/oo to 

+ 20o/oo) and cosmogenic nitrogen (b 15N > + l OOo/oo) is significant in the case of 

eucrites at low temperature ( < 600°C) and high temperature ( > 1000°C) fractions, 

respectively. Hence, nitrogen released at medium temperature fractions is considered. 

The observed minimum b 15N values released in medium temperature fractions of 

Y-792510 and Camel Donga are -54o/oo and -18%0, respectively. The low b 15N 
values cannot be explained by contribution of the terrestrial and cosmogenic 

components. This is strong evidence for existence of trapped components in eucrites 

which have 15N/ 14N ratios different from the atmospheric value. Since there may 

be some contribution of terrestrial or cosmogenic nitrogen even at medium 

temperature fractions, the minimum values observed in the present work should be 

considered as upper limits for the trapped components. 

1. Introduction 

Eucrites are well known as differentiated meteorites produced by igneous processes 

on the HED (Howardite-Eucrite-Diogenite) parent body (e.g., CoNGSOLMAGNO and 

DRAKE, 1977; TAKEDA, 1979; TAKEDA et al., 1983). Due to degassing during igneous 

processes, abundances of primordial noble gases and the other volatile elements in HED 

meteorites are lower than those in chondrites. Although noble gases in many HED 

meteorites have been measured (e.g., NAGAO and MATSUDA, 1986; MICHEL et al., 1991; 

MIURA et al., 1993), the primordial noble gases have not been detected. In fact, MICHEL 

et al. (1991) have suggested that trapped xenon in diogenite is mostly adsorbed air 

xenon in origin. On the other hand, precise nitrogen measurements have not been done 

for HED meteorites. The only previous work for Pasamonte eucrite (KUNG and 

CLAYTON, 1978) showed that bulk nitrogen content was 8 ppm and its c5 15N was 

+ 5.4%0 (nitrogen isotopic composition is expressed by convention as c5 1 5N (%0) 

= [( 15N/ 14N)sample/(
15N/14N)air -1J x 1000). Since nitrogen has only two isotopes ( 14N 

and 15N) and since the extracted nitrogen from meteorites is a mixture of different 
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origins, it is difficult to interpret the nitrogen isotopic variation if all nitrogen is extracted 

at once, as was done for Pasamonte. However, stepwise extraction technique can be 

used for separating the nitrogen of different origin (BOYD et al., 1988). If we can get 

abundances and isotopic compositions of trapped nitrogen, it will provide us information 

concerning the formation of HED parent body. Petrological studies suggest that eucrites 

are classified according to the depth in the parent body; ordinary, lava-like and cumulate 

eucrites (e.g., TAKEDA, 1979) have experienced different melting and cooling histories. 

Moreover, two different crystal fractionation trends, which are Nuevo Laredo trend 

and Stannern trend, were recognized for eucrites (IKEDA and TAKEDA, 1985). These 

igneous and metamorphic processes may have caused elemental and isotopic frac

tionation. If nitrogen abundances and isotopic compositions reflect these processes 
on the parent body, then sub-classification of eucrites using nitrogen isotopes may be 

possible. 

In this study, we measured the abundances and isotopic compositions of nitrogen 

in eucrites using a stepped combustion method (BOYD et al., 1988). Nitrogen isotopic 

compositions of five eucrites have been determined, and isotopic compositions and 

abundances of cosmogenic and trapped nitrogen were considered. 

2. Samples 

Three Antarctic eucrites Allan Hills (ALH)-76005, Yamato (Y)-792510 and Y-

Table 1. Recovered masses, petrogical features, cosmogenic 21 Ne and 38 Ar, radiogenic 40 Ar and 
cosmic-ray exposure ages for five eucrites. 

Recovered Petrological (2 1Ne)} (38 Ar)c 
4oAr Exposure 

mass Note age Ref.s 
(g) feature& 

(10-8 cm3 STP/g) (Ma) 

ALH-76005 698.2 Find 1976, Polymict 2.16 1.77* 930 14** l )  
Antarctica 1.49 1.29 1010 9.8** 2) 

Y-792510 608.73 Find 1979, Monomict 2.89 1.55 1030 11.7±1.l 3) 
Antarctica (Ordinary) 3.39 2.34 1450 18** 4) 

Y-82066 191.40 Find 1982, 1.62 1.21 * 1650 10.6± 1.1 *** 5) 
Antarctica 

Camel > 6000 Find 1984, Monomict 4.86 5.02 1450 37** 4) 
Donga Australia (Ordinary) 5.16 6.00* 1840 46** 6) 

Juvinas >91000 Fell 1821, Monomict 1.35* 1410 9.5±0.8 7) 
France (Ordinary) 1.73 1.47 1570 11** 8) 

# Measured 2 1 Ne was assumed as almost cosmogenic. 
* Concentration of cosmogenic 38Ar was calculated with assumptions of (38Ar/36Ar)c= 1.55 and 

(38Ar/36Ar)t=0.188 for cosmogenic and trapped ratios, respectively. 
** Cosmic-ray exposure age was calculated using 38Ar production rate of 0.131 x 10- 8 cm3 STP/g/Ma. 

*** Cosmic-ray exposure age was re-calculated using new 38Ar production rate, which was determined 
using a function of chemical compositions (MIURA et al., in preparation). 

