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Abstract: Thirty-eight new enclaves from the Vaca Muerta mesosiderite have 

been studied, and detailed SEM-petrography was carried out on fourteen of them. 

Three are coarse-grained gabbroic ilmenite-free enclaves consisting mainly of pi­

geonite (En56 _49) and plagioclase, seven are fine- to medium-grained ilmenite-bearing 

enclaves (En49 _36) with ophitic to granular texture, and four are breccias. The 

most important breccias are diogenitic monomict breccias (En74 _65) and an olivine­

orthopyroxenite monomict breccia (Fo73 _71). Reduction-induced orthopyroxene 

commonly surrounds pigeonite grains in the ilmenite-free enclaves, and occurs rarely 

in the marginal parts of the ilmenite-bearing enclaves. Whitlockite forms from 

augite lamellae as a result of reduction, and the ilmenite-free enclaves have been 

enriched in P205 • Reduction of the ilmenite-free enclaves occurred in the parent 

body before mixing with Fe-Ni metal on the mesosiderite parent body. In the 

ilmenite-bearing enclaves reduction occurred on the mesosiderite parent body after 

Fe-Ni metal was mixed in. Thus, two stages of subsolidus reduction occurred in 

enclaves. Ilmenite and rutile occur in the ilmenite-bearing and diogenitic enclaves, 

and various subsolidus reaction textures of chromite, ilmenite, rutile and probably 

preexisting pseudobrookite are found. Al203-depleted chromite formed through 

the decomposition of Cr203-bearing ilmenite and pseudobrookite. Zircon and 

baddeleyite were also found in the ilmenite-bearing enclaves, and the latter is the 

first occurrence reported in mesosiderites. The ilmenite-bearing enclaves always 

contain baddeleyite, whereas Zr02-bearing phases are hardly ever found in HED 

meteorites. The bulk compositions of the enclaves were analyzed, and found to 

be more Si02-enriched than the HED meteorites. Highly Si02-enriched ilmenite­

bearing enclaves are especially common, and follow the Nuevo Laredo trend of the 

eucrites, whereas the other ilmenite-bearing enclaves follow the Stannern trend. 

The highly Si02-enriched enclaves probably formed by fractional crystallization, 

whereas the other ilmenite-bearing enclaves formed through partial melting. The 

existence of the highly Si02-enriched enclaves may partly explain the Si02-rich 

nature of mesosiderites, in addition to the in situ reduction process. Our observa­

tions suggest that the parent body and the parental magmas of the enclaves in the 

mesosiderites were initially different from those of the HED meteorites. 
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1. Introduction 

Mesosiderites are mixtures of Fe-Ni metal and silicates, and the silicates are 

similar in mineralogy and chemical composition to those in the HED meteorites. 
However, most of the mesosiderites suffered severe shock and thermal metamorphism 

(POWELL, 1971; FLORAN, 1978; DELANEY et al., 1981). In addition, mesosiderites 

are unusally enriched in phosphates and silica minerals (POWELL, 1971; NEHRU et al., 

1978, 1980a). These enrichments have been interpreted to be the result of in situ 

reduction, and not by igneous fractionation (HARLOW et al., 1982; AGOSTO et al., 

1980; RUBIN and JERDE, 1987; MITTLEFEHLDT et al., 1979). These similarities and 

differences between mesosiderites and the HED meteorites have caused some con­

troversy with regard to the origin of the mesosiderites. RUBIN and JERDE (1987) 

pref er the idea that mesosiderite enclaves came from the same parent body as the 

HED meteorites, whereas MITTLEFEHLDT (1990) and IKEDA et al. (1990) argue that 

they came from different parent bodies, emphasizing the differences between them. 

Thus, some of the more intriguing problems with regard to mesosiderites may be sum­

marized as follows; (1) Do the crystallization and subsolidus histories of the mesosi­

derite enclaves occur under the same conditions as the HED magmas?, (2) How do 

we explain the abundant silica minerals and phosphates in the mesosiderites?, and 

(3) Do mesosiderite enclaves come from the same parent body as the HED meteorites? 

Since the fine-grained silicate fractions of the mesosiderites suffered meta­

morphism, the best samples to clarify the above problems are the large silicate in­

dusions in mesosiderites. These enclaves may have experienced little or no meta­

morphism because of their large ( often > 2 cm) size. They were first studied by 

McCALL (1966), and have been called pebbles, clasts or enclaves. Here we call them 

enclaves after McCALL (1966), DELANEY et al. (1982) or IKEDA et al. (1990). The 

Vaca Muerta mesosiderite, the host of the enclaves studied here, shows the lowest 
degree of metamorphism (POWELL, 1971), suggesting that the enclaves have not suf­

fered severe metamorphism. 

Recently RUBIN and JERDE (1987, 1988), MITTLEFEHLDT (1990), and IKEDA et al. 

{1990) have systematically studied enclaves. Here, we present the results of a new 

mineralogic and petrologic study of 38 more enclaves, with major and trace element 
data. We discuss the stages of reduction, the crystallization histories of the enclave 

magmas, the Si0 2-enriched nature of the enclaves, and compare the enclaves with 

HED meteorites. 

2. Samples and Analytical Procedures 

The 38 new enclaves studied come from the American Museum of Natural His­
tory meteorite collection (Table 1), and detailed SEM-petrography was carried out 

on fourteen of the enclaves selected from them. 

The chemical compositions of the constituent minerals were measured with a 

.JEOL 733 type electron-probe microanalyzer (EPMA). The accelerating voltage 

was 15 kV. The Bence-Albee correction method was used for the analysis of the sil­

icates and common oxides, and the ZAF method was used for the Zr02-bearing 
phases, phosphates and metals. The counting times for peak and beam current were 
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Table 1. Summary of petrography and mineralogy of 38 enclaves. 

Enclave Group SEM Texture Grain Replacement Ave Ave Ave Ilmenite size Pig Opx An 
4657 1-b + op m-f 35.7 89.3 + 

4661 1-b gb m 36.1 89.6 + 
4671 1-b + op m 36.7 89.2 + 
4673 1-b gr m + 40.7 90.9 + 
4676 1-b c-m c-m + 38.0 90.0 + 

4677 1-b + op m-f 44.2 89.9 + 

4678 1-b + gr-gb c-m + 39.1 55.1 89.7 + 
4679 1-b + op c-f 37.5 90.7 + 
4681 1-b gb m 40.6 90.8 + 

4683 1-b + gb-do C 40.4 89.1 + 
4684 I-b gb c-m + 43.3 43.3 58.4 + 
4686 1-b gb-gr c-m + 42.9 54.6 91.2 + 
4690 1-b op c-m 38.5 91.0 + 

4692 1-b gb-gr m + 44.3 52.6 89.6 + 
4695 1-b + op m + 40.1 52.6 90.4 + 

4654 1-f gb C ++ 52.3 92.8 
4655 1-f gb-gr C ++ 54.0 56.3 94.2 
4658 1-f gb C ++ 55.1 58.5 95.5 
4663 1-f gb c-m ++ 50.3 93.1 
4664 1-f gb C ++ 55.7 94.0 
4667 1-f gb C ++ 51.3 55.3 93. 7 
4668 I-f gb C ++ 53.4 60.6 94.1 
4669 I-f + gb-gr c-m 48.9 93. 1 
4672 1-f + gb C ++ 56.0 58.5 94.9 
4674 1-f + gb C ++ 54.4 60.5 93.3 
4682 1-f gb c-m ++ 49.9 92.5 
4685 1-f gb-gr C + 50.5 53.9 92.9 
4688 1-f gb C ++ 50.7 53.9 92.2 
4694 I-f gb-gr C + 49.4 55.1 92.7 
4697 1-f gb C ++ 54.7 51.5 94.5 
4656 B breccia f + 63.0 91.5 + 

4659 B + breccia 71.2 + 

4660 B breccia f-m 48.5 90.2 + 

4665 B breccia f 43.5 92.1 + 
4666 B breccia f-m 51.8 90.8 + 

4670 B + breccia m-f 74.4 94.4 
4687 B + breccia f-m 47.1 53.1 92.3 + 

4689 B + breccia f 65.2 89.6 + 

SEM petrography was carried out on 14 enclaves (SEM). 
Group 1-b: ilm-bearing, 1-f: ilm-free, B: breccia. 
Texture gb: gabbroic, gr: granular, op: ophitic, do: doleritic. 
Grain size c: coarse, m: medium, f: fine. 
Replacement: replacement of pigeonite by orthopyroxene, + + : remarkable, + : weak. 
Ave Pig/Opx: average enstatite mole % of pigeonite and/or orthopyroxene. 
Ave An: average anorthite mole % of plagioclase. 

usually 20 and 3 to 10 nA, respectively, whereas those for Ce20s, Y203 and Nd203 
was 60 s and 20 nA, respectively. A special X-ray peak deconvolution program was 
applied to correct for X-ray overlaps between Ti02 and V203 of chromites. The 
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Hf02 contents of the Zr02-bearing phases were analyzed using a pure Hf02 standard 
and a counting time of 40 s for peak and background. The standard deviation (1 
sigma) of Hf02 was 0.15 for zircon containing 0.78 wt% Hf02. The detection limits 
(3 sigma) are 0.026 wt% for Ce20a, 0.026 for Nd203 , 0.014 for Y203 , and 0.081 for 
Hf02. 

Modal analyses were made with the same methods as IKEDA et al. (1990), by a 
step-scanning method using the EPMA. We measured the counts of Si, Ca,_ Fe, 
S, Cr and Ti to identify each phase. The point count number for each sample was 
2500, and the covered area about 0.5-1.0 cm2 • Then, we calculated the volume 
percents of low-Ca pyroxene, high-Ca pyroxene, olivine, silica-mineral, phosphate, 
chromite, ilmenite, rutile, troilite, and Fe-Ni metal. 

Glass beads of the enclaves poor in opaque minerals were prepared by heating 
about 200 mg powdered sample with Pt wires at 1350°C for 15 min. No relict min­
erals and newly crystallized phases were observed in the glasses. The glasses are 
homogeneous in composition, even near Pt wires, and the concentrations of Fe in 
Pt wires were below detection. Major elemental compositions, including P 205 , 

were determined with a broad beam (40 microns in diameter) of the EPMA. The 
bulk composition of each enclave was calculated from the average composition of 
about ten point analyses. We also measured the bulk compositions of some enclaves 
in the Vaca Muerta and Mt. Padbury mesosiderites previously studied by IKEDA 

et al. (1990). The bulk composition of an olivine-orthopyroxenitic enclave 4670 and 
a troilite-rich enclave 4677, partly brecciated, was calculated from modal and min­
eralogical data. The bulk compositions of the diogenitic enclave and orthopyroxene­
rich clast were calculated by using the average composition of the orthopyroxene, 
since the other phases have very low abundances. 

The concentrations of trace elements were nondestructively analyzed by in­
strumental neutron activation analysis (INAA), using powdered samples of about 
300 mg. About 30 mg of each sample was first irradiated for 100 s in a pneumatic 
tube (neutron flux 1.5 x I012n/cm2 • s) for the determination of V and Na. Samples 
were then irradiated for 6 hours at the same flux for the determination of Sc, Co, 
Ni, Se, Hf, Ir, Au and some REE (La, Ce, Sm, Eu, Yb and Lu). Neutron irradia­
tions were carried out at the Institute of Atomic Energy, Rikkyo University. The 
analytical procedures are essentially the same as described in IKEDA et al. (1990). The 
Na contents determined by INAA were the same as those by the EPMA. 

3. Petrography 

We classified the 38 enclaves into three groups-ilmenite-bearing (ilm-bearing, 
hereafter), ilmenite-free (ilm-free) and breccia (Table 1)-on the basis of their textures 
and/or mineralogy (IKEDA et al., 1990). Um-bearing enclaves are basaltic to gabbroic, 
and mineralogically characterized by FeO-rich pyroxene and Ti02-oxides (ilmenite 
and rutile), whereas ilm-free enclaves are gabbroic and include FeO-poor pyroxene 
and no Ti02-oxides. RUBIN and JERDE (1988) and MITTLEFEHLDT (1990) classified 
the enclaves into basalts and gabbros. However, some enclaves with gabbroic textures 
resemble the basaltic enclaves in their mineralogy and REE patterns. Thus, we do 
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Table 2. Modal composition of the enclaves (vol %). 

Enclave Group Aug 
Pig, 

01 Pl Sil Pho Chr Ilm Rut Zir Bad Tro Met 
Opx 

4657 I-b 8.5 48.1 40.7 1.1 + 0.4 0.3 + + 0.9 0.2 

4671 I-b 9.4 44.1 41.1 4.2 0.1 0.4 0.3 + + 0.2 0.1 

4677 I-b 17.9 37.3 27.0 10.8 0.3 0.9 0.3 0.1 + 4.4 0.9 

4678 I-b 11.5 39.5 41.9 5.5 0.1 0.7 0.3 0.3 + 0.1 + 

4679 I-b 14.6 42.9 38.9 2.4 + 0.4 0.2 + + 0.4 0.2 

4683 I-b 13.6 29.7 53.5 2.0 0.1 0.5 0.1 + + 0.5 0.1 

4695 I-b 12.4 41.8 41.2 3.4 0.1 0.5 0.1 0.1 + 0.2 0.2 

4669 I-f 10.4 45.8 38 .1 5.1 0.1 0.3 0.3 0.1 

4672 I-f 4.8 40.2 50.6 2.8 0.9 0.5 0.2 + 

4674 I-f 8.4 39.0 48.0 3.8 0.3 0.3 0.3 + 

4659 B 85.1 1.3 1.5 + + 9.6 2.5 

4689 B 10.5 37.4 21.8 16.3 2.1 1.9 0.3 0.1 7.8 1.8 

4670-wh B 0.2 63.4 23.5 0.1 + 0.3 1.6 6.9 4.0 

4670-Cl B 1.3 96.2 1.8 + + + 0.6 0.1 + 

4670-C3 B + 15.5 69.0 0.1 1.3 8.8 5.3 

4670-C4 B + 34.0 45.9 + + + 0.8 12.2 7. 1 

4670-C9 B 1.4 80.9 9.5 0.8 + 0.7 3.0 2.8 0.8 

4687 B 15.7 46.1 29.7 3.3 0.2 0.6 0 .3  + + 2.7 1.5 

Group I-b: !Im-bearing, I-f: Ilm-free, B: breccia, +: trace amount. 4670 wh: whole enclave, 
Cl: orthopyroxene-rich clast, C3: olivine-rich clast, C4: olivine-orthopyoxene clast, and C9: 
orthopyroxene-olivine clast. 

not classify the enclaves with the terms "basaltic" and "gabbroic". 

