
Proc. NI PR Symp. Upper Atmos. Phys., 9, 1-11, 1991 

MHD VORTICES IN THE MAGNETOSPHERIC LOW 

LATITUDE BOUNDARY LA YER 

Huigen Y ANG1 , Zhengyu ZHA02 and Shen WANG2 

1 Polar Research Institute of China, Shanghai 200129, China 
2 Department of Space Physics, Wuhan University, Wuhan 430072, China 

Abstract: A set of equations for MHD vortices is derived, in which the 

resistivity, the viscosity, the velocity and magnetic field shears, and the density 

inhomogeneity in the magnetospheric boundary layer are included self­

consistently. When only the density inhomogeneity and magnetic shear are taken 

into account, this set of equations is reduced to an equation similar to the famous 

Hasegawa-Mirna equation. In this case, a dipole vortex solution is obtained, 

with its parameters determined by the magnetospheric boundary layer conditions. 

This shows that a stable irregularity with two density perturbations w > 0 and w < 
0 distributed closely may exist in the boundary layer. It is called a dipole vortex 

irregularity here, some characteristics of it are analytically determined. 

1. Introduction 

In the study of magnetospheric boundary layer, there are mainly two kind of models: 

the closed magnetosphere model and the magnetic reconnection model ( or the open 

magnetosphere model). In both of them, however, in contrast to the case of MHD waves, 

the importance of MHD vortices has not been adequately evaluated. To maintain the 

convection in a closed magnetosphere model, the necessary driven power is evaluated to be 

about I013 cm2 /s. Before the introduction of Kelvin-Helmholtz instability (Pu and 

KIVELSON, 1983; MIURA, 1984), which may cause vortex structure in the boundary layer; and 

for which, the anomalous viscosity obtained through numerical simulation is of the same 

order of magnitude, many researchers have tried anomalous diffusions or anomalous 

viscosity caused by wave-particle interactions or by many kinds of instabilities. However, 

neither the anomalous viscosity induced by the wave-particle interaction, nor the anoma­

lous diffusion caused by low hybrid instability induced by density gradient perpendicular 

to the magnetic field, or caused by kinetic Alfven waves (HASEGAWA and MIMA, 1978) 

could appropriately account for it. On the other hand, fluid vortices induced by 

Kelvin-Helmholtz instability also play an important role in magnetic reconnection. The 

vortex induced magnetic reconnection mechanism proposed by LIU and Hu ( 1988) has 

given a very good explanation for some characteristics of FTEs. 

In study of vortices, because the equations are nonlinear, they usually cannot be 

analytically solved, and so far, research has been mainly carried out by numerical simula­

tion. However, because of the obvious appeal of the analytical solution, efforts to find 

special solutions have continued. In the present paper, first, the MHD equations, which 

are used to describe the motions in the magnetospheric boundary layer, are reduced to a 
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set of scalar equations appropriate for describing vortices. These equations include 
self-consistently the resistivity, viscosity, the velocity and magnetic field shears, and the 
density inhomogeneity in the magnetospheric boundary layer, and can be taken as starting 
equations in general. Then in an example, in which only the density gradient and 
magnetic shear are taken into account, this set of equations is reduced to an equation 
similar to the famous Hasegawa-Mirna equation. Lastly, a dipole vortex solution is 
obtained with its parameters determined here by the boundary layer conditions. Some 
features of density perturbations are analytically derived. 

2. The Derivation of MHD Vortex Equations 

The plasma in magnetospheric boundary layer can be described by MHD equations: 
av 1 1 1 2 -+ v · VV=--Vp+--7x B+))V v, 
at p C p 

a: +V · (p V)=O, 

aJJ 
at 

CVxE, 

VxB=4�7, 

E + � v x B = 7J 7, 

V · B�O ' 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

where Gauss units are used, and £, B, V, 7, p and 7J have the meanings in common 
use. Suppose that the plasma is an incompressible fluid: 

(7) 
and that its state equation is, 

p=p(p). (8) 

Divide each physical quantity into two parts, that is, the background component and the 
perturbation component: 

B=B0+B' 
V= 1\+ V', 
E=E0+E', 
p = po+p'. 

Suppose that the background components have the following forms: 
B0 =B0(x)y, 
Vo

= Va(x)z, 
po =po(X), 

Eo
= O, 

(9) 

( 10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

and that perturbation components vary in two dimensions. Therefore, the stream func­
tion, l]f, and magnetic potential, A, may as well be introduced as, 

V'= yXVlJf, (17) 
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B'=\1 A xy. (18) 

From eq. (3), it is easy to obtain: 

£'= - � �� y-\lcp, (19) 

where cp is the static electric potential with arbitrary value. Define: 

[ 
a b] 

_ aa ob _ aa ob ( 20) 
' - ax az az ax ' 

1Jm= r;c2 / 47f, (21) 
1i = % + [f, l/f], (22) 

and take: 

p'/po= W. 
After some algebraic calculations and taking the following approximations: 

1 op' "' 1 op' _ aw 
-B0(X�"'-B0(X�- B0--

'.'I
, 

p dZ Po uZ uZ 
ln(p/p0 )=ln(l + W)� W. 

