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Abstract: The carbon and nitrogen stable isotope geochemistry of two lunar 

meteorites, ALHA-81005 and Y-86032 has been compared with that of an Apollo 

16 regolith breccia, 60016. Although much of the carbon present in all three 

samples is terrestrial organic contamination, the meteorites have higher carbon 

abundances and lighter isotopic compositions than 60016. The non-contaminant 

carbon in ALHA-81005 and Y-86032 occurs as two distinct components, com

busting between 550-700°C and 900-1100°C. Since these components are absent 

from the pristine lunar breccia, they must have been added (i) from the impactor 

which ejected the meteorites from the Moon; (ii) in the Antarctic or (iii) be repre

sentative of a lunar environment not sampled by Apollo missions. At temperatures 

over 1100°c, spallogenic carbon combusts, with elevated o13C, greater than 0%o. 

Nitrogen systematics are less-well resolved than carbon, partly due to the lower 

amounts of nitrogen gas liberated by the meteorites. Nitrogen abundance of 

ALHA-81005 and Y-86032 fall in the range of values from lunar breccias and 

o15N values follow the heavy-light-heavy pattern characteristic of such samples. 

Spallogenic carbon and nitrogen are more abundant in ALHA-81005 than Y-

86032, in keeping with its longer exposure age. Nitrogen data are consistent with 

identification of ALHA-81005 and Y-86032 as lunar highland breccias compacted 

from immature regolithic material. 

1. Introduction 

The first lunar samples were thought to be returned to Earth by the Apollo 11 

mission in 1969. However, with the discovery by the 1981 U. S. Antarctic mete

orite recovery team of Allan Hills (ALH) A-81005, it became apparent that fragments 

of the Moon had reached the Earth many years earlier. Since the recognition of 

ALHA-81005 as a lunar meteorite (MASON, 1982), a further five specimens (Yamato 

(Y)-791197, Y-793274, Y-82192, Y-82193, and Y-86032) have been found in the Yamato 

Mountains by the Japanese Antarctic Research Expeditions (TAKEDA et al., 1988). 

Even more recently, the 1988 U.S. Ansmet team returned two lunar meteorites (one 

weighing approximately 700 g) from the MacAlpine Hills (SCORE et al., 1989). Hence, 

there are now eight known lunar meteorites, totalling approximately 1.5 kg in weight. 

This compares with almost 382 kg returned by the Apollo and Luna missions (which 

sampled only ca. 4.7% of the Moon's surface). 
Of the eight lunar meteorites, five have been studied in detail. Three of the 
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Japanese specimens (Y-82192, Y-82193 and Y-86032) are paired (WARREN et al., 1989); 

the two MacAlpine Hills meteorites are also paired, therefore the eight samples rep

resent, at most, five ejections from the Moon. Excluding the most recent finds from 

MacAlpine Hills, which have not yet been released to the scientific community for 

research, the remaining four individuals seem to be derived, on the basis of several 
geochemical criteria, from at least three separate craters (DENNISON et al., 1987; WAR

REN et al., 1989; EUGSTER and NIEDERMANN, 1988). It follows that the meteorites' 

presence on Earth is the result of several discrete impact events, and not a single im

pact with subsequent break-up during Earth-Moon transit. Indeed, the meteorites 

record differing ages-terrestrial residence time plus Earth-Moon transit time: ALHA-

81005 was ejected from the Moon long after the paired meteorites Y-82192/3/86032 
(WARREN and KALLEMEYN, 1988). 

Lunar meteorites have been compared with Apollo samples; major, minor and 

trace element compositions are most similar to anorthositic highland material 

(VERKOUTEREN et al., 1983; WARREN et al., 1983, 1989). More specifically, ALHA-

8 I005 and Y-82192/3/86032 have been likened to the mature regolith breccias returned 

from the Apollo 16 landing site (WARREN et al., 1983), particularly those collected 

from station 10, half-way between the North and South Ray craters (TAKEDA et al., 

1986). However, there are sufficient differences in chemistry between lunar meteorites 

and Apollo material to infer that the meteorites are not from the same region of the 

Moon (the central nearside) that was sampled by either the Apollo or Luna missions, 

and probably derive from an area quite removed from the central nearside. Indeed, 

it has been suggested by several authors that the meteorites in fact originate from 

either the farside of the Moon or its NE limb (PIETERS et al., 1983; RYDER and OSTERTAG, 

1983; WARREN and KALLEMEYN, 1987). 