The mineralogical and petrographic characteristics of the 38 enclaves are sum­

marized in Table 1. There are 15 coarse-grained gabbroic ilm-free enclaves consisting 

mainly of pigeonite and plagioclase, 15 fine- to medium-grained ilm-bearing enclaves 

with ophitic to gabbroic textures, and 8 brecciated enclaves. Fourteen of these 

enclaves were selected for detailed SEM-petrography study (7 ilm-bearing, 3 ilm-free 
and 4 brecciated enclaves). Table 2 shows their mineral assemblages and modal 

abundances. 

The brecciated enclaves include diogenitic breccias (Nos. 4659 and 4689) and 

an olivine-orthopyroxenite monomict breccia (No. 4670). The two diogenitic brec­

cias include MgO-rich orthopyroxene (En74 _65). The olivine-orthopyroxenitic breccia 

consists mainly of olivine (Fo74 _71) and orthopyroxene (En78 _71,). Pigeonite from 

the ilm-free enclaves is more enriched in MgO (En56 _49) than those from the ilm­

bearing enclaves (En44 _36), and the mineral assemblages of these groups are also 

different. We found baddeleyite in all of the ilm-bearing enclaves, whereas the ilm­

free enclaves contained none. 

The fourteen enclaves do not appear to have suffered extensive shock melting 

or severe terrestrial weathering. These enclaves do not show any evidence of severe 

recrystallization or reduction reactions, as found in the silicate fraction in the host 

mesosiderite. 

3.1. llm-free enclaves 

All the ilmenite-free enclaves have gabbroic to granular textures. The silicate 
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phases in the ilm-free enclaves consist of low-Ca pyroxene, augite, plagioclase and 

silica mineral (mostly tridymite). Thin exsolution lamellae of augite in pigeonite 

are observed under the microscope. Thick bands of augite, 80-100 microns in width, 

commonly occur within pigeonite. Coarse-grained irregular-shaped augite also 
occurs in the peripheral parts of pigeonite. Silica minerals typically occur along 

the grain boundary between pigeonite and plagioclase. The abundance of opaque 

minerals is very low, and chromite and troilite, with rare amount of Fe-Ni metal, 

are observed. 

Enclave 4669 

This enclave has a coarse-grained gabbroic to granular texture (Photo 1). Low­

Ca pyroxene in this enclave consists of pigeonite only. 

Enclave 4672 
This enclave has a coarse-grained gabbroic texture (Photo 2). Pigeonite always 

contains thick (>2 microns) and thin ( <1 micron) lamellae of augite in a (001) direc­

tion (Photo 3). Most of the pigeonite is replaced by orthopyroxene in its peripheral 

parts (Photo 4). This replacement texture was first reported by IKEDA et al. (1990), 

and sµch replacements occur everywhere in the thin section. Phosphates (whitloc­

kite) occur as irregular-shaped grains (20-30 microns) along the grain boundaries 

between pyroxene and plagioclase, or as spherical to irregular-shaped grains ( < 10 

microns) in orthopyroxene. 

Enclave 4674 

This enclave has a coarse-grained gabbroic texture (Photo 5). Pigeonite shows 
replacement textures, and plagioclase abundantly contains tiny inclusions (1-20 

microns in size) of silica mineral and/or pyroxene (predominantly pigeonite). 

3.2. Jim-bearing enclaves 
The ilm-bearing enclaves have ophitic to gabbroic textures (Table I). The 

silicate phases in the ilm-bearing enclaves consist of low-Ca pyroxene (predominantly 

pigeonite ), augite, plagioclase and silica mineral. Exsolution lamellae of augite in 

the pigeonite are difficult to observe microscopically. Some augites occur as thick 

band (up to 80-90 microns in width) in pigeonite, in addition to isolated coarse-grained 

augite. Plagioclase commonly contains tiny inclusions (5-30 microns) which are 

pigeonite, augite and silica mineral. Some plagioclase appears to be dusty, and 

contains very fine inclusions ( < 1 micron) which are probably also pigeonite judging 

from qualitative analysis. Plagioclase shows a zonal growth structure as indicated 

by the distribution of dusty to tiny inclusions. However, most of the plagioclase 

in the ilm-bearing enclaves is homogeneous, as noted later. Silica minerals (mostly 
tridymite) occur abundantly in the interstices between pigeonite and plagioclase. 

Phosphates have a low abundance in all the ilm-bearing enclaves. They typically 

occur along grain boundaries between plagioclase and pigeonite ( often with silica 

mineral). Opaque minerals also have a low abundance in the ilm-bearing enclaves. 

They are chromite and ilmenite with rutile, baddeleyite, troilite and Fe-Ni metal. 

Enclave 4657 

This enclave has a medium to fine-grained ophitic texture (Photo 6). Pigeonite 

in this enclave does not show any replacement texture by orthopyroxene. The pi-
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Photo 1. llm-free enclave 4669, 
consisting mainly of pigeonite 
(gray) and plagioclase (white). 
Transmitted light, open nicols, 
and width of 2 mm. 

Photo 2. llm-free enclave 4672. 
Note that pigeonite is sur­
rounded by orthopyroxene 
with abundant opaque minerals 
(black). Pigeonite is almost 
free of opaque minerals. 
Transmitted lignt, open nicols, 
and width of 2 mm. 

Photo 3. Augite lamellae (dark 
gray) in pigeonite (gray) in 
i/m-free enclave 4672. Note 
that pigeonite in the i/m-free 
enclaves includes both thin and 
thick augite /amellae. BSE 
image, and width of 200 
microns. 
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Photo 4. Replacement texture 

of pigeonite (bright) by 
orthopyroxene (dark) in en­

clave 4672. Augite lamellae 

(bright) extend from pigeonite 
core to orthopyroxene mantle. 

Transmitted light, cross nicols, 

and width of I mm. 

Photo 5. Jim-free enclave 4674. 

Pigeonite is replaced by or­

thopyroxene with abundant 

opaque minerals. Transmitted 

light, open nicols, and width 

of 2 mm. 

Photo 6. Tim-bearing enclave 

4657, consisting mainly of 
pigeonite (gray) and plagio­

clase (white). Some plagio­

clases appear to be dusty by 

the presence of very fine­
grained inclusions. Trans­
mitted light, open nicols, and 
width of 2 mm. 
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Photo 7. Abundant thin augite 

lame/lae (dark) in pigeonite 

(bright) in ilm-bearing enclave 

4657. BSE image, and width 

of 300 microns. 

Photo 8. Um-bearing enclave 

4671, consisting mainly of 

pigeonite (gray) and plagio­

clase (white). Transmitted 

light, open nicols, and width 

of 2mm. 

Photo 9. Um-bearing enclave 

4677, consisting mainly of 

pigeonite (Pig), plagioclase 
(Pl) and silica mineral (Sil). 

Note that this enclave includes 

abundant opaque minerals 

( predominantly troilite). 

Transmitted light, open nicols, 

and width of 2 mm. 
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geonite includes very thin lamellae (usually less than 1 micron) which occur densely 

in comparison with those in the ilm-free enclaves (Photo 7). 

Enclave 4671 

This enclave has a medium-grained ophitic texture (Photo 8). Pigeonite does 

not show a replacement texture. Phosphate is very rare in this enclave. 

Enclave 4677 
This enclave also has a medium to fine-grained ophitic texture (Photo 9). It has 

a slightly monomict brecciated texture, and the brecciated parts are characterized 

by abundant troilite grains with fine-grained silicates. The boundaries between the 

brecciated parts and the other parts are not distinct. Pigeonite is not homogeneous 

(En50 _ 40),  and magnesian pigeonite always occurs with troilite in the brecciated part. 

The other predominant pigeonite is FeO-rich (En40 _ 44).  Pigeonite shows no re­

placement texture anywhere. A large amount of silica mineral and a small amount 

of plagioclase characterize this enclave (Table 2). Coarse-grained euhedral to subhed­

ral silica minerals occur in association with pigeonite and plagioclase (Photo 1 0). 

Some of them occur as inclusions in pigeonite and plagioclase, which has a euhedral 

to subhedral lath structure (20-40 microns). 

Enclave 4678 

This enclave has a medium-grained granular to gabbroic texture (Photo 1 1). 

Pigeonite in this enclave shows a replacement texture by orthopyroxene. The re­

placements occur only in the peripheral parts of the thin section, and only a few grains 

show such a texture. 

Enclave 4679 

This enclave has a medium- to fine-grained ophitic texture (Photo 12). No 

replacement texture of pigeonite is encountered. Irregular-shaped phosphates occur 

in association with plagioclase, silica mineral and rarely ilmenite. 

Enclave 4683 

This enclave has a coarse-grained gabbroic to doleritic texture consisting mostly 

of irregular-shaped pigeonite and plagioclase (Photo 1 3). It contains a very coarse­

grained plagioclase (megacryst), 1 cm in size. 

Enclave 4695 
This enclave has a medium-grained ophitic texture (Photo 14). A few pigeonites 

in the peripheral parts of the thin section show a replacement texture by orthopyroxene. 

3.3. Olivine-o rthopy roxenitic monomict enclave 4670 

This enclave has a brecciated texture (Photo 1 5), and consists of fine- to coarse­
grained orthopyroxene, olivine, troilite and chromite with minor phosphate, silica 

mineral, plagioclase, augite and Fe-Ni metal. The enclave consists of several clasts, 

i.e., one orthopyroxene-rich clast, one olivine-rich clast, a few olivine-orthopyroxene 

clasts, and a fine-grained marginal part. Except for the marginal part, the boundaries 

between the clasts are not very clear. Table 2 gives the modal abundances of the 
whole of enclave 4670 and four of the clasts. Polymict diogenite is defined as con­

taining more than 90% of orthopyroxenite (DELANEY et al ., 1983). The abundances 

of olivine (23.5 vol % ) and orthopyroxene (63 .4), thus, show that this enclave is an 

olivine-orthopyroxenite, not polymict diogenite. Although mesosiderite hosts 
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Photo JO. BSE image of en­
clave 4677. Note that euhedral 
to subhedral silica mineral 
occurs abundantly. Width of 
900 microns. 

Photo 11. Jim-bearing enclave 
4678. Transmitted light, open 
nicols, and width of 2 mm. 

Photo 12. Jim-bearing enclave 
4679. Transmitted light, open 
nicols, and widh of 2 mm. 
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Photo I 3. Jim-bearing enclave 
4683, consisting of coarse­

grained plagioclase (white) 

with pigeonite (gray). Trans­

mitted light, open nicols, and 

width of 4.5 mm. 

Photo 14. Jim-bearing enclave 

4695. Transmitted light, open 

nicols, and width of 2 mm. 

Photo 15. Olivine-orthopyrox­

enitic brecciated enclave 4670, 

consisting of many clasts and 

fine to coarse-grained silicate 

fragments with abundant 
opaque minerals. Olivine-rich 

clast occurs in lower-left cor­

ner. Transmitted light, open 

nicols, and width of 4.5 mm. 
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Photo 16. Olivine-rich clast in 
enclave 4670, consisting main­
ly of olivine (white) and troilite 
(black). Transmitted light, 
open nicols, and width of 2 
mm. 

Photo 17. Orthopyroxene-rich 
clast in enclave 4670, consist­
ing mostly of fine- to coarse­
grained orthopyroxene frag­
ments. Transmitted light, 
open nicols, and width of 2 
mm. 

Photo 18. Marginal part of 
enclave 4670. This fine­
grained aggregate, with sili­
cate and opaque fragments, 
occurs along one side of the 
thin section. Transmitted 
light, open nicols, and width 
of 2 mm. 
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include a large amount of olivine clasts (MITTLEFEHLDT, 1 979), this is the first discovery 

of an olivine-rich orthopyroxenitic enclave. Orthopyroxene in all the clasts does 

not include any lamellae of augite. Opaque minerals (troilite, Fe-Ni metal and 

chromite) are distributed heterogeneously, and some clasts are enriched in troilite 

and metal. The total abundance of opaque minerals is much higher than in the 

ilm-bearing and ilm-free enclaves. 

The olivine-rich clast (C3) consists of olivine (69.0 vol % ) with small amounts 

of orthopyroxene, phosphate, chromite, troilite and Fe-Ni metal (Photo 1 6). Fine­

grained augite occurs rarely in this clast, but plagioclase and silica mineral appear to 

be absent. The orthopyroxene-rich clast (C I )  consists mostly of orthopyroxene 

(96.2%) with rare olivine, plagioclase, augite and silica mineral (Photo 1 7). Opaque 

minerals are very poor in this clast. Olivine-orthopyroxene clasts consist of olivine 

and orthopyroxene with phosphate, plagioclase, augite, silica mineral, chromite, 

troilite and metal. Some orthopyroxene includes tiny spherical inclusions of olivine. 
The abundances of these minerals vary widely in these clasts. Plagioclase, silica 

mineral and augite are less than 1 0  microns in size. They occur in the interstices 

between orthopyroxenes. Phosphates also occur along orthopyroxene or olivine 

grains. 

The fine-grained portion occurs along the margin of the thin section (Photo 1 8). 

It consists mainly of fine-grained groundmass similar to devitrified glass, with small 

amounts of fragmental orthopyroxene, opaque minerals, phosphate and silica mineral. 

The groundmass consists of fine-grained low-Ca pyroxene and plagioclase. One 

coarse olivine fragment occurs in this part. This olivine is surrounded by a corona 

of orthopyroxene and chromite, which resembles the coronas in mesosiderite hosts 

(NEHRU et al. , 1 980b). 

3.4. Diogenitic b reccia 

Enclave 4659 

This is a fine- to coarse-grained monomict breccia consisting mainly of ortho­

pyroxene (85. 1 vol % ) with phosphate, chromite, ilmenite, rutile, troilite and Fe-Ni 

metal (Photo 1 9). Plagioclase, augite and silica mineral do not appear to occur in 
this enclave. Orthopyroxenes have no lamellae of augite. A large amount of phos­

phates characterizes the diogenitic enclaves. Phosphates, 10  to 60 microns in size, 

occur within the coarse-grained orthopyroxene or with the fine-grained pyroxene. 