& TAKEDA and GRAHAM (1991) and YANAI et al. (1987). 
s References for cosmic-ray exposure age and noble gas data: l )  VOGT et al. (1986). 2) NAGAO and 

MATSUDA (1989). 3) NAGAO and OGATA (1989). 4) MIURA et al. (in preparation). 5) MIURA et al. 
(1991). 6) PALME et al. (1988). 7) FREUNDEL et al. (1986). 8) data by WEBER (1989) taken from SCHULTZ 
and KRUSE (1989). 
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82066, and two non-Antarctic eucrites Juvinas and Camel Donga were measured. Noble 
gas and petrological features reported for these five eucrites (FREUNDEL et al., 1986; 
NAGAO and MATSUDA, 1986; VOGT et al., 1986; YANAI et al., 1987; PALME et al., 1988; 
SCHULTZ and KRUSE, 1989; NAGAO and OGATA, 1989; MIURA et al., 1991; TAKEDA and 
GRAHAM, 1991) are summarized in Table 1. Among five eucrites only ALH-76005 is a 
polymict eucrite, and Y-792510, Juvinas and Camel Donga are monomict eucrites. The 
terrestrial ages for two Antarctic eucrites, Y-792510 and Y-82066 have been determined 
by 81 Kr method to be 0.14 Ma and 0.09 Ma, respectively (MIURA et al., in preparation). 
The terrestrial age of ALH-76005 is estimated to be about 0.1 Ma because meteorites 
ALH-79017 and ALH-81009 which are paired with ALH-76005 have terrestrial ages 
of about 0.1 Ma (FREUNDEL et al., 1986). The five eucrites we measured are not paired 
with each other. 

3. Sample Preparation and Experimental Procedure 

Before a sample was introduced into an ultra-high vacuum line, it was crushed to 
small chips of a few tens of mg in weight and washed with acetone. About 200 mg of 
samples were wrapped in platinum foil of 10 µm in thickness and put into a quartz 
glass sample chamber connected to a gas extraction/purification system and a quadru
pole mass spectrometer. Nitrogen was extracted by heating the sample in an oxygen 
atmosphere with the pressure from 1 x 102 Pa to 2 x 103 Pa. Extraction temperatures 
are from 200°C up to 1200°C in 100°C step and heating duration for each step was 25 
minutes. The highest temperature steps ( l 200°C) were repeated several times to promote 
complete extraction of nitrogen. After gases were extracted from the sample, oxygen 
gas was absorbed by Cu-CuO heated at 630°C. Extracted gases were split into two 
fractions, one is for nitrogen analysis and the other for neon and argon. Neon was also 
separated from argon. Neon, argon and nitrogen isotopes were measured separately with 
a quadrupole mass spectrometer in a static mode. Molecular nitrogen was measured 
at masses 28, 29, and 30. The details for mass spectrometrical procedure are described 
in HASHIZUME and SUGIURA (1990, 1992a). 

Standard air nitrogen, cold blanks and hot blanks were measured using the same 
procedure as for a sample. Typical hot blanks are 1 ng, 1 x 10- 1 2 cm 3, 1 x 10- 8 cm 3 

for N2 , 21Ne and 40Ar, respectively, and cold blanks are Ing, Ix 10- 14 cm3 , 
1 x 10- 8 cm 3, respectively. 

In some fractions above I 000°C, where cosmogenic nitrogen was released, large 
changes in the relative intensities of masses 28, 29, and 30 were observed during mass 
spectrometry. This is most likely caused by isotopic disequilibrium effect of trapped 
nitrogen and cosmogenic nitrogen pointed out by HASHIZUME and SuGIURA (1992a). 
Isotopic ratios of 1 5N/ 14N for such fractions were calculated assuming isotopic 
non-equilibration of nitrogen (HASHIZUME and SuGIURA, 1992a). 

All samples were measured twice except for J uvinas, which was measured three 
times. For seven analyses out of eleven, samples treated with H202 were used to minimize 
organic contaminations. The H202 treatment was performed at 80°C for 1 hour after 
washing the sample with acetone. 
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4. Results 

The abundances and isotopic ratios of nitrogen and abundances of cosmogenic 
21 Ne, cosmogenic 3 8 Ar and measured 40 Ar are presented in Table 2. For Juvinas # 3 
only nitrogen isotopes were measured. Uncertainties of abundances are estimated 
to be about 10%, and error for b 15N is IO". In calculating concentrations of cosmo
genic 3 8Ar, the following isotopic ratios were assumed: (3 8Ar/36Ar)1 =0.188 and 

Table 2a. Nitrogen abundance and<> 15 N value, and concentrations of cosmogenic 21 Ne, cosmogenic 
38 Ar and measured 40 Ar. 

ALH-76005 # I (217.5mg) 

Temperature N2 <>1sN (21 Ne)c (38 Ar )c 4oAr 
o
c ppm %o 10- 8 cm 3 STP/g 10- 8 cm3 STP/g 10- 6cm3 STP/g 

200 4.815 -25.7±2.3 O.oI5 0.002 0.10 
300 39.14 -3.3±3.0 0.034 0.007 0.11 
400 0.527 25.5±2.8 0.054 0.052 0.19 
500 0.243 24.9± 1.8 0.080 0.164 0.46 
600 1.020 21.8±2.1 0.165 0.202 1.37 
700 0.100 11.9±2.7 0.240 0.157 2.62 
800 0.098 14.3±2.8 0.453 0.168 3.64 
900 0.098 24.4±2.8 0.603 0.191 2.81 

1000 0.076 63.6±3.0 0.383 0.264 1.67 
1100 0.032 131.3 ± 13.1 0.177 0.234 1.23 
1200 0.151 227.9±6.6 0.124 0.357 1.40 
1200 0.003 965.4± 1500 n.d. 0.064 0.19 

200-I200°C 46.18 -3.5±2.5 2.31 1.86 15.8 
700-1200°C 0.558 91.1±3.0 

ALH-76005 # 2 (207.5 mg, H202 tr eated) 

Temperature N2 <> 1sN (21 Ne)c (38 Ar)c 
40Ar 

oc ppm o/oo 10- 8 cm 3 STP/g 10- 8 cm 3 STP/g 10- 6cm3 STP/g 
- ----- -------------------------- ------�------· 