Light element (viz. carbon and nitrogen) geochemical analyses of Apollo samples 
have played an important role in furthering the understanding of the Moon's exposure 

history (e.g., PILLINGER, 1979). There is a variety of carbon- and nitrogen-bearing 

components in lunar materials. Soils and mare regolith breccias contain the highest 
concentrations of these elements, an over-abundance mainly due to exposure to the 

solar-wind while on the lunar surface (PILLINGER, 1979). Lunar highland breccias, by 
comparison, are depleted in carbon and nitrogen, but still contain significant quan

tities of the elements. In the case of nitrogen, it may be possible to distinguish con

tributions from ancient and modern solar-wind, due to differences in isotopic com

position (BECKER and CLAYTON, 1975; KERRIDGE, 1980; THIEMENS and CLAYTON, 1980). 

Lunar samples ought also to contain a component derived from impacting meteorites, 

however, any such carbonaceous material has never adequately been resolved from 

background contributions. 

The potential for studying lunar materials has been extended greatly by the dis

covery on Earth of meteorites from the Moon, not least by giving access to fresh sam
pling areas for investigation. The aim of this particular carbon and nitrogen stable 

isotope study is to make a preliminary comparison between two lunar meteorites and 

an appropriate lunar sample, Apollo 16 breccia 60016. The applicability of 60016 is 

based entirely on its major element chemistry, since the similarity of lunar meteorites 
to authentic lunar highland breccias from the Apollo 16 site breaks down once trace 
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elements such as Ni, or Au/Ir ratios are considered (WARREN et al., 1989). 

2. Experimental 

Carbon and nitrogen analyses of two lunar meteorites ALHA-81005 and Y-86032, 
plus carbon analysis of Apollo 16 breccia 60016, were carried out in order to deter

mine the abundance and isotopic composition of the elements in these samples. For 
the two meteorites, C and N measurements were made on separate aliquots derived 

from a 30 mg reservoir of crushed (ca. 50 µm) whole-rock meteorite. The 60016 
material was a specimen allocated to the European Lunar Consortium in 1974. For 

all experiments, sample sizes were between 2 and 3.5 mg. 

The samples were combusted in steps (generally increments of ca. 50°C) from 

room temperature to 1200°C; a full procedural protocol has been published elsewhere 

(BOYD et al., 1988; AsH et al., 1990). Carbon was analyzed as carbon dioxide 

gas; yields were measured on a capacitance manometer to ±0.2 ng. Isotopic 

composition was determined on a static, noble gas-type mass spectrometer to ± 1 %0 

for quantities of gas containing greater than IO ng of carbon (CARR et al., 1986). Nitro

gen isotopes were measured, using nitrogen gas, to ±0.5%0 (WRIGHT et al., 1988a); 

quantitative information was acquired by previous calibration of the mass spectrometer 

ion-beam current (±0.5 ng). Isotopic compositions are quoted relative to the PDB 

standard for carbon and AIR for nitrogen. 

3. Results 

3.1. Carbon 

Figure I shows the stepped combustion profiles of the two lunar meteorites and 

Apollo 16 breccia 60016; data are summarized in Table 1. It has long been recognized 
that lunar and meteorite samples are prone to terrestrial organic contamination, even 

when great care is taken with their handling, although Antarctic meteorites are "cleaner" 
than most other meteoritic samples (SWART et al., 1983). Contamination by terres

trial debris is most significant in samples with a low indigenous carbon content, a 

category into which lunar materials fall. However, organic contaminants combust 

at low temperatures, and may generally be characterized during stepped combustion 

analyses by a release of carbon below 450°C, with o13C between -30%0 and -20%0 

(DESMARAIS, 1978; SWART et al., 1983). Therefore, in the following discussions, it 