The abundance of opaque minerals, especially troilite, is very high. 

Enclave 4689 

This enclave has a fine-grained brecciated texture (Photo 20), and consists of 

orthopyrocxne with augite, plagioclase, silica mineral, phosphate, chromite, ilmenite, 

rutile, troilite and Fe-Ni metal. The enclave includes many small clasts with a basaltic 

texture. Although orthopyroxene does not include lamellae, they often contain 

finegrained augite with very thin (00 1 )  lamellae. The abundance of opaque minerals, 

phosphate and silica mineral is very high. One coarse-grained orthopyroxene frag­

ment occurs in the marginal part of the thin section, which is more enriched in 

MgO (En7a in core, En65 in rim) than the other homogeneous orthopyroxene (En65 , 

average). 
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Photo 19. Diogenitic enclave 
4659, consisting of orthopy­

roxene fragments and opaque 

minerals (mostly troilite). 

Transmitted light, open nicols, 

and width of 2 mm. 

Photo 20. Diogenitic enclave 

4689, consisting of.fine-grain­
ed orthopyroxene fragments 

with plagioclase, silica miner­

al, phosphate and abundant 

troilite. A magnesian ortho­

pyroxene coarse fragment oc­

curs on the left side of this 

photograph. Transmitted 
light, open nicols, and width 

of 2mm. 

Photo 21 . Recrystallized brec­
ciated enclave 4687, consisting 

of clasts and silicate frag­

ments of various sizes. Trans­

mitted light, open nicols, and 

width of 2 mm. 

277 



278 M. KIMURA, Y. IKEDA, M. EBIHARA and M. PRINZ 

3.5. Recrystallized brecciated enclave 4687 

This enclave has a recrystallized brecciated texture (Photo 21 ), and consists of 

many clasts and mineral fragments of various grain sizes. Some clasts have ophitic 

textures and others have gabbroic textures. One clast consists of augite and silica 

m ineral only, and this enclave contains several zircon grains. Although pigeonite is 

the predominant pyroxene, several coarse-grained orthopyroxene fragments, with 

augite blebs, occur. These fragmental orthopyroxenes differ from the replacing 

orthopyroxene around pigeonite, as noted above. Orthopyroxene is more enriched 

in MgO (En51 _ 58) than pigeonite (En44 _ 5 1) . Plagioclase is heterogeneous in com­

position (An90 _ 96), and few coarse plagioclase fragments are enriched in CaO. 

4. Mineralogy 

4. 1. Olivine 
Table 3 gives representative compositions of olivine and the other silicate minerals. 

Olivine was found only in olivine-orthopyroxenitic brecciated enclave 4670. The 

olivine and orthopyroxene in this enclave have a slight compositional heterogeneity 

in each clast, being Fo74 _ 7 1  and En1s - 15 respectively. The composition of the olivine 

overlaps with that of olivine (Fo7 a _ 62) in the Vaca Muerta mesosiderite (DELANEY 

et al., 1980). The average FeO/MnO ratio of the olivine is 35. 6, which is within the 

range of mesosiderite olivine given by DELANEY et al. ( 1 980). Olivine and ortho­

pyroxene in the marginal part of enclave 4670 are enriched in FeO ( Fo(J5 _ 63 and 

En69 _ 54). 

4.2. Pyroxene 

Pyroxene is the most common phase in enclaves of all types. Orthopyroxene is 

the predominant phase in  magnesian olivine-orthopyroxenite and diogenitic breccias. 

Pigeonite is the predominant phase in  the ilm-bearing and ilm-free enclaves, although 

orthopyroxene occurs replacing pigeonite in  these enclaves. Besides as thin lamel­

lae i n  pigeonite, augite occurs as isolated coarse grains and as thick bands, within 

pigeonite, in many enclaves. Except for some breccias, every enclave contains homo­
geneous pyroxene. The Ti0 2 content of the pyroxene distinguishes the i lm-bearing 

enclaves (0.2-0.5 wt % ) from the ilm-free enclaves ( <0.2 % ). 

The most striking feature of the pyroxene is the replacement of pigeonite by 

orthopyroxene. Most of the pigeonite in the ilm-free enclaves is completely sur­

rounded by orthopyroxene. Fourteen of the fifteen ilm-free enclaves studied have 

such a texture. On the other hand, pigeonite occurring in the marginal parts is re­

placed by orthopyroxene in the ilm-bearing enclaves. Only 7 of the 1 5  i lm-free 

enclaves include such orthopyroxenes. The occurrences and abundances of replacing 

orthopyroxene differ between the two types of enclaves. We observed these replace­

ment textures, in  detail, using back-scattered electron (BSE, hereafter) images. 

Ilm-free enclaves (Photo 22) 

Pigeonite and replacing orthopyroxene have different lamellar textures. Al­

though both pigeonite and orthopyroxene include common, thick, lamellae of augite 

along the (001 ) direction (5-8 microns in width), pigeonite further includes many 
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Table 3. Representative compositions of augite ( aug ), pigeonite (pig), orthopyroxene ( opx ), p/agio­
clase (pl) and olivine (of) (wt % ). 

Enclave Group Si02 Ti02 Al203 Cr203 FeO MnO MgO CaO Na20 K20 Total 
99.49 

��--- -------�--�-- ----�-- --- ------
4657 I-b pl 45.3 5 0 00 34 32 0 00 0 1 3  0 07 0 04 1 8  45 1 . 07 0 . 06 
4657 1-b aug 49 90  0 7 1  0 88 0 3 4  1 9 . 1 2  0 . 72 9 . 96 1 7 . 60 0. 09 0.00 99 . 32 
4657 1-b pig 48 . 06 0.33 0 37 0 1 3  3 6  04 1 . 3 6  1 1 .76 1 .88 0.06 0.00 99.99 
467 1 1-b pl 44. 82 0 . 00 34 . 07 0 00 0. 22 0 . 00 0. 04 1 8 .42 1 .2 1  0.00 98 .78 
467 1 1-b aug 49.25 0.75  0 87 0 3 1  23.1 1 0 95 1 0.78 1 3 .63 0.09 0.00 99 .74  
467 1 1 -b  pig 49.20 0.3 4 0 . 40 0 . 1 1  33 . 1 6 1 . 28 1 2.22 3 . 8 6 0 . 04 0. 00 1 00.61 
4677 1 -b pl 45. 1 9  0. 00 3 4. 83 0 05 0 22 0. 00 0. 04 1 8  . 42 1. 07 0. 04 99 . 86  
4677 1-b aug 49.7 1 0. 83 1 .63 0. 52 1 4 . 41 0. 66 1 2.07 1 9 . 02 0.06 0.00 98 .9 1  
4677 1-b pig 50.3 5 0. 36  0 37  0. 28 28.39 1 .06 1 6.1 1 2 . 87 0. 00 0.00 99 .79 
4677 I-b pig 49 . 59 0 . 28 0 3 1  0 25 32 . 1 0  1 .54 1 3 .76 1 .75 0 . 02 0 . 00 99 .60 
4678 1-b pl 45.58 0. 00 34 . 8 5  0 00 0.1 6 0. 00 0 04 1 8 . 45 1 . 2 1  0.00 1 00.29 
4678 1-b aug 51 .50 0.63 0 79 0 3 1  1 1 .01 0 . 52 1 4.1 4 2 1 .1 6  0 07 0.00 1 00. 1 3  
4678 1-b opx 51 .45 0. 50 0 52 0 26 24 87 1 . 22 1 9.39 1 .82 0. 00 0.00 1 00.03 
4678 1-b pig 49.1 0 0.45 0 . 32 0. 1 8  33 . 87 1 . 29 1 2 . 73 1 . 00 0 . 00 0.00 98 .94 
4679 1-b pl  45.1 5 0.05 3 4.76 0. 00 0 25 0 . 00 0. 04 1 8 . 54 1 .1 3  0 . 00 99 .92 
4679 1-b aug 50.40 0. 72 0 92 0. 38 1 5 . 40 0. 7 4  1 1 .1 7  1 9.33 0 . 08 0.00 99 .1 4 
4679 1-b pig 49.1 4 0.3 5 0. 3 1  0.1 0 3 4.69 1 . 2 4  1 2 . 27 1 .88 0.03 0.00 1 00. 01 
4683 1-b pl 45.57 0.07 3 4. 1 7  0 07 0. 28 0. 1 3  0. 03 1 8 . 27 1 .43 0.1 0 1 00. 1 1  
4683 I-b aug 50.08 0.69 1 .27 0 . 47 1 6 . 58 0. 55 1 1 .46 1 8 .78 0.09 0. 00 99.97 
4683 1-b pig 49.79 0.32 0.40 0 23 32 52 1 .33 1 3 .39 1 .66 0.00 0.00 99 .64 
4695 I-b pl 44.79 0.00 3 4.56 0. 00 0 27 0. 28 0.03 1 8  96  1 .08 0. 00 99 .97 
4695 1-b aug 51 .57 0.61 0. 70 0.29 1 3 .22 0.83 1 3 . 50 1 9 . 8 1 0 . 09 0 . 00 1 00.62 
4695 1-b opx 51 .64 0.37 0. 41 0.1 6 26.51 1 .1 2  1 7 . 8 4 1 .56 0.00 0 . 00 99 . 61 
4695 1 -b pig 50.20 0.50 0.27 0.1 6 3 0.8 1 1 .3 4  1 5 . 03 0. 96  0.00 0. 00 99 .26 

4669 1-f pl  44.3 0 0. 06 3 5.3 0 0. 04 0.1 0 0 . 00 0. 03 1 9.43 0.76 0.00 1 00. 04 
4669 1-f aug 51 .22 0.22 0. 95 0. 58 1 2.44 0. 37 1 2.83 20.37 0. 06 0.00 99 . 04 
4669 1-f pig 50 . 41 0.06 0 . 26 0.3 1 29.05 1 .1 3  1 7 . 41 0 . 92 0 . 00 0.00 99 . 55 

4672 1-f pl 43 .7 5 0.1 0 3 5.7 4 0 08 0.1 0 0.00 0.06 1 9 . 54 0. 59 0.00 99 .96 
4672 1-f aug 52.28 0.1 5 0. 64 0. 40 10.20 0.60 1 4 . 1 9 2 1 . 47 0. 06 0.00 99.99 
4672 1-f opx 50.88 0.07 0.33 0 . 3 4  24.68 0 . 67 20.8 4  1 .47 0.00 0 . 00 99 .28 
4672 1-f pig 51 .92 0.04 0.37 0. 32 26.57 1 .1 7  1 9.53 0. 87 0 . 00 0. 00 100. 79 
4674 1-f pl 44.3 0 0.00 3 5. 60 0. 04 0. 1 5  0.1 6 0 . 00 1 8 . 60 0.69 0.04 99.58 
467 4 1-f aug 51 .58 0.2 4 
467 4 1-f opx 52.60 0.1 5 
4674 1-f pig 50 . 55 0. 00 

0 . 65 0. 58 9.56 0 . 67 1 5.63 2 0.33 0 . 06 0.00 99 .3 0  
0.26 0. 1 0  24 . 68 1 .14 1 9.88 1 .72 0 . 00 0.00 1 00. 53 
0 . 3 5  0. 3 5  27 . 68 1 .44 1 8  62 1 .24  0. 00 0.00 1 00.23 

4659 B opx 53.3 1 0 . 27 0. 52 1 . 43 1 6  97 0 . 56 25 . 3 0  0 . 83 0 . 02 0 . 00 99 .2 1  
4689 B pl 46.92 0.00 33.36  0. 00 0 24 0.00 0 06 1 7 .46 1 . 51 0 . 04 99 .59 
4689 B aug 51 .08 0.70 0. 90 0.39 8 .74 0. 54 1 4 . 62 2 1 .77 0. 05 0 . 00 98 .79 
4689 B opx 53 .39 0.3 1 0 . 55 0.27 20.1 7 0.8 5 23 .38 1 .49 0. 00 0 00 1 00.41 
4670 B ol 37.3 0  0.06 0.00 0.09 26 . 07 0 . 62 3 5 . 58 0 00 0 00 0.00 99 .72 
467 0 B pl 42.98 0.00 3 5.47 0.04 0. 59 0.00 0 03 1 9 . 04 0. 3 1  0.00 89.46 
4670 B aug 53 .9 5 0.1 5 0.1 5 0 . 27 5.09 0.25 1 6 . 67 23 .1 7  0.05 0.00 99 .75 
4670 B opx 53.45 0.1 1 0.62 0.53 1 4.43 0.58 28 . 3 0 1 .03 0.03 0.00 99 .08 
4687 B pl 45.7 1 0.1 4 3 4.2 1 0. 00 0. 43 0.00 0. 02 1 7 . 58 1 .1 3  0.00 99 .22 
4687 B aug 50.75 1 .3 0  1 .68 0 . 55 9.04 0 . 55 1 5.27 20.42 0. 09 0.00 99.65 
4687 B opx 52.05 0.56 0.43 0.22 23 .98 0.86 1 9 . 82 1 . 50 0.00 0.00 99 .42 
4687 B pig 49 .73 0.26 0.41 0.23 3 1 .97 1 . 05 1 5. 09 I .1 0 0.00 0.00 99.84 

Group I-b : Um-bearing, 1-f: I lm-free, B :  breccia. 
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Photo 22. BSE image of re­
placement texture of pigeonite 
(Pig) by orthopyroxene (Opx) 
in Um-free enclave 4672. 
Pigeonite and orthopyroxene 
include common thick augite 
lamellae (Aug). Pigeonite 
further includes thin lamellae 
of (001 )  direction, and ortho­
pyroxene includes several thin 
lamellae of (JOO) direction. 
Silica mineral and troilite 
occur in the orthopyroxene. 
Note that the phosphate 
(whitlockite)and silica mineral 
assemblage occurs just cutting 
augite lamella. Width of 220 
microns. 