200 0.093 -19.9±2.2 0.204 0.003 n.d. 
300 0.867 -IO.I± 1.4 0.037 0.005 0.09 
400 0.919 9.2± 1.4 0.056 0.053 0.17 
500 O.D38 -2.1±3.8 0.079 0.158 0.40 
600 0.048 -7.2±2.5 0.199 0.255 1.77 
700 0.014 -9.9±5.3 0.330 0.211 3.81 
800 0.020 2.1±4.3 0.581 0.215 4.29 
900 0.016 51.3±7.6 0.561 0.226 2.59 

1000 0.013 178.6±23.2 0.394 0.359 1.98 
1100 0.011 209.5±33.0 0.182 0.171 0.87 
1200 O.D35 230.9 ± 11.6 0.080 0.387 1.32 
1200 O.D30s 8.6±3.0 0.007 n.d. 0.10 
1200 o."026s -7.0±3.2 n.d. n.d. 0.08 

200-1200°C 2.130 5.1±0.8 2.71 2.04 17.4 
700-l 200°C 0.165 82.1 ±6.5 
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Table 2b. 
Y-792510 # 1 (80.10mg) 

Temperature Nz '51sN (21Ne)c (38Ar)c 40Ar 
oc ppm %0 10- 8 cm 3 STP/g 10- 8 cm 3 STP/g 10- 6 cm 3 STP/g 

200 0.008 -20.4±9.4 0.094 n.d. n.d. 
300 0.126 -8.1±3.3 0.674 0.024 0.22 
400 0.034 -8.0±4.4 0.249 0.121 1.08 
500 0.057 -15.5±3.5 0.251 0.209 2.52 
600 0.031 -18.1±4.7 0.293 0.266 4.52 
700 0.010 -54.2± 14.l 0.521 0.190 3.19 
800 O.oI5 -38.4±4.8 0.853 0.192 2.01 
900 0.021 -15.12±3.9 0.881 0.193 1.30 

1000 0.020 44.5±4.6 0.389 0.252 0.94 
1100 0.019 39.5 ±4.7 0.142 0.214 0.77 
1200 0.078 73.9±4.2 0.072 0.952 2.29 
1200 0.095$ 8.7±2.9 n.d. 0.107 0.39 
1200 0.063$ -9.2±3.3 n.d. 0.022 0.15 

200-1200°c 0.577 5.7 ± 1.3 4.42 2.74 19.4 
700-1200°C 0.321 19.2± 1.7 

Y-792510 # 2 (201.0 mg, H 202 treate d) 

Temperature Nz '51sN (21Ne)c 
(38 Ar)c 

40Ar 
oc ppm %0 10- 8 cm 3 STP/g 10-s cm 3 STP/g 10- 6 cm 3 STP/g 

------� ��,---

200 0.032 -19.0± 3.8 0.312 0.005 0.04 
300 0.064 -0.6±2.7 0.530 0.017 0.10 
400 0.156 -9.6± 1.7 0.262 0.107 0.78 
500 0.056 -12.0±2.2 O.i57 0.296 2.95 
600 0.069 -33.8 ± 1.9 0.186 0.249 3.16 
700 0.194 -36.2± 1.5 0.415 0.174 2.65 
800 0.036 -27.0±2.7 0.724 0.202 2.10 
900 0.081 -20.2± 1.8 0.683 0.182 1.02 

1000 0.049 15.5±2.3 0.339 0.223 0.61 
1100 0.178 16.9 ± 1.7 0.158 0.203 0.56 
1200 0.628 19.0± 1.7 0.072 0.830 1.20 
1200 0.617$ -13.0±2.2 n.d. 0.009 0.04 
1200 0.764$ -6.1 ± 1.5 0.013 n.d. 0.03 
1200 0.134 $ -1.3±1.9 0.017 n.d. 0.03 
1200 0.126$ 2.0±2.0 0.009 n.d. 0.02 
1200 0.025$ -1.l ± 3.5 0.004 n.d. 0.03 

200-1200°C 3.209 -3.64±0.68 3.88 2.49 15.3 
700-1200°C 2.832 -2.31 ±0.76 

(3 8 Ar/36 Ar)c = 1.5 for trapped and cosmogenic argon, respectively. 

Nitrogen abundances obtained by duplicate analyses agree well with each other 
for Y-82066 and Camel Donga. However, those for ALH-76005, Y-792510 and Juvinas 

are different. This may be due to a large amount of terrestrial contamination for 
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Table 2c. 
Y-82066 # 1 (300.4mg, H202 treated) 

Temperature N 2 
c51sN (21Ne)c (38 Ar)c 4oAr 

oc ppm %0 10-8 cm 3 STP/g 10-s cm3 STP/g 10- 6 cm3 STP/g 
�-----�--------�----------- -���---------- -·-----�----

200 0.011 -20.6±3.9 0.141 0.002 0.02 
300 0.073 -7.8±2.2 0.469 0.013 0.16 
400 0.154 -12.0± 1.7 0.103 0.064 0.96 
500 0.099 6.7 ± 1.9 0.038 0.162 2.54 
600 0.123 31.2±2.1 0.061 0.166 3.79 
700 0.091 35.6± 1.9 0.136 0.110 4.13 
800 0.075 29.2±2.9 0.306 0.106 3.70 
900 0.072 34.2±2.3 0.333 0.077 1.40 

1000 0.067 25.9±2.3 0.292 0.120 0.99 
1100 0.019 76.6±4.2 0.156 0.128 0.77 
1200 0.036 212.1 ±6.4 0.127 0.305 0.88 
1200 0.021 68.8±4.2 0.013 0.032 0.22 
1200 0.009 62.1 ± 7.2 0.006 0.017 0.16 