will be assumed (given the lack of evidence for indigenous lunar organic compounds) 

that the carbon released below 450°C during stepped combustion is due to terrestrial 

organic contamination. In the Apollo 16 material, a strong case can be made for 

the terrestrial contamination continuing to burn up to 500°C. This temperature in

crement is therefore used as the cut-off between combustion of contaminant and in

digenous carbon in 600 I 6. The contaminant carbon in 600 I 6 is only I 04 ppm, even 
though the material has been stored for 15 years. The difference between 104 ppm 

and the 576 and 292 ppm liberated from ALHA-81005 and Y-86032 respectively rep

resents the contamination acquired in the Antarctic environment and/or accumulated 
by storage elsewhere. 
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Fig. J. Carbon released on stepped combustion in increments from room temperature to 1200°C 
is shown as a histogram for (a) ALHA-81005, (b) Y-86032 and (c) Apollo 60016. Errors 
(±la) in o13 C (-e-) are less than the size of the symbol, unless shown otherwise. 

Table 1. Summary of carbon and nitrogen data from stepped combustion of lunar meteorites 
ALHA-81005, Y-86032 and Apollo regolith breccia 60016. 

Sample [CJ a
13

CPnn wt [NJ iJ
15NAIR wt 

(ppm) (%0) (mg) (ppm) (%0) (mg) 

ALHA-81005 (Total) 1055 -23.9 2.667 53 +29.1 3.557 
(T>450°C) 479 -21.9 43 +32.9 

Y-86032 (Total) 612 -26.7 1.929 31 + 7.7 2.351 
(T>450°C) 320 -25.2 10 +10.6 

Apollo 60016 (Total) 127 -18.1 2.348 
(T>500°C) 23 + 9.9 
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Ignoring the contribution from terrestrial contamination, the carbon contents of 

ALHA-81005 and Y-86032 are 429 and 320 ppm; respectively, much greater than 

values measured for any breccia (12-198 ppm), or soil (23-180 ppm) returned by the 

Apollo program (KAPLAN et al., 1970, 1976; KERRIDGE et al., 1975, 1978; MOORE et 
al., 1973, 1974; PETROWSKI et al., 1974; summarized in PILLINGER, 1979). The sample 

of 60016, considered as a good analogy to ALHA-81005 and Y-86032, and analyzed 

herein, has only 23 ppm indigenous carbon, and falls at the low end of the regolith 

breccia spectrum, highlighting the difference between the meteorites and authentic lunar 

materials. Summed o13C values (-21.9%0 for ALHA-81005; -25.2%0 for Y-86032) 

are within the range exhibited by lunar breccias (-30.1%0 to +9.2%o; KAPLAN et al., 

1970; PETROWSKI et al., 1974), although most lunar breccias, including the more mature 

regolith samples, fall towards the heavy end of this range-it is believed (KERRIDGE 

et al., 1978) that most of the spread in o 13C derives from incomplete removal of ter

restrial organic contamination, and that the positive numbers represent the true values 

for o13C of lunar samples. Indeed, the results for 60016 bear this out: 0 13C above 

500°C is +9.9%o, whereas the total o 13C (incJuding contamination) is isotopically much 

lighter, at -18.1%0. 

Examination of the stepped combustion profiles in Fig. 1 a, b shows that the two 

lunar meteorites are remarkably similar in their carbon combustion patterns. Both 

have three clear peaks of carbon release, signifying three discrete carbonaceous com

ponents, whose characteristics are summarized in Table 2. The first component, which 

combusts below 450°C, has already been ascribed to terrestrial organic contamination. 