Photo 23. BSE image of re­
placement texture of pigeonite 
(Pig ) by orthopyroxene (Opx) 
in Um-bearing enclave 46 78. 
The orthopyroxene includes 
augite with bleb shape, troilite 
and silica mineral. Augite 
lamellae in pigeonite do not 
extend into the orthopyroxene. 
Width of 220 microns. 

thin (below I micron) l amel lae along the (00 I )  direction . On the other hand, or­

thopyroxene often includes thin lamellae along the ( I 00) direction, up to I micron 

in width . Thick augite lamellae rarely include lamellae of (00 I )  direction .  I n  en­

clave 4674 they are not d istinct. At ahy rate, the replacing orthopyroxene includes 

larger amounts of s i l ica  mineral and troilite than pigeon ite (Photo 3), as noted by 

IKEDA et al. ( 1 990) . In addition, fine-grained phosphates (always REE-free whitlockite) 

typically occur cutting augite lamellae in orthopyroxene (Photo 22) . They are 5 to 

I O  microns in size and have spherical to irregular shapes, and frequently coexist with 

s i l ica mineral and tro i l ite. Such phosphates were not encountered i n  p igeonites . 

Jim-bearing enclaves (Photo 23) 

Replacing orthopyroxene does not contain ( I 00) lamellae, but contains abundant 

augite, troi l ite, and si l ica minerals with small amounts of chromite, phosphate and 
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Fe-Ni metal . However, augite occurs as bleb-shaped grains, wh ich differ from those 
in the i lm-free enclaves. Augite blebs often contain very thin (00 1 )  lamellae. Al­
though pigeonite contains thin (00 1 )  lamellae of augite, these l amellae rarely extend 
to orthopyroxene. Thus, orthopyroxene-pigeonite assemblages in the i lm-free and 
ilm-bearing enclaves are clearly different from one another in lamellar texture as well 
as in occurrence and abundance . 
Chemical relationships between pigeonite and orthopyroxenes 

Replacing orthopyroxene is more enriched in MgO than pigeonite (Tables I and 
3). Orthopyroxene in the ilm-bearing enclaves is considerably more magnesian than 
the pigeonite. Orthopyroxene and pigeonite often have weak chemical zoning within 
the peripheral parts, from MgO-rich to FeO-rich toward the boundary. For example, 
orthopyroxene in i lm-free enclave 4674 changes in composition from En 62 to En58 

near pigeonite, and pigeonite changes in composition from En 54 to En56 near or­
thopyroxene. The CaO content of orthopyroxene is slightly, but systematically, 
higher than that of coexisting pigeonite, e.g., 1 . 3- 1 . 8 wt% and 0.8- 1 .0 in i lm-free 
enclave 4674, and 1 .6-1.8 and 0 .8- 1 . 1  i n  i lm-bearing enclave 4695, respectively. MnO 
prefers pigeonite to orthopyroxene, e.g., 1 . 2-1 .4 and 1 .0- 1 .2 in enclave 4674, and 
1 . 3-1 .4 and 1 . 1 - 1 .3 in enclave 4695, respectively. This preference of MnO for pi­
geonite i s  consistent with HEWINS ( 1 979) . 

4.3. Plagioclase 

Plagioclase is one of the predominant minerals i n  most of the enclaves. However, 
it is absent i n  diogenitic enclave 4659 and has a very low abundance in olivine-or­
thopyroxenitic enclave 4670. Most plagioclase i s  homogeneous, except for very 
weak zoning from a calcic core to a sodic rim i n  a few grains. As noted above, pla­
gioclase in  some breccias is heterogeneous in composition . Plagioclase i n  the ilm­
bearing enclaves i s  more sodic (An87 . e - 92 . 3) than th at in  the i lm-free enclaves 
(An02 . 1 _ 95 • 8) .  An olivine-orthopyroxenitic breccia contains very calcic plagioclase 
(An97 _ 93), whereas pl agioclase in the fine-grained marginal part is more enriched in 
Na20 (Ano 1 - s5) . 

4.4. Silica mineral 

Silica minerals occur i n  all encl aves, whereas they are rare or absent in  the olivine­
orthopyroxenite enclave 4670 and diogenitic breccia enclave 4659. Coarse- to me­
dium-grained si lica minerals are tridymite. They typically occur in the interstices 
between plagioclase and pyroxene grains, whereas some occur as euhedral to subhedral 
coarse grains. Such phenocrystic grains are especially common in ilm-bearing enclave 
4677 (Photo I 0). 

4.5. Phosphates 

The abundances of phosphates vary widely among different enclaves . Brecciated 
enclaves contain a l arge amount of phosphates . Their abundances in the ilm-free 
enclaves are higher than those in the ilm-bearing enclaves . The breccia and ilm-free 
enclaves contain only whitlockite . On the other hand, the ilm-bearing enclaves 
contain predominantly whitlockite and rare F-apatite . CFP-phases (Ca-, Fe- and 



Table 4. Representative compositions of whitlockite (whi) ,  apatite (apa) and Ca-Fe-P-phase (CFP) (wt %).  

Enclave 
- -- - ---

4657 

467 1 

467 1 

4671 

4677 

4678 

4678 

4679 

4683 

4683 

4695 

4669 

4672 

4674 

Group 
- - - - -- -- -

1-b whi 

1-b apa 

1-b CFP 

1-b CFP 

1-b whi 

1-b apa 

1-b whi 

1-b whi 

1-b apa 

1-b whi 

1-b whi 

1-f whi 

l-f whi 

1-f whi 

F Cl 
--

0 . 43 0 . 03 

4 . 06 0 . 65 

0 .  39 0 . 02 

0 . 26 0 . 04 

0 . 58 0 . 00 

3 . 78 0 . 22 

0 . 74 0 . 03 

0 . 39 0 00 

4 . 02 0. 1 2  

0 . 43 0 00 

0 . 48 0 02 

0 .  36 0 00 

0. 42 0 04 

0 69 0 . 01 
- - - - --- - -- -- - -- - - - ---� �  

4687 B whi 0 53 0 00 

4659 B whi 0 . 7 1 0 . 00 

4689 B whi 0 5 1  0 . 02 

4670 B whi 0 65 0 0 1  

Y203 

0 . 45 

0 00 

1 .  03 

0 . 80 

0 03 

0 . 04 

0 . 57 

0 . 09 

0 . 00 

0 . 21 

0 . 2 1 

0 00 

0 . 01 

0 00 

0 . 26 

0 00 

0 . 01 

0 . 00 

Ce203 Nd203 
-------·--- --� ---

0 . 66 0 . 42 

0 . 09 0 . 00 

1 . 28 0 72 

1 .  59 0 . 96 

0 . 03 0 . 07 

0 . 03 0 01 

0 . 21 0 . 03 

0 . 10 0 . 08 

0 . 00  0 . 01 

0 . 04 0 . 09 

0 . 1 7  0 . 07 

0 . 07 0 . 00  

0 . 05 0 . 00 

0 . 05 0 1 1  
--- � �  

0 . 1 7  0 . 1 1  

0 . 06 0 . 03 

0 . 05 0 . 00  

0 . 00 0 . 00 

Group 1-b : I lm-bearing, 1-f: Um-free, B :  breccia. 

Na20 P205 
---- ·--- --

1 . 99 45 . 74 

0 .02 42 . 04 

0 . 75 3 1 . 98 

0 . 27 30 . 44 

1 .  70 45 . 20 

0 . 02 40 . 93 

1 .  77 45 . 82 

1 . 99 44 . 43 

0 . 00 42 . 30 

1 .  77 44 . 93 

1 . 67 45 . 2 1 

2 .  1 8  45 . 90 

1 .  1 9  45 . 28 

2 .  30 45 . 19 

1 . 56 4 1 . 87 

1 . 26 45 . 1 7 

1 .  6 1  45 . 80 

1 .  33 47 1 47 

MgO CaO MnO FeO "O = F, Cl" Total 
- -- -� 

-- --- - ------- -- - - � - ----

2 . 57 

0 . 01  

1 . 28 

1 . 62 

3 . 57 

0 . 0 1 

3 . 62 

3 . 10 

0 . 02 

3 . 20 

2 . 65 

3 . 23 

3 . 37 

3 . 62 

3 . 03 

3 . 67 

3 . 67 

3 . 64 

44 . 80 0 . 1 9  2 . 21 0 1 9  99 . 30 

53 . 40 0 . 1 1  0 45 1 86 98 97 

3 1 . 02 0 . 26 4 07 0 1 6  72 64 

1 . 88 0 . 25 33 43 0 1 2  71 . 42 

48 . 72 0 . 1 1 0 68 0 25 100 44 

53 . 63 0 . 05 0 . 65 1 64 97 . 73 

46 . 78 0 28 0 9 1  0 . 32 100 . 44 

47 . 06 0 1 6  1 .  1 1  0 1 6  98 35 

55 . 09 0 1 5  0 24 1 .  72 100 23 

47 . 80 0 . 20 1 29 0 . 1 8  99 . 78 

47 . 02 0 . 1 2  1 .  83 0 . 22 99 23 

47 . 43 0 . 24 1 .  2 1  0 . 1 5  100 47 

46 . 1 9 0 . 1 3  1 .  5 1  0 . 1 9  98 00 

47 . 24 0 . 2 1  0 29 0 29 99 . 42 
� ---- ��--- --� - -- -- ----- - - - - -- - -- --

47 . 08 0 . 2 1 3 . 96 0 . 23 98 . 55 

47 . 08 0 3 1  0 . 8 1 0 30 98 . 80 

46 . 88 0 1 4  0 . 66 0 23 99 . 1 2 

46 . 90 0 . 08 0 . 67 0 . 27 100 . 48 
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Fig. I. Concentration of Ce203 and Y20:i of phosphates in the ilm-bearing enclaves. Phosphates 

in No. 4671 are Ca-Fe-P-phase. and others are whitlockites. The straight line (Cl) shows 

the ratio of thses elements in CI chondrites (ANDERS and GRE VESSE, 1989). 
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Fig. 2. Concentration of Ce203 and Nd20:s of phosphates in the Um-bearing enclaves. The straight 
line (Cl) shows the Cl chondrite ratio (ANDERS and GRE VESSE, 1989). 

P-bearing non-stoichiometric phosphates) reported by IKEDA et al. ( 1 990), aslo occur 

in ilm-bearing enclave 4671 . They are interpreted to be weathering products altered 

from whitlockites. 



Enclave 
4657 
4657 
467 1 
467 1 
4561 
4677 
4677 
4677 
4678 
4678 
4678 
4679 
4679 
4697 
4683 
4683 
4683 
4695 
4695 
4695 

4669 
4672 
4672 
4674 
4674 

4659 
4659 
4659 
4659 
4659 
4689 
4689 
4689 
4689 
4670 
4670 
4687 
4687 
4687 

Group 
1-b 
1-b 
1 -b 
1-b 
1-b 
1-b 
1-b 
1-b 
1-b 
1-b 
1 -b 
1-b 
1-b 
1-b 
1-b 
1-b 
1 -b 
1-b 
1-b 
1 -b 
1-f 
1-f 
1-f 
1-f 
1-f 

chr 
ilm 
chr 
ilm 
rut 
chr 
ilm 
rut 
chr 
ilm 
rut 
chr 
ilm 
rut 
chr 
ilm 
rut 
chr 
ilm 
rut 

- �--

chr 
chr 
chr 
chr 
chr 

Table 5. 

Si02 

0 . 09 
0 . 08 
0 . 07 
0 04 
0 . 00 
0 . 02 
0 03 
0 . 30 
0 . 0 1 
0 . 04 
0 . 04 
0 . 00 
0 . 00 
0 00 
0 . 06 
0 . 01 
0 . 06 
0 . 05 
0 . 02 
0 . 00 
------- --

0 . 1 2  
0 07 
0 .  1 2  
0 . 05 
0 . 06 

Representative compositions of chromites (chr), ilmenites (ilm) and rutiles (rut) (wt %). 

Ti02 Al203 

5 . 45 8 . 63 
52 . 80 0 . 01 
9 . 08 7 . 49 

53 . 20 0 . 0 1  
99 . 93 0 . 04 
7 . 76 7 . 07 

53 . 28 0 . 02 
95 . 89 0 . 04 
3 . 69 6 . 99 

52 94 0 . 02 
98 . 35 0 . 02 
7 . 33 6 . 72 

53 . 80 0 0 1  
1 00 . 50 0 . 00 

6 . 30 7 .  1 4  
53 . 77 0 . 02 
99 . 94 0 00 
5 . 28 7 . 8 1 

54 . 5 1  0 . 00 
100 06 0 . 03 

1 . 12 I O  03 
2 . 06 8 . 72 
0 . 09 9 . 57 
1 . 89 8 . 74 
0 . 59 1 0 . 75 

Cr203 FeO 
47 . 47 36 . 04 
0 . 7 1 44 . 42 

43 98 36 . 82 
0 . 1 1  44 . 46 
0 . 07 0 . 74 

46 . 60 35 . 3 1 
0 . 25 44 . 43 
0 . 1 6  2 . 68 

54 . 49 32 . 03 
0 . 37 42 . 83 
0 . 06 0 . 2 1  

45 . 43 39 . 42 
0 . 06 45 . 3 1  
0 . 1 0  0 . 59 

47 . 3 1 35 . 5 1 
0 1 2  43 03 
0 00 0 2 1  

50  04 33 37 
0 00 43 . 34 
0 .  1 5  0 . 42 

- -----·� ---- -

53 . 93 32 . 35 
54 . 09 .?0 . 37 
55 . 29 30 . 06 
53 . 46 3 1  . 4 1  
53 . 95 29 . 83 