200-1200°C 0.850 26.5±0.8 2.18 1.30 19.7 
700-1200°C 0.390 53.1±1.2 

Y-82066 #2 (222.7mg, H202 treated) 

Temperature N 2 
c51sN (21Ne)c (3s Ar)c 40Ar 

oc ppm %0 10- 8 cm3 STP/g 10- 8 cm3 STP/g 10- 6 cm3 STP/g 

200 0.043 -15.0±2.3 0.038 n.d. O.Ql 

300 0.075 -2.3± 1.7 0.293 0.011 0.10 
400 0.007 7.1 ±5.9 0.093 0.053 0.63 
500 0.058 6.9±2.0 0.045 0.184 2.45 
600 0.094 36.1 ±2.0 0.076 0.132 2.49 
700 0.059 54.0±2.1 0.189 0.079 2.45 
800 0.057 59.2±2.1 0.352 0.098 2.66 
900 0.104 43.9±2.1 0.444 0.079 1.95 

1000 0.041 82.8±2.8 0.321 0.171 0.74 
1100 0.014 100.3 ±8.3 0.089 0.113 0.56 
1200 0.023 139.6± 7.2 0.070 0.196 0.60 
1200 0.007 161.4±22.1 0.002 0.050 0.13 
1200 0.008 85.5 ± 11.1 n.d. 0.029 0.08 

200-1200°C 0.590 40.6± 1.0 2.01 1.20 14.9 
700-1200°C 0.313 66.9± 1.8 

ALH-76005 #1, Y-792510 # 2 and Juvinas # 3 possibly caused bi insufficient washing 
with acetone. The total nitrogen abundances taken from all temperature fractions range 
from 0.2ppm to 2.7ppm except for ALH-76005 # 1, Y-792510 #2 and Juvinas #3. The 
bulk isotopic compositions (weighted mean for all temperature fractions) range from 
-4%o to + 70%0 . However, since nitrogen abundances in eucrites are very low, the 
contribution of terrestrial nitrogen is not negligible. Although H202 treatment was 
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Table 2d. 
Camel Donga # I (227.6mg) 

Temperature N 2 
i5 1 sN (21Ne)c 

(38 Ar)c 
40Ar 

o
c ppm %o 10- 8 cm 3 STP/g 10- 8 cm 3 STP/g 10- 6 cm 3 STP/g 

""---"--------�-------------------

200 0.273 38.4±2.3 0.006 0.004 0.55 
300 0.308 11.2±3.7 0.016 0.010 0.20 
400 0.156 15.1 ±2.4 0.047 0.077 0.23 
500 0.173 6.4±2.4 0.213 0.282 0.89 
600 0.683 18.7±2.4 0.393 0.326 1.46 
600 0.081 3.0±2.9 0.141 0.106 0.61 
700 0.144 -7.1 ±2.5 0.489 0.260 1.50 
800 0.138 -17.1 ±2.6 0.769 0.295 1.49 
900 0.161 -15.2±2.5 l.230 0.391 1.55 

1000 0.206 0.1 ±2.2 1.179 0.663 1.49 
1100 0.164 5.4±2.4 0.416 0.688 1.33 
1200 0.186 41.5 ± 2.3 0.211 0.914 l.78 
1200 0.018 156.0± 19.5 O.ol8 0.219 0.34 

200--1200°C 2.691 13.4±0.9 5.13 4.24 13.4 
700--l200°C l.017 5.4± 1.0 

"---------------"" 

Camel Donga # 2 (194.5 mg, H202 treate d) 

Temperature N 2 
i5 1 sN (21Ne)c 

(38 Ar)c 
40Ar 

o
c ppm o/oo 10- 8 cm 3 STP/g 10- 8 cm 3 STP/g 10- 6 cm 3 STP/g 

200 0.200 11.0±2.7 0.009 0.006 0.46 
300 0.112 4.4± 3.1 0.020 0.008 0.10 
400 0.149 6.6±2.7 0.101 0.133 0.30 
500 0.171 5.2±2.5 0.304 0.334 1.08 
600 0.181 -2.7±2.2 0.528 0.327 1.48 
700 0.162 -18.7±2.5 0.682 0.226 1.19 
800 0.181 -17.8 ± 2.1 1.086 0.268 1.15 
900 0.246 -10.4± 2.2 l.337 0.418 1.27 

1000 0.226 5.9±2.l 0.894 0.606 1.12 
1100 0.203 7.5± 2.0 0.337 0.536 1.03 
1200 0.297 87.9±2.0 0.118 1.291 1.98 

200--1200°C 2.128 11.4±0.7 5.42 4.15 11.2 
700--1200°C 1.315 15.3 ± 0.9 

done for some samples to mm1m1ze organic contamination, differences between 

H
202-treated samples and untreated samples are not clear. The terrestrial contaminants 

which are probably organic materials are chiefly released at temperature fractions below 

600°C. 

Release profiles of nitrogen and their isotopic ratios for the measured five eucrites 

are shown in Fig. 1. Four eucrites, ALH-76005, Y-792510, Juvinas and Camel Donga 

melted at 1200°C. Among them, ALH-76005, Y-792510 and Juvinas released large 

amounts of nitrogen at l 200°C. However, nitrogen isotopic ratios obtained for some 
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Table 2e. 
Juvinas # 1 ( 1 03.7mg, H2

0
2 treated) 

Temperature N2 J tsN (2 1 Ne)c (38Ar)c# 4oAr# 
oc ppm o/oo 1 0- 8 cm 3 STP/g 1 0-s cm3 STP/g l 0- 6cm 3 STP/g 

200 0. 1 20 - 6. 0± 1 .9 not measured not measured not measured 
300 0.041  - 6.5±2.6 
400 0. 038 - 4.0±2.6 
500 0. 067 0.3±2.7 
600 0.059 0.2±2.7 
700 0.01 1 6.7±6.0 
800 0.005 1 0.5± 1 4.5 
900 0.006 21.9± 1 7.9 

1 000 0. 004 1 09. l ±99.4 
1 1 00 0. 006 221 . 5± 1 68.0 
1 200 0. 044 306.5±41 .9 
1 200 0.01 1 726. 2±381 .8 
1 200 0. 033$ - l . 3±5.2 
1 200 0.040$ - 0.5±4.5 

200-1 200°C 0.485 45 .8±4.6 
700-1 200°C 0.1 60 1 57.0±37.6 

Only nitrogen isotopes were measured for this sample. 