It accounts for approximately 50% of the total carbon abundance in each meteorite, 

and has 018C between -25%0 and -28%0, an isotopic signature typical of terrestrial 

organics (SWART et al., 1983). There is approximately twice as much contamination 

in ALHA-81005 than Y-86032, a factor which might be related to its greater storage 

age. At intermediate temperatures (550-750°C), approximately similar amounts of 

carbon combust (115 ppm in ALHA-81005 vs. 95 ppm in Y-86032), component A; the 

measured o13C is slightly heavier than that of the terrestrial contaminant, at -23.4%0 

in ALHA-81005 and -22.2%0 in Y-86032. The third component (component B) 

indicated in the yield histogram combusts between 900 and l l 00°C. It accounts for 

226 ppm and 146 ppm carbon respectively, thus is 50% more abundant in ALHA-

81005, and has o13C between -26.1%0 (ALHA-81005) and -28.2%0 (Y-86032). A 

fourth component, whilst not apparent in the yield pattern, is indicated by a rise in 

Table 2. Abundance and isotopic composition of individual carbon-bearing components in 
ALHA-81005 and Y-86032. 

Combustion ALHA-81005 Y-86032 

Component temperature % of [C] oiac % of [C] o1ac 
(

°

C) total C (ppm) (%0) total C (ppm) (%0) 

Organic <450 55 576 -25.5 48 292 -28.4 
contamination 

A 550-750 11 115 -23.4 16 95 -22.2 
B 900-1100 21 226 -26.1 24 146 -28.2 

Spallogenic >1150 >0 >0 
carbon 
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Table 3. Abundance and isotopic composition of individual components in Apollo 60016. 

Component 

Organic contamination 
Solar-wind/Elemental ? 
C in iron metal ? 
Spallogenic carbon 

Combustion 
temperature(0C) 

< 5 00 
55 0-900 

900-1 075 
>1 1 5 0  

% of total C 

81 

10 
3 

[C] (ppm) <313C (%0) 

1 03 -24. 0 
1 3  +23 . 8  
4 - 1 6.6 

>0 

0 13C at high temperature . This is most obvious in  ALHA-8 1005, for which 0 13C ap

proaches +20%o at 1 200°C, and presumably is evidence for the presence of trace 

amounts of spallogenic carbon, so highly enriched in 13C that even in low quantities 

it exerts a significant influence on i sotopic composition . The spallogenic component 

is much more abundant in ALHA-81005 than Y-86032, in keeping with the longer ex

posure age of ALHA-8 1005 compared to Y-86032 (580 Ma vs. < 1 1  Ma respectively, 

EUGSTER et al. , 1 986 ; EUGSTER and NIEDERMANN, 1 988) .  

Whilst the carbon isotopic and abundance patterns for ALHA-8 1005 and Y-86032 

match each other so well, they are very different from the data for the lunar regolith 

breccia 600 16  (Fig. le), selected for analysis due to its apparent similarity to the lunar 

meteorites (TAKEDA et al., 1 986). Two of the four components present in the yield 

histograms of ALHA-8 1005 and Y-86032 are not seen in that of 600 16  (Table 3) . 

Rather, the histogram is dominated by a single component, terrestrial contamination, 

which has 0 18C ca. -24.0%0, and accounts for some 8 1  % of all the carbon present. 

Above 550°C, carbon combusts i n  decreasing quantities to 900°C, where there is a 

second peak in the histogram. Between 550 and 900°C, 1 3  ppm of carbon combusts, 

ca. 1 0% of the total ; 013C is high, reaching + 30.3%0 between 700 and 800°C, but sum

ming to +23.4%0. Between 900 and I075°C, a further 4 ppm carbon combust, 3% 

of the total, with o13C decreasing to  - 16.6%0 . Above this temperature, 0 1 3C starts to 

rise again, presumably as spallogenic carbon combusts. 

3.2. Nitrogen 

Figure 2 shows the nitrogen stepped combustion profiles of (a) ALHA-81005 

and (b) Y-86032 ; data are summarized in Table I .  As for carbon, the nitrogen released 

below 450°C is ascribed to terrestrial organic contamination. For both the samples, 

the abundance of nitrogen released above 450°C (43 ppm in ALHA-8 1005 and 1 0  ppm 

in Y-86032) and isotopic composition ( +32.9%0 and + 10.6%0 respectively) fall in the 

ranges reported for lunar breccias (4-70 ppm; 015N ca. -65 to + 74%0 ; BECKER and 