MnO MgO ZnO Y203 CaO Nb20,, 
0 . 46 0 . 72 0 07 0 . 65 0 . 07 0 .  t o  
0 . 96 0 76 0 00 0 . 00 0 . 00 0 . 00 
0 . 58 0 . 95 0 . 03 0 . 69 0 . 02 0 . 00 
0 . 9 1  1 . 00 0 00 0 00 0 05 0 . 06 
0 .  1 2  0 . 00 0 . 00 0 . 00 0 . 00 0 . 07 
0 . 82 0 . 94 0 . 00 0 67 0 . 05 0 00 
1 . 67 1 .  1 4  0 . 1 0  0 . 00 0 00 0 00 
0 . 02 0 . 05 0 00 0 .  1 2  0 02 0 . 58 
0 . 94 0 . 72 0 1 1  1 . 02 0 02 0 00 
1 . 34 1 . 54 0 . 00 0 00 0 00 0 00 
0 .  1 5  0 . 00 0 . 00 0 00 0 00 0 . 1 5  
0 . 88 0 . 3 1 0 . 00 0 6 1  0 00 0 . 00 
1 . 23 0 . 7 1  0 . 00 0 . 00 0 . 00 0 00 
0 . 00  0 . 00 0 00 0 00 0 00 0 00 
0 . 83 1 . 49 0 00 0 83 0 . 02 0 . 00 
1 .  76 1 .  79 0 . 00 0 00 0 02 0 . 05 
0 . 06 0 . 00 0 . 00 0 00 0 00 0 . 1 0 
0 . 62 0 . 93 0 . 00 0 . 84 0 01 0 00 
1 . 23 1 . 12 0 . 00 0 00 0 00 0 02 
0 . 03 0 . 00 0 00 0 . 00 0 00 0 . 1 8  

-�- ·--- ·---- - - - - � - �-··--- -- --- -� - -- - - -- - -- ---

0 .  52 I .  74 0 00 0 . 56 0 00 0 . 00 
1 . 08 I .  66 0 02 0 . 54 0 . 07 0 . 00 
1 . 03 1 .  95 0 00 0 . 79 0 07 0 06 
1 . 09 1 . 08 0 00 0 . 47 0 0 1  0 08 
0 .  77 1 .  87 0 . 07 0 60 0 02 0 . 00 

- - -- �---- � �- �-�- -- � �  �------ -- -- - -

B chr 0 . 03 5 . 49 0 . 03 60 . 46 27 . 05 1 . 66 I .  74 0 1 4  I .  76 0 07 0 . 00 
B chr 0 . 1 0  I .  82 1 0 . 3 1  53 . 67 28 . 27 1 . 1 1  3 . 1 8 0 . 00 0 54 0 03 0 00 
B ilm 0 . 02 53 . 40 0 . 01 0 . 63 35 . 95 5 . 38 4 . 1 0 0 . 02 0 . 00 0 00 0 00 
B ilm 0 . 04 55 . 79 0 . 03 0 . 03 25 . 52 1 3 . 78 4 . 75 0 . 00 0 00 0 00 0 . 05 
B rut 0 . 00 98 . 03 0 . 02 0 . 1 0 1 . 50 0 . 00 0 . 00 0 . 00 0 00 0 . 00  0 05 
B chr 0 . 02 4 . 52 0 . 62 62 . 68 29 . 1 1 1 .  50 1 . 53 0 . 00 0 65 0 . 00  0 . 00 
B chr 0 . 00 3 . 1 2 9 . 23 52 . 55 29 . 7 1 1 .  1 1  2 . 80 0 . 03 0 52 0 . 06 0 . 00 
B ilm 0 . 00 53 . 80 0 . 00 0 . 8 1  34 . 92 6 . 54 3 . 58 0 . 00 O 00 0 00 0 00 
B rut 0 . 01 98 . 6 1 0 . 36 0 . 40 0 . 40 0 . 00  0 . 00 0 00 0 . 00 0 . 00 0 . 33 
B chr 0 . 1 2  0 . 97 1 6 . 02 47 . 37 29 . 37 0 . 77 3 . 58 0 . 00 0 28 0 . 01 0 . 04 
B chr 0 . 06 I .  77 8 . 32 53 . 67 3 1 . 52 0 . 98 1 . 67 0 . 00 0 . 46 0 . 40 0 . 03 
B chr 0 . 03 6 . 4 1  7 . 52 47 . 1 3 36 . 85 0 . 70 0 . 95 0 . 00 0 . 84 0 . 00 0 . 00 
B ilm 0 . 0 1  53 . 9 1 0 . 02 0 . 1 7  43 . 52 1 .  1 7  1 .  72 0 . 09 0 . 00 0 . 00 0 00 
B rut 0 . 02 95 . 5 1 0 . 04 0 . 83 1 . 80 0 . 02 0 . 00 0 . 05 0 . 00  0 . 00 1 . 87 

--·--------- --- -- - �·---- -�--� �--�--� �-..  � �--� � �--�----- --� �- ---
Group 1-b : Ilm-braring, 1-f: Ilm-free, B :  breccia. 

N 
00 � 

Total 
99 . 76 
99 . 74 
99 . 73 
99 . 84 

1 00 . 97 
99 . 27 

1 0 1 . 00 
99 . 86 � 1 00 . 04 
99 . 1 3 ;i":: 
98 . 98 � 

1 00 . 70 c::: 
1 0 1  . 1 2 

;:o 
? 

10 1 . 1 9  -< 
99 . 50 

1 00 . 57 ;;,,; 
1 00 . 37 m 

u 

99 . 04 ? 
1 00 . 29 � 
1 00 . 99 

['Tl 
1 00 37 � 
98 68 

::t 
;... 

99 05 ;:o 
;... 

98 . 30 p.:i 

98 . 54 ;:l 
0.. 

- �----

98 . 58 � 
99 . 03 "'O 
99 5 1  ;:o 

1 00 . 1 2  z 
N 

99 . 76 
1 00 . 63 
99 . 1 3 
99 . 65 
99 . 75 
98 . 57 
98 . 88 

1 00 46 
100 . 6 1  
1 00 . 27 
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Table 4 gives representative chemical compositions of phosphates . Only whit­

lockites and CFP-phases in the ilm-bearing enclaves contain varying amounts of 

REE (Ce203, Nd 203 and Y 203). The concentrations of the other REE were below 

detection. Figure 1 shows the concentrations of Ce2Q3 and Y 203. As noted by 

IKEDA et al. ( 1 990), the ratios of Ce 203 and Y2Q3 are similar, or higher, than that of 

CI chondrites (ANDERS and GREVESSE, 1989), although those in enclaves 4678 and 

4683 are lower. CFP-phases in enclave 4671 are very enriched in Ce203 • The ratios 

of Ce203 and Nd203 are similar to that of CI chondrites (Fig. 2), except for Ce203-

enriched CFP-phases in enclave 467 1 .  Whitlockites in ilm-bearing enclave 4677 are 

poor in REE. 

4.6. Chromite 

Chromites occur in all the enclaves studied. Chromites in the ilm-bearing 

enclaves frequently have (1 1 1 )  lamellae, less than 1 micron in width, as noted by 

IKEDA et al. ( 1 990). RAMDOHR (1973) also described such lamellae of ilmenite in 

chromite in the Vaca Muerta mesosiderite. Analytical data show that the exsolved 

phases are ilmenites. We did not find any reduction reaction of oxide minerals as 

noted by EL GORESY and RAMDOHR (1975) in lunar samples and IKEDA et al. ( 1 990). 

Cr 
Enclaves 

• llm-bearing 

• Im-free 
0 4659 & 4689 

• 4670 
0 

0 4687 

alomlc rallo 

40 

� 2TI 
Fig. 3. Compositions of chromites on an atomic Cr-Al-2Ti diagram. 4659 and 4689 are diogenitic 

enclaves, 4670 is an olivine-orthopyroxenitic enclave, and 4687 a recrystallized breccia. 
Some chromites in the diogenitic enclaves are depleted in Al. The dashed line is the chemi­
cal trend of chromites in the Y-7308 howardite (IKEDA and TAKEDA , 1985). 
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Table 5 gives representative chemical compositions of chromites, i lmenites and rutiles. 

Figure 3 shows the compositions of chromites in al l enclaves. Chromites in the 

ilm-bearing enclaves are more enriched in Ti02 than those in the i lm-free enclaves. 

Chromites in diogenitic enclaves have intermediate compositions between these two 

types of enclaves. Chromites in olivine-orthopyroxenitic enclave 4670 vary widely 

in Al/Cr ratios. Chromites in a plagioclase-bearing clast are enriched in Al20a. 

Chromites in orthopyroxene-rich clasts are lower in Ti02 than those in ol ivine-rich 

clasts. Chromites in brecciated enclave 4687 seem to be mixtures between those in 

all of these enclaves. 

We discovered Al203-free or very depleted chromites from diogenitic enclaves 

4659 and 4689 ( Fig. 3). These chromites always occur in association with i lmenite 

and ruti le. They typical ly occur as thin bands l ike exsolution lamellae in i lmenite 

(Photo 24). The modal volumes of the chromites are much lower than those of the 

Photo 24. An opaque mineral 
assemblage consisting of ilmen­

ite (llm) with Af 203-bearing 

(AI-Chr) and A/203-depleted 

chromite (Al-dep Chr), and 
rutile (Rut) in diogenitic en­

clave 4659. Af 203-depleted 

chromite and rutile occur as 
thin bands within ilmenite. 

BSE image, and width of 200 

microns. 

Photo 25. BSE image of an 

opaque assemblage in diogeni­
tic enclave 4659. It consists 
of rutile (Rut) and ilmenite 

(!Im) with A/203-depleted 

chromite veins (Al-dep Chr ). 

Width of 90 microns. 
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Photo 26. BSE image showing 
zircon (Zir) with troilite (Tr) 
and Fe- Ni metal (Met) in 
brecciated enclave 4687. 
Width of 200 microns. 

Photo 27. BSE image of bad­
deleyite (Bad ) in ilmenite (/Im) 
with rutile (Rut ) thin bands 
in Um-bearing enclave 4695. 
Width of 120 microns. 
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host i lmenites. Rarely, these chromites occur close to normal chromites, although 

both show no chemical zoning toward one another. The chemistry and occurrence 

of these Al203-depleted chromites suggest that they formed by the decomposition 

of Cr 203-bearing i lmenite or pseudobrookite. 

The ZnO contents of chromites are very low (usually below 0.1 wt % ), whereas 
chromites always contain V 20:i. Al 203-depleted chromites are especially enriched 

in  V203 (0.7-1 .7  wt %) in comparison with other chromites (0. 3- 1 .0 %). The Al203-

depleted chromites are also enriched in MnO ( 1 .3- 1 .7 % vs. 0.4- 1 .4 % in normal 

chromites). 

4.7. Ilmenite and rutile 

Ilmenites and rutiles occur in the i lm-bearing and diogenitic enclaves. Chromites 

frequently occur in association with i lmenites and/or ruti les. Rutiles always occur 
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together with ilmenites. Although the volume ratio of rutile and ilmenite in each 

assemblage varies widely, from nearly equal amounts to very small, thin veins of 

rutile in ilmenite are the most common occurrences. RAMDOHR ( 1 973) also reported 

such an intergrowth between rutile and ilmenite in the Vaca Muerta mesosiderite. 

These occurrences are the result of the decomposition of pre-existing pseudobrookite 

or exsolution from ilmenite (IKEDA et al. , 1990). A grain in diogenitic enclave 4659 

consists mainly of rutile and ilmenite with a thin band of Al203-depleted chromite 
(Photo 25). This grain may be explained by the decomposition of a Cr 203-bearing 

pseudobrookite grain. 

The MnO contents of ilmenites vary widely from 1 3.8 to 0.5 wt %, and ilmenites 

contain more MnO than coexisting chromites. Diogenitic enclaves contain high­

MnO ilmenites. These ilmenites also contain 3.0-4.8% MgO, whereas the others 

have 0.5-2.2%. The other minor element contents are very low (Al2Q3 <0.05 and 

Cr203 <0.5). The concentrations of Zr02 in ilmenites are also below detection, 

although lunar ilmenites contain Zr02 up to 0.4% (TAYLOR and MCCALLISTER, 1 972). 

It seems that Zr02 is mostly partitioned into zircon or baddeleyite in the Vaca Muerta 

enclaves. 

Although rutiles in some silicates in iron meteorites and a winonaite contain 
Nb20 5 (EL GoRESY, 1 971 ; KIMURA, 1 990), the concentrations in the enclaves studied 

here range from O to 1 .87% and are usually below 0.5 wt % - The host Vaca Muerta 

mesosiderite also includes Nb205-poor rutiles (EL GoRESY, 1 971 ). Rutiles contain 

0.04-2.7% FeO and 0-0.8% Cr 203 • The contents of Al2Q3 and other minor elements 

are below detection limits. 

4.8. Zircon and baddeleyite 

Zircon was reported from the Vaca Muerta host mesosiderite (MARVIN and 

KLEIN, 1 964) and from the Mt. Padbury enclave Z (IKEDA et al. , 1 990). We have 

found 4 zircon grains, 1 to 30 microns in size, from brecciated enclave 4687. They 

occur with ilmenite, chromite, troilite and Fe-Ni metal (Photo 26). 

We have also found baddeleyite. This mineral is only rarely reported in me­

teorites. This is the first discovery from mesosiderites. We note that all the ilm­

bearing enclaves studied here include several grains of baddeleyite. They typically 

Table 6. Representative compositions of zircons (zir) and badde/eyites (bad) in Um-bearing 
enclaves (wt %). 

Enclave 

4687 

4687 

4657 

4657 

467 1 

467 1 

4678 

4683 

4695 

4695 

zir 

zir 

bad 

bad 

bad 

bad 

bad 

bad 

bad 

bad 

Si02 
- - - ·  

34 . 47 

34 . 38 

0 . 00 

0 . 00 

0 . 00 

0 . 24 

0 . 00 

0 . 43 

0 . 00 

0 . 00 

Ti02 

0 . 17  

0 . 04 

0 . 79 

1 .  14  

1 . 1 5  

1 .  72 

2 . 1 6  

l .  37 

0 . 52 

0 . 75 

FeO Hf02 
··-----------·------ - - --- ---- ··------- ------

0 .  59 1 .  38 

0 . 55 1 . 00 

0 . 88 0 . 55 

l . 62 0 .  9 1  

l. 64 

2 . 49 

1 . 02 

2 . 33 

0 . 47 

l .  1 1  

l .  3 1  

0 . 50 

0 . 88 

1 . 60 

1 . 74 

1 . 90 

64 . 79 

64 . 79 

98 . 3 1  

96 . 45 

95 . 60 

95 . 86 

96 . 98 

93 . 56 

97 . 54 

97 . 66 

Total 

10 1 . 40 

1 00 . 75 

100 . 53 

1 00 . 1 2  

99 . 70 

100 . 8 1 

10 1 . 04 

99 . 29 

1 00 . 27 

10 1 . 42 
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4871 Baddalaylte 

4883 Baddalaylte 

4879 Baddaleytte 

4878 Badd1l9Vlte 

4657 Baddaleylte 

48n Baddll�tte 

4887 Zircon 

Cl 

100 

Breccla 

150 

Zr02/Hf02 wt ratio 

289 

200 

Fig. 4. The ratios of H/02 and Zr02 wt % of zircons and baddeleyites. Each symbol is /or one 
grain. CI means the Cl chondrite ratio of these elements (ANDERS and GREVESSE, 1989). 

occur within, or in, the peripheral parts of ilmenite (Photo 27). Their grain size 

ranges from I to 20 microns. They also occur in association with pigeonite, chromite 

and silica mineral. We did not find any reaction texture between baddeleyite and 
surrounding phases such as silica mineral. Optical twinning was not observed in 

baddeleyites, because of their small grain size. 