Juvinas # 2 (240. 5, H202 treated) 

Temperature N2 J tsN (2 1 Ne)c ( 3 8  Ar)c 4oAr 
oc ppm o/oo l 0- 8 cm3 STP/g 1 0-s  cm3 STP/g 1 0- 6 cm 3 STP/g 

200 0.094 4.1 ±1 .5 0. 1 1 4  n.d. O.oI 
300 0.023 - 4.8±3. l 0.309 O.oI 0.o2 
400 0.020 - 0.2±3.2 0.262 0.007 0.08 
500 O. oI8 - 2.4±3.5 0.069 0. 047 0.46 
600 0.019 - 3.2±3.4 0.05 1 0. 1 1 6  1 .34 
700 0.01 0 6. 1 ±4.6 0. 070 0.076 1 . 1 6  
800 O.oI I 6.8±4.3 lost lost lost 
900 0.01 0 8. 1 ±4. 6 0.5 1 2  0.1 42 2.75 

1 000 0.006 30.3±6.4 0.329 0.1 54 l .98 
1 1 00 0.006 1 1 6.5± 1 1 . l  0. 1 84 0.1 20 1 .1 6  
1 200 O.oI5 909.0±40.5 0.5 1 7  0.756 5 .26 
1 200 0. 006 289.5±33.9 0.005 0. 057 0.99 

200-1 200°c 0.228 67.9±1 .5 2.42 1 .48 1 5 .2 
700-1 200°C 0. 054 269.6± 1 4.6 

of the repeated steps at 1200°C are close to Oo/oo (noted by "$" in Table 2), obviously 
different from the ratios for the first 1200°C steps. We speculate that nitrogen with 
() 1 5N of about Oo/oo obtained for the second and the third extractions was derived from 
organic material; some organic nitrogen released from the samples at lower temperatures 
might be adsorbed at the upper part of the sample chamber, and released again when 
the temperature of the chamber became high during repeated heating at l 200°C. Hence, 
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Ju vina s # 3 (222.4 mg) 

Temperature N2 
o
c ppm 

200 0.815 
300 0.436 
400 0.575 
500 0. 323 
600 0. 303 
700 0.277 
800 0.076 
900 0.055 

1000 0.051 
1100 0.027 
1200 0.053 
1200 0.061 $ 

1200 n.d. 

200-1200°C 3.052 
700-I200°C 0.600 

Yayoi MIURA and N. SUGIURA 

Table 2e (Continued) . 

J I SN (2 1 Ne)c 
%0 10 - 8 cm 3 STP/g 

--- --- - -- -- ---

15.6±2.5 
19.0±2.9 
10.7±2.2 
16.4±3.0 
15.5±2.0 
14.3 ± 3.2 
18.2± 3.5 
21.3±3.5 
23.5±3.5 
42.9±5.7 

157.7±7.3 
35.4±2.9 

-- ---- --- - �-- - -

18.5 ± 1 .0 
32.3±2.0 

0.06 
0.33 
0.30 
0.11 
0.076 
0.097 
0.23 
0.39 
0. 37 
0.17 
0.56 
0.013 
0.004 

2.71 

(3 8 Ar)c 
40Ar 

10- 8 cm 3 STP/g 10- 6 cm 3 STP/g 

0.001 0.15 
0.0004 0.07 
0.005 0.11 
O.o3  0.36 
0.08 1.1 
0.09 1.5 
0.10 2.3 
0.1 2.3 
0.14 2. 3 
0.10 1.3 
0.54 3.8 
0.049 0.63 
O.oI 7 0.20 

1.25 16.1 

$: For some o f  t he repeate d fra ctions at l200°C, b 1 5N value s are significantly lo w compare d wit h t hat 
for t he fir st fra ction. The se fra ctions are e xclu de d  from t he calcu lation o f  t he bu lk nitrogen content 
liste d in Ta ble 3 .  

we exclude these data (noted by "$" in Table 2) when calculating nitrogen abundance 

in eucrites . Y-82066 (which is the only sample not totally melted) and Camel Donga 

(totally melted) do not show release of a large amount of nitrogen at 1200°C. 

Since nitrogen extracted below 600°C is considered to be mostly terrestrial 

contaminants, we assumed nitrogen extracted above 700°C (data for some of the l 200°C 

fractions noted by "$" in Table 2 were excluded) as indigenous nitrogen in eucrites; 

the calculated nitrogen abundances range from 0.05 ppm to 1 .3 ppm (Table 2) . These 

concentrations are much lower than those for ordinary chondrites (e.g., KUNG and 

CLAYTON, 1 978; HASHIZUME and SUGIURA, 1 992b) . HASHIZUME and SUGIURA ( 1 992c) 

reported that nitrogen is concentrated in the metal portion in the case of H-chondrites. 

In considering the fact that metal content in eucrite is much lower than those in 

H-chondrites, it would be better to compare nitrogen abundances in eucrite with those 

in the silicate portion of chondrites . Unfortunately, nitrogen abundance in the silicate 

portion of chondrites has not been determined yet. Camel Donga has the highest nitrogen 

concentration (1.0-1 .3 ppm) among the measured eucrites. Since Camel Donga contains 

2 wt% of metal (PALME et al., 1988), which is higher than the other four eucrites, the 

abundant nitrogen of Camel Donga may have come from nitrogen in the metal. 