CLAYTON, 1 975 ; KAPLAN et al., 1 976 ; FOURCADE and CLAYTON, 1 984) . The very low 

nitrogen abundance in Y-86032 is as expected on the basis of noble gas data from its 

partners Y-821 92/82 1 93, which suggests a negligible solar-wind exposure (BISCHOFF 

et al., 1 987). Ignoring nitrogen released below 450°C, the stepped combustion data 

for nitrogen may be interpreted generally as if ALHA-8 1005 and Y-86032 were typical 

lunar breccias, always bearing in mind that the amounts of nitrogen released were low, 

and thus step sizes were necessarily large . Fluctuations in 015N point to there being 

several different components present, with the classic heavy-light-heavy pattern of lunar 

breccias seen (e.g., THIEMENS and CLAYTON, 1 980 ; CARR, L. P. et al., 1 985), particularly 

in ALHA-8 1005. In this context, the isotopically light component is bel ieved to rep-
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Fig. 2. Nitrogen released on stepped combustion in increments from room temperature to 1200°C 
is shown as a histogram for (a) ALHA-81005 and (b) Y- 86032. Errors (± la) in o15N 
(-e-) are less than the size of the symbol, unless shown otherwise. 
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resent nitrogen from ancient solar-wind, added to the sample during exposure on the 

lunar surface before lithification. The more 15N-enriched material combusting at 

lower temperatures may be a more recent sample of solar-wind nitrogen (and hence 

more loosely-bound, due to a nearer grain-surface location). Spallogenic nitrogen, 

as evidenced by increasing o15N at high temperatures occurs, and, like spallogenic 

carbon, is more abundant in ALHA-8 1005 than Y-86032. 

4. Discussion 

The carbon chemistry of lunar materials is fairly well-understood : most carbo

naceous components are not indigenous to the Moon, but have been added over time, 

from the solar-wind and possibly from meteoritic debris. The abundance of carbon 

in lunar materials is therefore related to their exposure on the lunar surface. Soils 

contain the highest quantities of extra-lunar carbon, whilst igneous rocks excavated 

from depth below the surface give the best estimate of indigenous ' "lunar" carbon. 

Regolith breccias may be considered as fossil soils which became closed to exogenous 
influences after compaction. Contributions of carbon from meteoritic sources to soils 
and breccias is poorly defined-much of the meteoritic carbon must have been lost 
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during impact ; how much is retained, if any, and what form it takes is not clear. 

The data obtained here for Apollo 60016 indicate that this rock is a fairly typical 

lunar breccia, in terms of its carbon chemistry. Almost all of its indigenous carbon is 

released between 550-900°C with 0 13C ca. + 23.8%0. This is consistent with compac

tion from an immature regolith having surficially implanted carbon atoms, inherently 

enriched in 1 3C, or preferentially sputter-fractionated to increase the relative abundance 

of the heavier isotope. Little carbon from the parent soil has been incorporated in 

exposure-produced iron metal. In contrast, carbon analyses of the two lunar mete

orites are completely different from 60016, and show none of the characteristics typical 

of lunar breccias. 

High resolution stepped combustion analyses were not a regular feature of lunar 

studies carried out during the l 970's, therefore it was necessary to conduct the com

parable experiment as part of the current investigation. As has already been stated, 

there is no resemblance between 60016 and the lunar meteorites for carbon, except on 

minor details : all the samples exhibit substantial contamination, as would be expected, 

and they also contain spallogenically produced 13C from cosmic-ray exposure. A 

feature which might have been apparent in lunar meteorites, i.e. a small quantity of 
1 3C-enriched carbon burning over the temperature regime appropriate for surficially 

implanted carbon atoms, is either not present in the meteorites, or has been obscured 

by the co-occurrence of copious amounts of carbon from other sources. Both the 

meteorites contain two components of carbon, noncommittally called A and B, which 

contribute to total carbon contents far in excess of anything observed previously for 

lunar samples. Component A is found in approximately similar amounts in the two 

meteorites (ca. 100 ppm), but component B is about a factor of 50% more abundant 

in ALHA-81005 than Y-86032 (226 ppm vs. 146 ppm). 