Table 6 gives representative chemical compositions of zircons and baddeleyites 

from this study. They do not contain any detectable REE. The contents of other 

minor elements such as Al 203 , Cr203 , MnO, MgO, CaO and Nb205 are below detec­

tion. Some baddeleyites appear to include small amounts of Ti02 and FeO, but 

they (at least in part) may be the result of overlap with surrounding ilmenites, because 

the baddeleyites are small and the molar ratios of FeO and Ti02 are often equal to 
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that of i lmenite. 

The concentrations of Hf02 were measured i n  zircons and baddeleyites, and 

Fig. 4 shows the weight rat ios of Hf02 and Zr02 • The Zr02/Hf02 ratio i s  evidently 

high in most of these grains, compared with that of CI chondri tes (ANDERS and GREVES­

SE, 1 989), even if we take i nto account the experimental error of Hf02 measurement. 

However, no mineral is known to prefer Hf02 to Zr02 in enclaves. Thus, it i s  not 

yet clear whether Hf02 was depleted during magmatic fractionation, subsolidus 

reaction , or condensation from nebular gas . 

4.9 .  Troilite and Fe-Ni metal 

Troil ite occurs abundantly in brecciated enclaves, whereas it is poor in the i lm­

free and i lm-bearing enclaves . I ts abundance is always much h igher than that of the 

Fe-N i metal in enclaves . 

The abundance of Fe-N i metal is extremely low in the i lm-free and i lm-bearing 

Sample Group 

4657 

4657 

467 1 

467 1 

4677 

4677 

4678 

4679 

4679 

4683 

4683 

4695 

4669 

4669 

4672 

4672 

4674 
----- -- -- -

4659 

4659 

4659 

4659 

4689 

4689 

4689 

4689 

4670 

4670 

4670 

4670 

4687 

4687 

1 -b 

1-b 

1-b 

1-b 

1-b 

1 -b 

1-b 

1-b 

1 -b 

l-b 

1-b 

1-b 

1-f 

l-f 

1-f 

1-f 

1 -f 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

B 

Table 7. Representative compositions of Fe-Ni metals (wt % ). 

Si 

0 . 07 

0 . 06 

0 . 0 1  

0 . 03 

0 . 04 

0 . 02 

0 . 02 

0 . 04 

0 . 04 

0 . 02 

0 . 03 

0 . 02 

0 . 03 

0 . 05 

0 . 02 

0 . 05 

0 . 04 

CT 0 . 03 

CT 0 . 02 

0 . 00 

0 . 00 

CT 0 . 02 

CT 0 . 02 

0 . 0 1 

0 . 02 

CT 0 . 0 1 

CT 0 . 0 1  

0 . 02 

0 . 03 

0 . 00 

0 . 02 

p 

0 . 0 1 

0 . 0 1  

0 . 00 

0 . 0 1 

0 . 00 

0 . 02 

0 . 02 

0 . 00 

0 . 0 1  

0 . 00 

0 . 0 1 

0 . 00 

0 . 00 

0 . 02 

0 . 00 

0 . 0 1  

0 . 0 1 

0 . 00 

0 . 02 

0 . 00 

0 . 0 1 

0 . 00 

0 . 00 

0 . 0 1  

0 . 0 1 

0 . 00 

0 . 0 1  

0 . 00 

0 . 00 

0 . 00 

0 . 00 

s 

0 . 33 

0 . 29 

0 . 00 

0 . 05 

0 . 1 3  

0 . 09 

0 . 1 5  

0 . 00 

0 . 00 

0 . 00 

Cr Fe 

0 . 02 93 . 1 3  

0 . 04 67 . 1 6 

0 . 03 55 . 34 

0 . 07 95 . 1 7 

0 . 0 1 49 . 42 

0 . 0 1 93 . 1 7 

0 . 0 1 95 . 60 

0 . 03 94 . 74 

0 . 00 82 . 06 

0 . 02 47 . 77 

0 . 02 96 . 1 9 

0 . 04 94 . 59 

0 . 06 46 . 53 

0 . 00 94 . 35 

0 . 04 77 . 66 

0 .  1 1  94 . 52 

0 . 00 

0 . 02 

0 . 03 

0 . 0 1  

0 . 00 

0 . 00 

0 . 06 

0 . 00 

0 . 00 

0 . 0 1 

0 . 10 

89 . 24 

42 . 63 

47 . 86 

95 . 10 

47 . 57 

45 . 74 

46 . 96 

95 . 55 

52 . 88 

46 . 50 

48 . 54 

93 . 42 

49 . 05 

94 . 09 

48 . 05 

Co 

0 . 55 

0 . 05 

0 . 00 

0 . 42 

0 . 09 

0 . 60 

0 . 38  

0 . 45 

0 . 28 

0 . 09 

0 . 49 

0 . 46 

0 . 09 

0 .  37 

0 . 2 1  

0 . 34 

0 . 30 

0 . 1 5  

0 . 1 3  

0 . 65 

0 . 1 9  

0 . 05 

0 . 06 

0 . 42 

0 . 1 8  

0 . 1 7  

0 . 03 

0 . 59 

0 . 08 

0 . 35 

0 . 1 8  

Ni  

3 . 46 

3 1 . 0 1 

42 . 95 

3 . 25 

49 . 20 

4 . 96 

3 . 58 

3 . 65 

1 6 .  1 3  

50 . 37 

3 . 69 

4 . 66 

5 1 . 67 

4 . 06 

20 . 74 

3 . 67 

9 . 00 
- --- ----- - - --

42 . 8 1 

45 . 63 

4 . 58 

52 . 71 

4 1 . 36 

43 . 79 

4 .  58 

47 . 50 

35 . 99 

4 1 . 57 

5 . 03 

50 . 02 

4 . 79 

50 . 40 

Group 1-b : ilm-bearing, 1-f: i lm-free, B :  breccia. CT : cloudy taenite. 

Total 

97 . 24 

98 . 32 

98 . 33 

98 . 94 

98 . 75 

98 . 77 

99 . 62 

98 . 9 1  

98 . 52 

98 . 27 

1 00 . 44 

99 . 78 

98 . 38 

98 . 85 

98 . 67 

98 . 70 

98 . 59 

85 . 97 

93 . 98 

1 00 . 34 

1 00 .  53 

87 . 29 

90 . 97 

1 00 .  57 

100 .  59 

82 . 82 

90 . 1 6  

99 . 06 

99 . 1 8 

99 . 24 

98 . 75 
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Photo 28. BSE image of a 
kamacite (dark) and taenite 
(bright) assemblage in ilm­
free enclave 4669. Width of 
35 microns. 

Photo 29. BSE image of cloudy 
taenite (dark) with a tetra­
taenite rim (bright) in olivine-
orthopyroxenitic 
enclave 4670. 

brecciated 
The darker 

part of the cloudy taenite has 
a low total, and appears to be 
severely altered. Width of 
300 microns. 

29 1 

enclaves . Only brecciated enclaves i nclude abundant metal .  Table 7 shows repre­

sentat ive compositions of Fe-N i  metal . The N i  and Co contents have no relation­

sh ip  to the occurrence and type of enclave. The concentrations of P, Cr and Si are 

below detection . Fi ne-gra ined Fe-N i  metal frequently consists of kamacite and 

taen ite in all encl aves (Photo 28). 

Cloudy taenite occurs in a few brecciated encl aves, and this was also reported 

i n  a mesosiderite by AGOSTO et al. ( 1 980) .  It is always rimmed by tetrataenite ( or 

Ni-rich taen ite) (Photo 29), with or without kamacite. In comparison with tetra­

taenite rims, cloudy taen i te is sl ightly N i-poor (45 . 3-40.9 atomic N i  % in enclave 

4670, 45. 1 -50.7 % i n  encl ave 4659, 46. 1 -48 .2% in enclave 4689). The Co contents 

i n  both phases are s imi lar. Cloudy taen ite usually has low totals (67.6-96. 1  wt % ). 

Cloudy taen ite often contains S below 0 .3  wt % . Someti mes chemical zoning i s  

observed from a tetrataen ite rim to  N i-poor cloudy taen ite .  This structure i s  con-
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sistent with the observations of Fe-Ni metal in iron meteorites and mesosiderites as 

noted by REUTER et al. ( 1 988). According to them, such a structure formed during 
slow cooling and cloudy taenite i s  a mixture of Fe1Ni 1 and martensite with a honey­

comb structure. The low total wt % suggests that one of them, perhaps martensite, 

might have suffered terrestrial alteration. The assemblages of cloudy taenite and 

tetrataenite also indicate slow cooling (AGOSTO et al., 1 980). 

5. Bulk Chemistry 

5. 1. Major elements 
Table 8 gives the bulk chemical compositions of the enclaves. Although the 

petrography of enclaves 4673, 4676, 468 1 ,  4684, 4690 and 4692 is not presented in 

this paper, the bulk compositions of all of these ilm-bearing enclaves were determined. 

Enclaves 4630, 4631 , 4632, 4633 from Vaca Muerta, and Z, H and U from Mt. Pad­

bury were already described by IKEDA et al. ( l  990). 

The bulk chemical compositions characterize the types of enclaves. The content 

of Ti02 especially distinguishes the ilm-free and ilm-bearing enclaves (Fig. 5) , and 

is consistent with the presence of Ti02-oxides and the chemical compositions of the 

pyroxenes and chromites. The ilm-free enclaves are more magnesian than the ilm­

bearing enclaves. 

Another intriguing character of the bulk compositional data is the content of 
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llm-bearing o 
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0.8 
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Fig. 5. The atomic Mg/Mg +Fe ratio vs. Ti02 wt % of the bulk compositions of the enclaves. 4659 
is a diogenitic monomict enclave. The Nuevo Laredo (N. L. ) and Stannern (Stan.) trends, 
and the compositional ranges of diogenites and cumulate eucrites are shown in this diagram, 
after IKEDA (/989). The dashed line shows the fractional crystallization trend from the 
eucrite parent body composition (EPB, after DRE/BUS and WANKE, 1980) as calculated 
by IKEDA (/989). 



Table 8. The bulk compositions of silicate and oxide fractions of enclaves Bulk compositions (wt% )  and mg values (atomic Mg/ Mg -+ Fe) of the enclaves. 
4670 and 4677 were calculated from the modal and mineral compositions. The data of 4659 and 4670-Cl are average compositions of ortho-
pyroxenes. 

Enclave Group Si02 ----- -·- "----- ----- ----- ---- -

463 1 1-b 50 . 76 

4632 1-b 50 . 33 

4657 1-b 49 . 87 

4671 1-b 49 . 70 

4673 1-b 50 . 00  

4676 1-b 49 . 92 

4677 1-b 5 1 . 72 

4678 1-b 49 . 38 

4679 1-b 49 . 39 

4681 1-b 49 . 43 

4683 1-b 49 . 23 

4684 1-b 49 . 45 

4690 1-b 47 . 99 

4692 1-b 5 1 . 30 

4695 1-b 5 1 . 04 

u 1-b 5 1 . 80 

z 1-b 5 1 . 54 

4630 1-f 50 . 70 

4633 1-f 49 . 66 

4669 1-f 49 . 90 

4672 1-f 49 . 09 

4674 1-f 50 . 47 

H 1-f 5 1 . 14 

4659 B 53 . 27 

4670 B 47 . 49 

4670-Cl B 53 . 73 

4687 B 49 . 33 
- ---- --

- - -- - - -

Ti02 
- - - - --- - -

0 . 64 

0 . 32 

0 . 39 

0 . 55 

0 . 36 

0 . 52 

0 . 73 

0 . 58 

0 . 67 

0 . 39 

0 . 57 

0 . 38 

0 . 40 

0 . 43 

0 . 52 

0 . 94 

0 . 82 

0 . 1 7  

0 . 06 

0 . 07 

0 . 04 

0 . 05 

0 . 02 

0 . 29 

0 . 14  

0 . 12 

0 . 6 1 

Al203 

1 2 . 55  

12 . 72 

1 1 .  99 

1 3 . 63 

1 2 . 69 

1 1 .  78 

9 . 40 

1 2 . 64 

1 2 . 08 

1 3 . 57 

1 2 . 78 

1 2 . 43 

14 . 42 

1 2 . 93 

12 . 66 

1 3 . 66 

1 1 . 29 

1 3 . 92 

1 3 . 67 

1 3 . 28 

14 . 55 

1 4 . 59 

1 5 . 08 

0 . 58 

0 . 69 

0 . 58 

1 1 . 19 

Cr203 
- - ---- --

0 . 1 5 

0 . 07 

0 . 1 1  

0 . 1 1  

0 . 1 1  

0 . 05 

0 . 96 

0 . 30 

0 . 02 

0 . 10 

0 . 1 1  

0 . 05 

0 . 06 

0 . 22 

0 . 1 1  

0 . 1 1  

0 . 09 

0 . 1 3  

0 . 1 3  

0 . 1 3 

0 . 14 

0 . 14 

0 . 1 1  

0 . 47 

1 . 80 

0 .4 1  

0 . 08 

FeO MgO 

1 6 . 80 0 . 49 

1 7 . 75 0 . 5 1  

1 8 . 52 0 . 63 

1 6 . 73 0 . 63 

1 7 . 01 0 . 46 

1 8 . 60 0 . 44 

1 7 . 34 0 . 74 

1 7 . 70 0 . 52 

1 8 . 3 1 0 . 52 

1 7 . 35 0 . 47 

1 7 . 61 0 . 56 

1 8 . 20 0 . 50 

1 7 . 68 0 . 53 

14 . 85 0 . 45 

1 7 . 6 1 0 . 59 

1 5 . 59 0 . 50 

1 8 . 73 0 . 56 

1 5  . 1 5 0 . 49 

1 5 . 66 0 . 55 

1 5 . 64 0 . 59 

14 . 4 1  0 . 53 

1 3 . 92 0 . 49 

12 . 75 0 . 50 
--- -----�-- --- ------ ,�----�-,,-- , 

1 6 . 87 0 . 57 

1 7 . 98 0 . 60 

1 5  . 47 0 . 55 

1 8 . 87 0 . 52 
- ---- ·-· ··--- - - - ----------- --�-·--- � - -- -- --- -- -

Group 1-b : ilm-bearing, 1-f: ilm-free, B :  breccia. 