The results of duplicate measurements for neon and argon in each sample are in 

good agreement with each other. Neon and argon in lower temperature fractions are 

not dominant and the adsorption of neon and argon is not a serious problem. Hence, 

neon and argon taken from all temperature fractions are considered as noble gas 

abundances in the meteorites . The concentrations of 40 Ar for ALH-76005 in our result 
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Fig. 1. Release profiles of nitrogen and <> 1 5  N value, which is defined by <> 1 5  N = ( ( 1 5 N /  
1 4NJ sampte! ( 1 5 N / 1 4N) a;,-1) x 1000. For seven analyses out of eleven, the sample was treated 
with H2 02 before the measurement. The total amounts of nitrogen in most eucrites are less 
than about 1 ppm. The terrestrial nitrogen which is probably due to organic material was 
observed at the low temperature fractions below 600°C, and the cosmogenic nitrogen at the 
high temperature fractions. Therefore, nitrogen released around 70�900°C fractions is 
considered as trapped nitrogen. The lowest <> 1 5  N values observed in medium temperature 
fractions for two eucrites Y- 792510 and Camel Donga are about -40o/oo and -20o/oo, 
respectively, and they cannot be explained by the contribution of the terrestrial and cosmogenic 
nitrogen. The observed<> 1 5  N may be upper limits of<> 1 5  N of the trapped nitrogen for these 
eucrites. For the other eucrites, <> 1 5  N in medium temperature fractions ranges in the terrestrial 
and cosmogenic nitrogen. 
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(Table 2) are two times higher than that reported by others (Table 1 ). It must be that 

the samples measured by us contain more abundant potassium than that measured by 

others. The other results for noble gases in this study, cosmogenic 21 Ne, cosmogenic 
3 8  Ar and measured 40 Ar, are consistent with the reported values listed in Table I .  
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Fig. 1 (Continued) . 

5. Discussion 

5. 1. Nitrogen isotopic compositions in eucrites 

As described above, we assumed that nitrogen obtained above 700°C is 

indigenous nitrogen, in which trapped nitrogen as well as cosmogenic nitrogen (e.g., 

BECKER et al., 1976) are included. Higher 1 5N/ 1 4N ratios observed at high temperature 

fractions ( > I 000°C) are due to contribution of cosmogenic nitrogen. First, we assume 

trapped nitrogen has an atmospheric 1 5N/ 1 4N ratio (b 1 5N = 0 %o). Then we can obtain 

concentrations of cosmogenic 1 5 N as excess 1 5N defined by the following equation; 

Excess 1 5N = (( 1 5N/ 1 4N)sampie/(
1 5N/ 1 4N)air - 1)  x [ 1 4N] , where ( 1 5N/ 1 4N)air is 3.67 x 

10- 3 and [ 1 4N] is concentration of measured 1 4N. If the assumption that excess 15N = 

the amount of cosmogenic 1 5N is correct, excess 1 5N should be correlated with other 

cosmogenic nuclides such as 3 8  Ar. In Fig. 2a, the calculated excess 1 5N are plotted 

against cosmogenic 38 Ar. The line in Fig. 2 shows the expected correlation line for 

eucrite: P 1 5 = 5 .5 x P3 8 , where P 1 5  and P38  are production rates of cosmogenic 1 5N and 
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Fig. 2. Plots between excess 1 5  N versus cosmogenic 38 Ar. Excess 1 5  N is calculated by; excess 
1 5  N = ( ( 1 5  N/1 4NJ,ample/ ( 1 5  N / 1 4  N) t,ap -1) x {1 4  NJ, where [1 4  NJ is a concentration of 
measured 1 4N. Solid and open symbols show the samples treated with H202 and untreated, 
respectively. A correlation line of P 1 5  = 5.5 x P38 for eucrite is calculated using the equation 
P 1 5 = 15.2 X P3a proposed for L-chondrite ( HASHIZUME and SUGIURA, 1992c) . ( a) The 
isotopic composition of atmospheric nitrogen is assumed as that of trapped nitrogen. ( b) 
The observed minimum /J 1 5N value among 700°C -900°C fractions is assumed as /J 1 5N of 
trapped nitrogen for each sample. 

38 Ar (in unit of atom/g/Ma), respectively. This is calculated using the correlation for 

L-chondrites, P 1 5  = 1 5 .2 x P38 (HASHIZUME and SuGIURA, 1 992b) and considering 

differences in chemical compositions between eucrite and L-chondrites; P 1 5
(Eucrite)/ 

P 1 5(L-chondrite) = l .2 and P38(Eucrite)/P38(L-chondrite) = 3 .3 are adopted. It is 

apparent in Fig. 2a that no correlation exists between 1 5N and 3 8 Ar. This suggests that 

the calculated excess 1 5N cannot be regarded as the amount of cosmogenic 1 5N. In 

other words, the assumption that the trapped nitrogen has an atmospheric 1 5N/ 1 4N 

ratio must be incorrect. 

As mentioned earlier, contribution of terrestrial contamination in lower temperature 

fractions ( < 600°C) and that of cosmogenic nitrogen in higher temperature fractions 

( > 1 000°C) are significant. Hence, trapped components may be most noticeable in the 

medium temperature fractions (700-900°C). One of the most remarkable features in 

nitrogen isotopic compositions in eucrites (Fig. 1 )  is that Y-7925 10  and Camel Donga 

show negative b 1 5N values in medium temperature fractions. The lowest b 1 5N values 

observed are - 54 %0 for Y-7925 10  and - 1 8  o/oo for Camel Donga (both at 700°C 

fractions). These low values cannot be explained by contribution of terrestrial nitrogen 

(typical range of b 1 5N is O to 20%0; e.g., FAURE, 1 977) or cosmogenic nitrogen 

(b 1 5N >  l OOo/oo; e.g., BECKER et al., 1976). This is strong evidence for existence of 

trapped components in eucrites which have 1 5N/ 1 4N ratios different from the atmo

spheric value. Since there may be some contribution of terrestrial or cosmogenic nitro

gen even in 700°C fractions, the minimum values observed in the present work should 

be considered as upper limits for the trapped components. 