One may speculate on the nature and source of these two components. Given the 

low exposure history of the material compacted into ALHA-81005 and Y-86032, as 

indicated by their nitrogen contents, it would seem reasonable to assume that neither 

component A nor B was solar-wind related. Inevitably, since ALHA-81005 and Y-

86032 have spent long periods on Earth, even though for the most part this sojourn 

took place trapped in the Antarctic ice, consideration must be given to the idea that 

A and B are terrestrial contaminants. Component A has a combustion temperature 

(550-700°C) appropriate for either elemental carbon or the decomposition of carbonate. 

Carbonates are common weathering products in Antarctic meteorites, but their 0 1 3C is 

much higher, at 0±5%0 (GRADY et al. , 1989). The occurrence of carbonates in lunar 

materials has been proposed, but they are believed to be secondary alteration products 

(GIBSON and MOORE, 1975), and do not occur at the 100 ppm level. Whilst the presence 

of carbonates in lunar meteorites cannot be discounted, it should be pointed out that 

carbonates in other meteorites are 13C-enriched-up to +80%o in CI and CM chondrites 
(GRADY et al., 1988). Martian carbonates, as determined by analyses of Nakhla and 

EETA-79001, reach +15%o (CARR, R.H. et a!., 1985 ; WRIGHT et al., 1988b). The carbon 

isotopic composition of component A is lighter than that of carbonates in Nakhla and 

EETA-79001, suggesting that if both component A and the carbonate in SNC's were 

terrestrial weathering products, the processes involved in their formation must utilize 

different carbon sources. Nevertheless, if component A were an indigenous carbonate, 
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its 0 13C of -23 to -22%0 is highly unusual for a meteorite. 

Identification of component B as a contaminant must be reconciled with its very 
high temperature of combustion (900-1100°C). The extraneous carbon would need 
to be in a form more stable than diamond, e.g. a carbide, and whilst this is not impos

sible, possibly coming from a cutting tool, it would necessitate very unfortunate co

incidental circumstances, since the two meteorites were collected five years apart, from 

different regions of Antarctica, and subsequently processed and stored at opposite 

sides of the globe, by teams of different nationality. Component B has the appro

priate combustion temperature for carbon in solid solution in iron metal produced by 

preferential sputtering of lunar regolith materials (GARDINER et al., 1977). However, 

given the known 36Ar abundance of ALHA-81005 (BOGARD and JOHNSON, 1983), and 

using the relationship between 36 Ar and hydrolyzable carbon reported by PILLINGER 

et al. (1974), it may be calculated that no more than 3 ppm of carbon could be in this 

form. Likewise, Is/FeO data from MORRIS (1983) for ALHA-81005 suggests a carbon 

in  iron content of less than 1 ppm (PILLINGER et al., 1978). Whilst there is a discrepancy 

in the two estimates, both are at least a factor of fifty times too small to explain the 

abundance of component B. The noble gas content of Y-86032, based on measure
ments made for Y-82192 (BISCHOFF et al., 1987; EUGSTER and NIEDERMANN, 1988) 

would imply several orders of magnitude less carbon in iron in Y-86032. 

It is also difficult to appeal to influx of meteoritic debris to account for the over

abundance of carbon : trace element data indicate that ALHA-81005 has a Cl l chon
dritic component of up to 1.4 wt% (VERKOUTEREN et al., 1983), whilst Y-82192 (paired 

with Y-86032) has 2.4 wt% (DENNISON et al., 1987). The yield and isotopic profiles 

of the two meteorites are unlike those of any carbonaceous chondrite-or indeed of 

any type of meteorite at all. The o 13C values are much closer to type 3 ordinary or 

CV/CO carbonaceous chondrites than Ci l ,  however, if all the carbon were from mete

orites of these classes, then approximately 56% (for ALHA-81005) and 96% (for Y-

86032) of the lunar meteorites would be from type 3 chondrites, assuming no carbon 

was lost during impact. Noble gas and trace element studies have not reported similar 

gross enrichments, which would be almost impossible to achieve in any physically re

alistic situation. One is left to conclude that the carbon chemistry of lunar meteorites 
is unlike that of comparable lunar breccias, and presumably reflects admixture of an 

unusually large chondritic component into the lunar surface at the time and site of 

impact. In other words, the lunar meteorites are carrying with them the carbon iso

topic signature of the impactor which launched them Earthwards. 