------ --_ - -----=-- . - __ --- - - .. ------�--

MgO CaO Na20 P205 Total mg 
- - ---

6 . 62 9 . 95 4 . 45 0 . 1 4  98 . 56 0 . 41 3  

7 . 1 5 9 . 85 0 . 37 0 . 14 99 . 2 1 0 . 41 8  

6 . 60 9 . 89 0 . 41 0 . 1 5  98 . 56 0 . 388 

6 . 56 10 . 08 0 . 1 1  0 . 1 1  98 . 54 0 . 4 1 1  

6 . 89 1 0 . 07 0 . 37 0 . 1 7  98 . 12 0 . 4 19 

6 . 50 9 . 97 0 . 38 0 . 10 98 .25  0 . 384 

8 . 94 9 . 00  0 . 3 1  0 . 14 99 . 29 0 . 479 

6 . 02 1 0 . 30 0 . 46 0 . 22 98 . 1 1 0 . 377 

6 . 06 10 . 30 0 . 45 0 . 49 98 . 29 0 . 37 1  

7 . 73 9 . 89 0 . 39 0 . 2 1 99 . 52 0 . 443 

6 . 53 1 0 . 33 0 . 42 0 . 1 8  98 . 3 1  0 . 398 

6 . 85 10 . 08 0 . 37 0 . 3 1  98 . 63 0 . 402 

6 . 50 10 . 30 0 . 45 0 . 22 98 . 55 0 . 396 

7 . 23 10 . 53 0 . 42 0 . 65 99 .0 1  0 . 465 

6 . 8 1 9 . 98 0 . 43 0 . 1 7  99 . 92 0 . 408 

5 . 33 1 1 . 07 0 . 4 1 0 . 25 99 . 66 0 . 379 

4 . 82 10 . 1 1  0 . 43 0 . 25 98 . 64 0 . 3 14 

6 . 76 1 0 . 48 0 . 42 0 . 39 98 . 61 0 . 443 

8 . 63 9 . 93 0 . 30 0 . 20 98 . 80 0 . 496 

8 . 59 9 . 82 0 . 35 0 . 26 98 . 6 1 0 . 495 

9 . 94 9 . 77 0 . 29 0 . 32 99 . 07 0 . 55 1  

8 . 90 10 . 09 0 . 33 0 . 46 99 . 42 0 . 533 

9 . 73 9 . 54 0 . 20 0 . 1 9 99 . 26 0 . 576 

25 . 3 1 1 . 09 0 . 0 1 98 . 46 0 . 728 

24 . 46 0 . 92 0 . 02 0 . 1 3  99 . 23 0 . 746 

27 . 5 1 0 . 96 0 . 01 99 . 34 0 . 760 

7 . 55 9 . 3 1  0 . 41 0 . 1 8  98 . 03 0 . 4 1 6  

� 
tT1 

Pl 
(1) 

s· 

Pl 

� c:: 
(1) 

� 

(1) 

(1) :::t 
� 
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Fig. 6. The atomic Mg/Mg+Fe ratio vs. P205 wt 'fo ofthe bulk compositions ofthe enclaves. The 
compositions of the eucrites and cumulate eucrites are also plotted (BASALTIC VOLCANISM 

STUD Y PROJECT, 1981). 

P205 (Fig. 6). Non-cumulate eucrites are more enriched in P205 than magnesian 

cumulate eucrites. On the contrary, some magnesian ilm-free enclaves are more 

enriched in P205 than most of the ilm-bearing enclaves, which is consistent with the 

common abundance of phosphate in the ilm-free enclaves. This is not to be expected 

by the crystallization from normal P205-poor magmas. The ilm-bearing enclaves 

are also more enriched in P205 than eucrites. 

5.2. Trace elements 

Table 9 presents the trace element concentrations of the enclaves studied, as 

determined by INAA. Except for the brecciated enclaves, the contents of siderophile 

and chalcophile elements are very low, reflecting the low abundance of Fe-Ni metal 

and troilite. RUBIN and JERDE (1987) noted that the Ir/Ni ratios of the enclaves are 

very low. The Ir concentrations of brecciated enclaves 4659 and 4689 are also low, 

compared with Ni. The Co/Ni, Au/Ni and Ir/Ni weight rations, normalized by the 

abundances in CI chondrites (ANDERS and GREVESSE, 1989) , are 0.161, 0.270 and 

0.125 in enclave 4659, and 0.139, 0.261 and 0.129 in enclave 4689, respectively. Thus, 

Co and Au are also depleted in the enclaves. The depletion of Co reflects the larger 

amount of taenite or tetrataenite than kamacite. On the other hand, the Co/Ni 

and Au/Ni ratios in the ilm-free and ilm-bearing enclaves are nearly consistent with 

those of CI chondrites (ANDERS and GREVESSE, 1989) , respectively. 



Table 9. 

Sc V Co Ni Enclave Group ppm ppm ppm ppm 
4657 1-b 32 . 8  85 48 . 2  1750 

4671 1-b 31 . 1  105 15 . 4  365 

4677 1-b 29 . 9  83 131 3200 

4678 1-b 29 . 1  91 22 .3  1700 

4679 1-b 30. 7  79 45 . 3  1 1 80 

4683 I-b 34 . 4  75 56 . 4  1270 

4695 1-b 31 . 4  79 45 . 6  1040 

4669 1-f 30 . 4  86 27 . 4  685 

4672 1-f 24 . 0  102 42 . 3  1010 

4674 1-f 25 . 6  86 31 . 9  673 

4687 B 28 . 5  79 120 4580 

4659 B 10 . 3  134 1 15 15700 

4689 B 1 8 . 4  179 201 31600 

Group 1-b: Ilm-bearing, 1-f: Ilm-free, B:  breccia. 

Trace element concentrations determined by INAA. 

Se Hf Ir Au La Ce Sm Eu Yb 
ppm ppm ppb ppb ppm ppm ppm ppm ppm 
1 . 431  0 . 621 4 . 9  1 9 . 0  1 . 26 3 . 77 0 . 992 0 . 449 1 . 48 

0 . 64 1 . 1 1 <3 . 5  10 .3  2 . 20 5 . 57 1 . 41 0 . 507 1 .  78 

10 . 81 0 . 79 <5 . 8  3 1 . 1  2 . 87 5.1 5 1 . 66 0 . 61 8  1 . 96 

1 . 82 0 . 531  <4 . 7  17 .3  1 . 16 2 .28 0 . 92 0 . 587 1 . 29 

1 . 461 1 .30 <5 . 3  12 . 3  2 . 45 4 . 92 1 . 40 0 . 494 1 .  76 

1 .  70 0 . 761 <5 .2  18 . 1  0 . 805 2 . 09 1 .08 0 . 367 1 . 64 

2 .07 1 . 19 <5 . 1  12 . 8  2 . 89 4 . 74 1 . 47 0 . 595 1 . 75 

1 . 83 <0 . 13 6 . 4  20. 2  <0 . 136 <0. 56 0 . 026 0 . 275 <0 . 155 

2 . 67 <0. 15 <4 . 1  13 . 5  <0 . 124 <0 . 87 0 . 024 0 . 213 <0 . 133 

2 . 08 <0 . 12 4 . 6  16 . 1 <0 . 133 <0 . 62 0 . 044 0 . 285 <0 . 148 

4 . 65 1 . 001 <5 . 1  27 .3 1 . 88 3 . 53 1 . 24 0 . 543 1 .  77 

13 .31  <0 .26 85 . 6  53 . 9  < 0 . 092 < 1 . 23 0 . 07 <0 . 1 16 <0 . 161 

1 6 . 9  0 . 541 178 105 1 .67 4 . 1 8 1 .07 0 .305 1 . 35 
- ·--�-��---�--�---�-----··-�·-·--

Lu 
pmm 

0 . 224 

0 . 251 

0 . 260 

0 . 23 1  

0 . 270 

0 . 214 

0 . 257 

<0 .028 
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Fig. 7. CI chondrite normalized concentrations of REE in the enclaves. The data of La, Ce, Yb 
and Lu of the ilm-free enclaves are maximum values, respectively. 

Figure 7 shows the CI chondrite normalized concentrations of REE in three 

i lm-free and seven ilm-bearing enclaves. The Eu/Sm ratios of the ilm-free enclaves 

are extremely high, consistent with the data of RUBIN and JERDE (1987, 1988), MIT­

TLEFEHLDT (1990) and IKEDA et al. (1990). The concentration patterns of REE in 

the ilm-bearing enclaves are roughly flat. However, there are three kinds of REE 

patterns for the ilm-bearing enclaves. Enclave 4677 has a flat pattern, and enclaves 

4671, 4679 and 4683 seem to have weak negative Eu  anomalies, whereas enclave 

4678 has a positive Eu anomaly. Enclaves 4657 and 4695 also seem to have a weak 

positive Eu anomaly. 

6. Discussion 

6.1. Subsolidus reduction and thermal history of pyroxenes 

Pigeonite in most of the ilm-free, and some of the ilm-bearing, enclaves is replaced 

by orthopyroxene, although the occurrences and abundances differ between these 

groups. IKEDA et al. (1990) concluded that this orthopyroxene formed by subsolidus 
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reduction from pigeonite, because of the similar CaO contents of both pyroxenes, 
abundant inclusions of troilite and silica mineral in orthopyroxene, and the extension 
of augite lamellae into orthopyroxene from pigeonite. They suggested the following 
reduction equation : 

FeSiOs + H2S � FeS + Si02 + H20, (1) 
Fs Gas Tr Sil Gas 

where Fs, Tr, and Sil are ferrosilite component in pigeonite, troilite and silica mineral, 
respectively. 

Our observations of orthopyroxene and pigeonite in this study support the idea 
of subsolidus reduction replacement. The observation that orthopyroxene surrounds 
pigeonite (Photos 2 and 4) is not consistent with a terrestrial magmatic crystallization 
sequence. Photos 22 and 23 show that the abundant troilite and silica mineral grains 
occur in orthopyroxene, not in pigeonite, and this supports the proposed reduction 
reaction (1) . We found a slight enrichment of CaO in orthopyroxene compared 
with coexisting pigeonite, and this observation is also contrary to the origin of or­
thopyroxene by igneous processes or normal inversion from pigeonite. Alternatively, 
it is probable that orthopyroxene became enriched in CaO through the reduction 
reaction ( I ). As suggested by IKEDA et al. (1990), the extension of thick augite lamellae 
from pigeonite to orthopyroxene is a strong textural support that this reduction 
occurred under subsolidus conditions, and not during the magmatic stage. 

In the ilm-free enclaves, tiny grains of whitlockite occur cutting the thick augite 
lamellae in orthopyroxene (Photo 22). These whitlockites do not occur in pigeonite, 
and frequently coexist with silica mineral and troilite. Such an occurrence of whit­
lockite suggests the following reaction modified from the original equation by AGOSTO 
et al. (1980): 

3CaSiOs + 5FeSiOs + 2P + 5H2S � Cas(P04) 2 + 5FeS + 8Si02 + 5H2 , (2) 
Wo Fs Gas Gas Whi Tr Sil Gas 

where Wo, Fs, Whi, Tr and Sil are wollastonite component, ferrosilite component, 
whitlockite, troilite and silica mineral, respectively. The source of phosphorus is 
not yet clear. The concentrations of REE in these whitlockites are below detection 
limits, which is consistent with the above reaction. HARLOW et al. (1982) also sug­
gested that most of the phosphates in mesosiderites did not form by igneous fractiona­
tion, but by a different reduction reaction between pyroxene and P-bearing metal. 
They criticized the reduction reaction proposed by AGOSTO et al. (1980), because of 
the absence of a close correlation of silica mineral and phosphate abundance. We 
observed that silica mineral is much more abundant than phosphate in reduced or­
thopyroxenes. Although it is difficult to evaluate which silica mineral formed by 
reaction ( 1) or (2), our observations do not disagree with reaction (2). Whitlockites 
are common in the orthopyroxene of the ilm-free enclaves. The i lm-free enclaves 
are more enriched in P 205 than cumulate eucrites and ilm-bearing enclaves, which 
is consistent with the high abundance of these whitlockites. NEHRU et al. (1980a) 
also found that gabbroic clasts are more enriched in tridymite and phosphate than 
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Fig. 8. A schematic diagram showing the thermal history of the enclaves and their pyroxenes. Pig 
and Opx are pigeonite and orthopyroxene, respectively. Note that reduction (1) took 
place in an enclave parent body prior to the formation of mesosiderite parent body, whereas 
reduction (2) after the mesosiderite formation. 

basaltic clasts in mesosiderites. The abundant orthopyroxene and whitlockite of 

reduction origin suggest that the ilm-free enclaves were more reduced than the ilm­

bearing enclaves. 

Now we consider the thermal histories of the pyroxenes and enclaves from the 

observations made in this study (Fig. 8). Gabbroic textures suggest �low cooling, 
whereas ophitic textures indicate rapid cooling from magma. In spite of the variety of 

textures, the constituent minerals are homogeneous in most of the enclaves. Such 

homogeneity of the constituent minerals requires reheating and probably slow cool­

ing, especially for the ilm-bearing enclaves. 

Subsolidus reduction occurred after homogenization of the enclaves, because 
slight zoning is encountered only in pigeonite and orthopyroxene pairs in enclaves. 

Reduction occurred after the exsolution of thick augite in the ilm-free enclaves. 