The b 1 5N values in the medium temperature range are close to the atmospheric 

value for ALH-76005 and Juvinas, and slightly higher for Y-82066. Two of them, 
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ALH-76005 and Y-82066, also show minimum £5 
1 5N values in this temperature range. 

In these cases, the observed £5 1 5N values may be attributed to terrestrial nitrogen and/or 
cosmogenic nitrogen. Although we do not know exactly the real £5 1 5N values for the 
trapped nitrogen, we tentatively assume here that the observed minimum <5 1 5N values 
are not very different from the real values. 

We calculate excess 1 5N assuming the minimum b 1 5N values as trapped values 
and examine if there is any correlation between the calculated excess 1 5N and cosmogenic 
38 Ar. The results are shown in Fig. 2b. The correlation seems to be better in Fig. 2b 
than in Fig. 2a, but there are still rather large discrepancies between the expected 
correlation line and the data points. This suggests that the minimum <5 1 5N values cannot 
be treated as the real c5 1 5N values for the trapped components. 

Now we try to estimate isotopic composition of the trapped nitrogen using another 
calculation. We assume that the observed nitrogen above 700°C is a mixture of 
cosmogenic and trapped nitrogen. Since we can calculate the abundance of cosmogenic 
nitrogen using the production rate (P 1 5 ) and the exposure age, we can estimate the 
c5 1 5N values for the trapped nitrogen by subtracting cosmogenic nitrogen from the 
observed total nitrogen above 700°C. The production rate of nitrogen for eucrites has 
not been investigated in detail. So, we calculate production rate of 1 5N (P 1 5) for eucrite 
based on P 1 5  reported for ordinary chondrites. P 1 5  of 4.7 x 10- 1 2 g/g/Ma (HASHIZUME 
and SUGIURA, 1992b) proposed for L-chondrite is used. Since production rate of nitrogen 
is sensitive to the concentration of oxygen which is a main target element of nitrogen, 
we calculated P 1 5  for eucrite assuming oxygen abundances of 4 1  % and 37.5% for 
eucrite (based on the data in NAGAO and OGATA, 1989 and MIURA et al. , 1993) and 
L-chondrite (KERRIDGE, 1988), respectively. P 1 5 for eucrite is calculated to be 

Table 3. Bulk nitrogen abundance and c5 1 5  N, observed minimum c5 1 5  N, and calculated c5 1 5  N cor-
rected for cosmogenic. 

N2 Bulk c5 1 5N Minimu m c5 1 5N Ca lcu la te d  c5 1 5N corre c te d  
Sa mple na me ( >  700°C) ( >  700°C)1 ) (700° -900°C)2) co smo genic for co smo genic 

pp m o/oo o/oo 1 s N3l pp b 1 sN4> o/oo 

A LH-76005 # I 0.502 99.7 ± 1.2 11.9±2.7 0.06 63±7 
# 2  0.138 95.0± 1.3 -9.9±5.3 - 38±26 

Y -792510 # 1 0.160 37.0±2.5 -54.2± 14.l 0.084 -106±29 
# 2  1.17 5.2± 1.0 -36.2± 1.5 - 14±4 

Y -82066 # 1 0.390 53. l ± 1.2 29.2±2.9 0.059 12±8 
# 2  0.313 66.9± 1.8 43.9±2.l 16± 10 

Ca mel Donga # l 1.02 5.4± 1.0 -17.l ±2.6 0.24 - 57± 13 
# 2  1.32  15.3±0.9 -18.7±2.5 - 33± 10 

Ju vina s # l 0.087 270±54 6.7±6.0 0.058 88±38 
# 2  0.054 270± 15 6.1 ±4.6 - 21 ±61 
# 3  0.539 32.0±1.9 14.3 ± 3.2 2.5±6.1 

l l c5 1 5N o f  weighte d mean for 700°C- l 200°C fra c tions (1200°C fra c tions la be le d "$" in Ta ble 2 are 
e xclu de d).  

2l Obser ve d minimu m c5 1 5N a mong 700°C-900°C fra c tions (see te xt). 
3l Co smo genic 1 5N is calcula te d  u sing P 1 5  o f  5.6 x 10 - 9 g / g  and e xp o sure a ge repor te d  for ea c h  eu crite .  
4l Estima tion o f  c5 1 5N for a trappe d c o mp onent. Bulk c5 1 5N ( > 700°C) is c orre c te d  for co smo genic 1 5N .  

Error o f  20% is a dop te d  for the concentra tion o f  c o smo genic 1 5N .  
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5.6 x 10 - 1 2  g/g/Ma. Using this value with assuming 20% error and the cosmic-ray 

exposure ages listed in Table 1 (mean values were used for ALH-76005, Y-792510, 

Juvinas and Camel Donga), the concentrations of the cosmogenic 15N are calculated. 

Fig. 3. Plot of observed minimum {J 1 5  N 
versus calculated bulk {J 1 5  N above 
700° C fractions after cosmogenic 
correction. The symbols of five 
eucrites are the same as those in Fig. 
2. If observed minimum {J 1 5 N is 
consistent with hulk {J 1 5  N corrected 
for cosmogenic nitrogen, the plot 
should fall on a line. Y-792510 and 
Camel Donga show lower {J 1 5 N 
values. 
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The concentrations of cosmogenic 15N for five eucrites are given in Table 3. They are 

calculated to be (0.067-0.24) x 10- 9 g/g. The cosmogenic 15N calculated for each eucrite 

is subtracted from measured nitrogen taken from the fractions higher than 700°C. The 

cosmogenic 15N contributions to measured 15N ( >  700°C) range from 8% up to 20%.  