Nitrogen abundance and isotopic data acquired for ALHA-81005 and Y-86032 in 
a stepped fashion at temperatures above 500°C are typical of that which might be ex

pected for lunar highland breccias compacted from a regolith of low to very low ex
posure history or maturity. Such a conclusion may be reached without direct com

parison with a genuine lunar breccia such as 60016, since ample data already exist in 
the literature. For example, the release and isotope profiles for both lunar meteorites 

resemble data measured for Apollo 16 soils (BECKER et al., 1976). 

The two meteorites do not exhibit the extreme 01 5N variations shown in lunar 
breccias, which have been considered as due to a change in 015N of the solar-wind with 

time. Analyses of many lunar breccias reveal that the proposed ancient solar-wind 
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nitrogen is isotopically light, with o 15N down to -200%0 (e.g., CLAYTON and THIEMENS, 

1980). Although 015N decreases across the temperature range 700-I000°C in the lunar 
meteorites, it never drops below 0%o, implying that the ancient solar-wind component 

is absent or, at best, present in reduced quantities in the meteorites. The dearth of 

ancient solar-wind nitrogen isotopic signature might be explained by invoking an 
alternative picture of lunar nitrogen. GEISS and BocHSLER (1982) proposed that there 

were two components in lunar nitrogen : a solar system component, with o 15N>0%o 

(HLN) and a 1 4N-enriched component, derived not from the ancient solar-wind, but 
an indigenous component of light lunar nitrogen (LLN), related to an even more 15N

depleted planetary nitrogen component (LPN). The nitrogen budgets of ALHA-

81005 and Y-86032 might therefore simply be mixtures of two components : modern 

solar-wind nitrogen and LLN, in which solar-wind nitrogen is present in greater abun

dance than the indigenous lunar nitrogen. Even after allowing for spallogenic contri

butions, 015N of Y-86032 is lower than that of ALHA-81005, and nitrogen concentra

tion is also reduced. This is presumably a reflection of the higher abundance of 

recent solar-wind nitrogen compared to LLN in ALHA-81005 than in Y-86032, which 

is again in keeping with the longer, more recent exposure of ALHA-81005 on the lunar 

surface. 

5. Conclusion 

The two lunar meteorites ALHA-81005 and Y-86032 contain significantly higher 

quantities of carbon than comparable lunar regolith breccias. Carbon isotopic com

position is also different. Carbon occurs as four components, two of which can be 

identified as terrestrial organic contamination and spallogenic carbon. The identifi
cation of the remaining two components is problematic : they might be elemental carbon 

or carbonate (component A) and carbon in iron metal or carbide (component B). One 

possible explanation for the distribution and 0 1 3C of carbon in lunar meteorites is that 

they have retained the carbon signature of the impactor which excavated them from 
the Moon and propelled them Earthwards. 

Nitrogen systematics, in contrast, are dominated by exposure-related components : 
spallogenic and solar-wind nitrogen. In keeping with its much longer exposure age, 
ALHA-81005 has higher spallogenic and solar-wind nitrogen contents than Y-86032. 

Comparison of nitrogen in lunar meteorites with lunar soils and regolith breccias indi

cates that, if nitrogen in lunar samples can be regarded as a two-component mixture 
of LLN and HLN, the LLN component is absent from, or occurs in reduced quantities 

in the lunar meteorites. Nitrogen data are consistent with identification of ALHA-

81005 and Y-86032 as immature breccias compacted from low maturity regolithic 

material. 

There are sufficient differences in cabon and nitrogen stable isotope geochemistry 

between lunar meteorites and returned lunar materials to warrant the conclusion that 

the lunar meteorites might be sampling a region of the lunar surface which is not other
wise represented in the Earth's lunar collections. 
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