Pigeonite and orthopyroxene include further thin augite lamellae of (001) and (100) 

directions, respectively. They exsolved after reduction. On the other hand, thick 

lamellae of augite do not occur in the ilm-bearing enclaves. Instead, orthopyroxene 

in them contains augite blebs which seem to be decomposition products from calcic 

pigeonite. It is possible that the original calcic pigeonite was reduced and decomposed 

to form the orthopyroxene and augite blebs. After reduction, thin lamellae of augite 

exsolved from pigeonite. 
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Only the ilm-free enclaves were extensively reduced, which suggests that this 

reduction occurred before the mixing with Fe-Ni metal in the mesosiderite parent 

body. Otherwise, the ilm-bearing enclaves would have been also extensively reduced 

as are the ilm-free enclaves. The reduction of the ilm-free enclaves might have 

occurred in a deeper portion of the enclave parent body (IKEDA et  al., 1990). On 
the other hand, orthopyroxene occurs only in the peripheral parts of several ilm­

bearing enclaves . Accordingly, it is probable that this reduction occurred after the 

mixing with Fe-Ni metal in the mesosiderite parent body. Thus, we can distinguish 

between two stages of subsolidus reduction, i . e., reduction (I) before the mixing 
with metal, and reduction (II) after the mixing with metal, which is probably the well 

known reduction in host mesosiderites . 

AGOSTO et al. (1980) and others have argued that the Si02-enriched bulk com­

positions of mesosiderites can be explained by in si tu reduction. Although ilm-free 

enclave 4674 is enriched in P205 (0.46 wt%), this amount of phosphorus cannot explain 
the enrichment of the silica mineral at all . Enclave 4674 contains only 0.4 wt% 

troilite, and Fe-Ni metal is present only in trace amounts. Therefore, subsolidus 
in situ reduction cannot explain the enrichment of the silica minerals, at least for the 

enclaves. 

Brecciated enclaves always include a large amount of troilite. This is especially 

so for diogenitic brecciated enclave 4659 which has about 10 vol% troilite . However, 

it is unlikely that this troilite formed through a reduction reaction, because the enclave 

does not contain any silica mineral. Alternatively, troilite may have been mechanical­
ly introduced during brecciation. Troilite is abundantly distributed in the interstices 

between fine to coarse orthopyroxene fragments or clasts in enclave 4659. The abun­

dance of troilite is always much higher than that of Fe-Ni metal in the enclaves. This 

is different from the host mesosiderites . The sulfur fugacity might have been much 

higher than that in the mesosiderite parent body. 

6.2. Magmatic crystallization of the enclaves 

Figure 5 shows the atomic Mg/Mg+ Fe ratio (mg value) vs. Ti02 • Diogenitic 

enclave 4659 falls in the region of diogenites. The ilm-free enclaves are very depleted 

in Ti02 and fall below the region of cumulate eucrites. Most of the ilm-bearing 

enclaves fall in the region of the Stannern trend which is regarded as the partial melting 

trend (WARREN and JERDE, 1987), although some of them overlap the Nuevo Laredo 

trend. Enclave Z, from Mt. Padbury, is within the Nuevo Laredo trend which is 

the fractional crystallization trend of the predominant eucrites. One ilm-bearing 

enclave 4692 is evidently out of the region of both trends. This enclave is more 

enriched in MgO and P 205 than are the other ilm-bearing enclaves. Replacement 

textures of orthopyroxene are well-developed in the marginal parts. This enclave 

might have suffered severe secondary reduction. 

Eucrites of the Stannern trend are less abundant than those of the Nuevo Laredo, 

whereas enclaves of the Stannern trend are much more abundant. This is a point of 

difference between the two meteorite groups, although this may be due to a sampling 

problem. 

It is probable that most of the ilm-bearing enclaves formed from a magma of 
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Fig. 9. Anorthite mole % p[agioclase vs. enstatite mole % major pyroxene (orthopyroxene from 
diogenitic and olivine-orthopyroxenitic enclaves ; pigeonites from the others). Trends A, 
B and C are the alkali-poor, alkali-rich and cumulate-eucrite trends of the HED meteorites, 
respectively (IKEDA and TAKEDA, 1985). A diogenitic breccia 4659 does not include any 
plagioclase. 4670 is an olivine-orthopyroxenitic monomict breccia. 

partial melting origin ,  since they fall within the Stannern trend. The occurrence of 

baddeleyite is consistent w ith the partial melting origin ,  because Zr is a highly incom­

patible element. Baddeleyite has not yet been repoted from the HED meteorites. 

Only SAIKI and TAKEDA ( 1 990) reported one grain of a baddeleyite-like phase from 

the polymict eucrite Y-7501 1 .  Zircons occur in enclaves 4687 and Z. Enclave 4687 

is a breccia and zircon occurs with troilite and other phases as fragments. Although 

the bulk mg value of enclave 4687 is higher than that of the ilm-bearing enclaves, 

zircon might have come from a fraction similar to enclave Z. Zircon is only rarely 

encountered in HED meteorites . It occurs only in the Bouvante eucrite (CHRISTOPHE 

MICHEL-LEVY et al., 1980), Malvern howardite (DESNOYERS and JEROME, 1977) and 

unique eucrite Y-791438 (SAIKI and TAKEDA, 1990) . Thus, the Zr02-concentrations 

of the enclave and the eucrite magmas may have been different. 

The anorthite mole % of plagioclase vs. the average enstatite mole % of the 
main pyroxene in each enclave is shown i n  Fig. 9. The i lm-free enclaves follow 

trend C of the cumulate eucrites by IKEDA and TAKEDA ( 1985), although the ilm-free 

enclaves are more enriched in anorthite component. The ilm-bearing enclaves follow 

trend A which is the crystallization trend in the magma ocean of the eucrite parent 

body. If most of the ilm-bearing enclaves formed by partial melting, they should 

follow trend B of the eucrites which is the partial melting trend. Therefore, it is 

probable that the parental magmas of the ilm-bearing enclaves were more depleted 

i n  Na20 than those of the eucrites. The bulk content of Na20 in the ilm-bearing 

enclaves ranges from 0.31 to 0.45 wt% ,  whereas that in the eucrites from 0.45 to 

0.60 wt% (BASALTIC VOLCANISM STUDY PROJECT, 1 98 1) .  

Figure 10 is an oxygen plot of the bulk compositions of the enclaves onto the 
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Fig. 10. An oxygen plot of the enclaves in a ternary diagram of silica, olivine and anorthite, with 
a 0.40 mg value (after LONGHI and PAN, 1988). The liquidus fields of silica mineral (sil), 
olivine (of), low-Ca pyroxene (!pyx) andplagioclase (pl), and the liquidus bondaries between 
them are shown. 4659 is a diogenitic enclave, 4687 a recrystallized brecciated enclave, 
and 4670 an olivine-orthopyroxenitic enclave. 

Si02-olivine-anorthite diagram of LONGHI and PAN (1988). Most of the enclaves 

fall near the eutectic point or the boundary between the pyroxene and plagioclase 

fields, which is consistent with a partial melting origin for these enclaves. One breccia 

( enclave 4687) has an intermediate composition, between the i lm-bearing and diogenitic 

enclaves. This is consistent with its brecciated texture and mineralogy. Two enclaves, 

4677 and Z, fall on the liquidus boundary between the pyroxene and silica mineral 

fields. Enclave 4677 is especially depleted in plagioclase component, and such a deple­

tion cannot be explained by reduction or oxidization during the subsolidus or magmatic 
stage, from a magma of partial melting origin. Alternatively, they probably formed 

through fractional crystallization from another magma, and this is consistent with 

enclave Z being on the Nuevo Laredo trend (Fig. 5). The abundant silica minerals 

in  enclave 4677 show euhedral to subhedral forms against plagioclase, and this is 

consistent with primary crystallization of the silica minerals. We present below a 

model for the origin of such Si02-rich magmas. If a primary ultramafic magma 

was fractionated by the crystallization of olivine, and the liquid then entered the 

pyroxene l iquidus field, it could become magnesian enough to produce a Si02-enriched 

residual magma by the separation of pyroxene. 

Figure 11 shows the mole plot of the enclaves onto a ternary diagram of silica, 

olivine and anorthite. Most of the enclaves fall within or near the region of non­

cumulate eucrites, although some are more enriched in anorthite component than 

eucrites. As noted by IKEDA et al. ( 1 990) , the ilm-free enclaves are much more enrich­

ed in  silica mineral component than cumulate eucrites. It is well known that the 

silicate fractions of mesosiderites are more Si02-enriched than the howardites (PRINZ 

et al., 1980). However, subsolidus reduction with Fe-Ni metal cannot explain both 
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Fig. 11. Mole ratios, of olivine ( 01), anorthite (An) and silica (Si ), of the bulk compositions of the 
enclaves (after STOLP ER, 1977). The compositional ranges of the non-cumulate and cu­
mulate eucrites, and mesosiderites, are shown (after MASON et al., 1979; MITTLEFEHLDT 
et al., 1979). The straight line is the assumed boundary between the olivine and pyroxene 
liquidus fields for a eucritic magma with a 0.40 mg value (IKEDA and TAKEDA, 1985). 
The solid star is the peritectic point (STOLP ER, 1977). 4659 is a diogenitic enclave, 4687 
a recrystallized brecciated enclave, and 4670 an olivine-orthopyroxenitic enclave. 

the Si02-enrichment and the petrography of the enclaves, as noted before. According­

ly, our discovery of highly Si0 2-enriched enclaves is an important key in explaining 

the enrichment of Si02 • We propose that the silicate fractions of mesosiderites are 

mixtures of diogenitic rocks (e. g., enclave 4659) , ilm-free and ilm-bearing, and Si02-

enriched components. Secondary reduction in the mesosiderite parent body resulted 

in further Si0 2-enrichment. 

6.3. REE and the history of enclaves 

The wide variation of REE contents in whitlockites were first reported by IKEDA 

e t  al. (1990), and they suggested that this variation is related to terrestrial alteration. 

The REE contents of whitlockites obtained here also vary widely. This can be ex­

plained either by (a) primary variation during crystallization, or by (b) terrestrial 

alteration. In the case of (a), the depletion of Y 203 , compared with Ce203 and Nd203 , 

may be due to difference in the partitioning of these elements into whitlockite and 

other phases, depending on temperature. For example, pyroxene may prefer Y 203 
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to Ce20a and Nd20s. Alternatively, the primary magma of the enclaves may have 
been depleted in Y 20a for unknown reasons. In the case of (b ), Y 203 could be lost 
easily from whitlockite under terrestrial conditions. 

The extraordinarily high ratios of Eu/Sm in the ilm-free enclaves obtained here 
are consistent with the idea that the ilm-free (gabbroic) enclaves were derived from 
repeatedly partially-melted cumulate gabbros (RUBIN and JERDE, 1 988) . Some ilm­
bearing enclaves show positive and others negative Eu anomalies, and this may be 
the result of plagioclase-enriched or pigeonite-enriched source materials, through 
partial melting. 

6.4. Comparison with HED meteori tes 

We summarize the differences between the HED meteorites and the enclaves, 
based on the observations obtained here, as follows ;  

( I )  The Na20-contents in the ilm-free and ilm-bearing enclaves are depleted 
when compared with those of the eucrites. 

(2) The P205-contents of the enclaves are enriched, when compared with the 
eucrites. Some ilm-free enclaves are especially enriched in P 205 , and this can be 
explained by subsolidus reduction and the secondary formation of whitlockite. 

(3) Pigeonites were probably reduced under subsolidus conditions, especially 
in the ilm-free enclaves. Such reduction has not been observed in the HED meteorites. 

(4) The common occurrence of Zr02-bearing phases characterizes the ilm-bearing 
enclaves. These phases have only rarely been reported in the HED meteorites. 

(5) The bulk compositions of the enclaves are generally more Si0 2-enriched 
than those of the HED meteorites. This is not due to secondary reduction with Fe­
Ni metal in those large enclaves, but mainly due to the presence of moderately to 
highly Si02-enriched materials. Highly Si02-enriched rocks or clasts have not been 
observed in the HED meteorites. 

These characteristic features of the enclaves originated before the mixing with 
Fe-Ni metal in the mesosiderite parent body. They are primary features of the en­
claves which formed in the enclave parent body. Accordingly, it is probable that 
the enclave parent body and its magmas were different from those of the HED me­
teorites . However, we cannot exclude the possibility that both came from a common 
parent body which was very heterogeneous in structure and composition. 

7. Conclusions 

( I ) Thirty-eight enclaves from the Vaca Muerta mesosiderite were studied, 
and fourteen were especially studied by SEM-petrography. These enclaves are clas­
sified into the ilm-free, ilm-bearing and breccia groups. We have discovered an 
olivine-orthopyroxenite and two diogenitic brecciated enclaves. 

(2) Pigeonite in the ilm-free enclaves was frequently replaced by orthopyroxene 
along with troilite, silica mineral and whitlockite, by subsolidus reduction. This 
reduction occurred before the mixing with Fe-Ni metal on the mesosiderite parent 
body. On the other hand, such reduction occurred only sparsely in the ilm-bearing 
enclaves, and it occurred after the Fe-Ni metal was mixed on the mesosiderite parent 
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body. Thus, two stages of subsolidus reduction occurred in the enclaves. 
(3) Various subsolidus reaction textures of chromite, ilmenite, rutile, and prob­

ably pre-existing pseudobrookite, were found. Al203-depleted chromite formed 
through the decomposition of ilmenite and pseudobrookite. 

(4) We found two kinds of Zr02-bearing minerals, zircon and baddeleyite. 
The latter is the first discovery in mesosiderites . The ilm-bearing enclaves always 
include baddeleyite. A depletion of Hf02 , compared with Zr02 , is commonly ob­
served, although the reason for this is not yet clear. 

(5) The bulk compositions of the enclaves were measured, and they are Si02-

enriched, when compared with the HED meteorites . This is especially so for the 
highly Si0 2-enriched ilm-bearing enclaves . They probably formed by fractional 
crystallization, whereas the other ilm-bearing enclaves formed through partial melting. 
The Si02 enrichment of the silicate portion of the mesosiderites can be explained as 
being mainly due to the mixing of enclaves of partial melting origin, highly Si0 2-

enriched enclaves , and diogenitic enclaves rather than in situ reduction being the 
major process. 

(6) All of these differences , between the enclaves and the HED meteorites, 
strongly suggest that the parent bodies of both meteorites were different from one 
another. 
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