The b 15N after correcting cosmogenic 15N of two eucrites Y-792510 and Camel Donga, 

for which low minimum b 15 N values are observed as mentioned above, are also 

significantly low (Table 3). However, calculated values of duplicate measurement for 

Y-792510 are not consistent with each other. Since the amount of nitrogen above 700°C 

of Y-792510 � 2 is much larger than that of � 1, contaminated nitrogen such as terrestrial 

organic nitrogen may be larger for � 2 than for � 1. Figure 3 is a plot of observed minimum 

b 1 5N vs. calculated bulk b 15N corrected for cosmogenic nitrogen. If the terrestrial and 

cosmogenic nitrogen does not contribute to the fraction above 700°C and if P 15 we 

used are correct, observed minimum b 15N values should be identical with calculated 
bulk b 15N corrected for cosmogenic nitrogen. In this case the plot should fall on a line 

shown in Fig. 3. A positive correlation can be seen in the figure, though the data points 

show rather large scattering. It is also clear in this figure that the calculated b 15N values 

for Y-792510 and Camel Donga are significantly lower than the atmospheric value. 

5.2. Release profile of cosmogenic 2 1  Ne, cosmogenic 3 8  Ar and 40 Ar 

The release profiles of cosmogenic 21 Ne, cosmogenic 3 8  Ar and 40 Ar are plotted in 

Fig. 4. For Y-792510, Y-82066 and Juvinas, cosmogenic 2 1Ne are released at two 

different temperature steps at 300°C and around 800°C. This pattern having two release 

temperatures is different from the patterns for ALH-76005, Camel Donga and also 

many chondrites. The amounts of released cosmogenic 2 1  Ne around 300°C fractions 

are larger than 10% of the total 2 1Ne for Y-792510, Y-82066 and Camel Donga. Such 

a high abundance of cosmogenic 2 1  Ne cannot be explained by the release from accessory 

minerals; it must be released from major minerals in eucrite containing target elements 

for Ne (e.g. , Mg, Al and Si). In the previous work concerning release profile of noble 

gases by combustion method, the release of 2 1Ne from ilmenite and lunar regolith at 
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Fig. 4. Release profiles of cosmogenic 2 1  Ne, cosmogenic 38 Ar and measured 40 Ar. The measured 
40 Ar is mostly radiogenic 40 Ar produced by potassium decay. The release of 40 Ar rises to 
the peak at 600° C - 800° C. Cosmogenic 21 Ne is released at two different temperatures of 
about 300°C and 800°C for Y- 792510, Y-82066 and Juvinas. For the other eucrites, 
cosmogenic 2 1  Ne is released only at the higher temperatures of around 800° C. Cosmogenic 
38 Ar is continuously released from 500°C up to l 200°C steps. 
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Fig. 4 (Continued) . 

the temperature around 400°C has been reported (FRICK et al., 1988). Although we 
have no evidence to identify the mineral which released 2 1Ne at the low temperature, it 
is possible to consider pyroxene and plagioclase as candidates. In contrast, the 
cosmogenic 3 8  Ar is continuously released from 500°C up to 1200°C, and the release 
pattern shows bimodal peak around 600°C and l 000°C. Release profile of cosmogenic 
38 Ar is compared with that of excess 15N in Fig. 5. The excess 1 5N is calculated assuming 
the observed minimum b 1 5N values for the trapped nitrogen. Release pattern of 
cosmogenic 3 8  Ar is partly correlated with that of 1 5N above 700°C as shown in the 
figure. This may indicate that the origin of excess 1 5N is cosmogenic. At low temperatures, 
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Fig. 5. Release profiles of excess 1 5  N and cosmogenic 38 Ar. Excess 1 5  N is calculated by; excess 
1 5N= ((1 5N / 1 4NJsample / (1 5N/ 1 4NJminimum - JJ X [1 4N}, where (1 5N / 1 4N)minimum is ob
served minimum 1 5  N/ 1 4N and [14N} is a concentration of measured 1 4N. The release pattern 
for 1 5  N is correlated with that for 38 Ar in some higher temperature fractions. 
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since the origin of excess 1 5N may be terrestrial organic material, 1 5N and 38 Ar are 

not correlated with each other. 40 Ar is released around temperatures of 600°C-800°C. 

The release temperature of radiogenic 40 Ar is lower than that of cosmogenic 38 Ar. 
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6. Summary 

( I )  Since nitrogen of the terrestrial contaminants is not negligible, nitrogen 

released above 700°C is considered as indigenous nitrogen of eucrites. Nitrogen 

abundances thus calculated (0.05-1.3 ppm) are lower than those in ordinary chondrites 

(0.6--25 ppm; KUNG and CLAYTON, 1978; HASHIZUME and SUGIURA, 1992b). 

(2) Two eucrites Y-792510 and Camel Donga released nitrogen with negative 

b 1 5N values around 700°C fractions. The observed minimum b 1 5N values of - 54o/oo 

and - 18 o/oo for Y-792510 and Camel Donga, respectively, cannot be explained by the 

contribution of the terrestrial and cosmogenic nitrogen. Since the abundances of the 

trapped nitrogen are very low, the terrestrial contaminant is not negligible. Hence, the 

observed b 15N values may be upper limit of the trapped nitrogen for these eucrites. 

(3) Nitrogen isotopic compositions observed in the medium temperature fractions 

for the other three eucrites ALH-76005, Y-82066 and Juvinas are within the range of 

the terrestrial and cosmogenic nitrogen isotopic compositions. 
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