The above MHD equations can be rewritten in following forms: 

(23) 

(24) 

(25) 

dA oA _ 
2 

dt+ Vo az -VmV A, (26) 

aw aw a aw 
J{+ Vo8z-+ OX lnpo(X7,=0, (27) 

d 
2 111" v; a 2 m a w a2 Vo 

dtv 'L' + 0-az V 'L' - az- ax2 

= 4�
P 
{v2A([A, W]-2�1 Jx1np0(x))+B0 ��

0 a: +[A, v2A]} 

+ n4 11r _ 03 Vo 
1/ V 'L' 

0X3 ' (28) 

3 

Suppose that the characteristic values of the magnetospheric layer thickness, magnetic 
field, and characteristic density are �' B00

, and p00 . Then V00 = B50 / 47f Poo, and lo=�/ V00 
are characteristic Alfven speed and the characteristic transit time of Alfven waves across the 
boundary layer. Taking fo, �. B00, p00 , Voo, Voo� and B00� respectively as the units of 
time, space, magnetic field, density, velocity, stream function, and magnetic potential, eqs. 
(26), (27), and (28) are normalized: 

(29a) 

(29b) 
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�v2 w + v __Q___(v2 lf!)- a lf! _ a2 Vo dt O oz az ax2 
=-1 {v2 A ([A W]- 2 iJA __l_lnp (x)) + B oBo iJW_+ [A v'2 AJ} (29c) Po ' oz ox O O i)x oz ' 

*("4 l/f o3 Vo) + lJ V - 0X3 ' 

where JJ* = JJlo/�2 and JJ; = lJm lo/�2 are normalized viscosity and resistivity. Apparently 
eqs. (29a-c) include not only the terms of viscosity, velocity shear, and density gradient as 
in a usual fluid, but also the terms of resistivity and magnetic field shear, which always exist 
in the magnetospheric boundary layer. So they are appropriate equations for the study of 
MHD vortices in the magnetospheric low latitude boundary layer. 

3. The Vortex Solutions in the Boundary Layer 

Equations (29a-c), include the terms of kinetic viscosity, velocity shear, density 
inhomogeneity, magnetic viscosity and magnetic field shear simultaneously. Here as an 
example, taking only the density inhomogeneity and magnetic shear into account, that is, 

Vo=Constant, p0 = p0(x), B0 = B0(x), (30) 
and also assuming JJ* =0 for simplicity, eqs. (29a-c) can be reduced to: 

dA T/ aA _ *"2A (31 ) df + r O OZ - lJ m V ' a 

dW aw a aw dt+ Voax+ ax lnpo(X�=O, (31b) 
� v2 lf! + v __Q___ v2 lf! dt O az 
=-1 {vA2([A W]-2 iJA __l_lnp (x))+[A VA2]+B oBo iJW} Po ' oz ox O 

' 
0 i)x oz . 

(3 lc) 

This is a drift wave equation when the density gradient and magnetic shear in the 
magnetospheric boundary layer are taken into account. 

When the disturbance is supposed to be electrostatic, that is, A=O, then eqs. (3la-c) 
may be further reduced to: 

dW aw a aw df+ Voaz
+ i)X Jnpo(X>-az-=0, 

�v'2 l/f + V__Q___v'2 W = Bo oBo iJ W 
dt O oz p0 i)x oz . 

In the above equations, fr = °£ + [f, l/f], if we re-define it as, 

then it can be rewritten as, 

df af aJ dt=
at

+ [J, lf!] + Vo oz' 

dW a alf! dt+ ox lnpo(X)
az

= O, 

(32a) 
(32b) 

(33) 

(34a) 
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(34b) 

Here, there is no special limitation put on the relation between W and l/f, so we may as 
well take (Wu et al., 1 99 I), 

And for simplicity, let 
w = l/f. 

_!!o(x) }Bo =__l_lnb(x). 
Po(X) ax ax 

Subtracting eq. (34a) from eqs. (34b ), (34b )-(34a), easily leads to: 

{/v72 l/f- l/f)- a� ln[p0(x)b(x)] al: =0. 

Because 

(35a) 

(35b) 

(36) 

d a a 
dfln[po(X)b(x)] =-J{ln[po(X)b(x)] + [ln[po(X)b(x)], l/f] + Vo

az
ln[po(X)b(x)] 

a aw = 
ax 

ln[po(x)b(x)]
a:z

, 

eq. ( 36) can be written as: 

1/'v2 l/f-l/f-ln[po(X)b(x)])=O. 

When the magnetic shear is ommitted, that is, b(x)= I, eq. (37) becomes: 

Ji ('7
2 l/f -l/f -1np0(x))=0. 

This is the famous Hasegawa-Mirna equation (T ANruTr and HASEGAWA, 1982). 

(37) 

Therefore, eq. (37) is a generalized Hasegawa-Mirna equation. Instead of the density 
gradient term, eq. (37) includes both the density gradient and the magnetic shear contribu­
tions in its third term. In the derivation of eq. (37), assumption eq. (35a) has been used, so 
the second term here in fact comes from W, that is, from the density disturbance, different 
from that in the original Hasegawa-Mirna equation, where it comes from the electron 
inertia. It should be pointed out here, however, the introduction of eq. (35a) limited our 
study thereafter to cases in which l/f and W are on the same order. 

To concentrate on vortices, it is necessary to remove the wave term. This can be done 
as usual by making the following coordinate transformations: 

X=X, �=Z- Uot, (38) 

where Uo is the traveling wave speed of a static solution. So eq. (37) becomes: 

['v2l/f-l/f-ln[p0(x)b(x)], l/f-(Vo-Uo)X]=O. 
If the density in the boundary layer has a simple form such as: 

ln[p0(x)b(x)] = px+ C, C =Constant. 
p and C are determined by B0(x) and p0(x). Equation (39) easily leads to: 

'v2 l/f -l/f -px= f ( l/f -( Vo-Uo)X), 

(39) 

(40) 

(41 )  
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where f (A) is an arbitrary function of argument A. Introduce polar coordinates, 
X=r COS8, �=rsin8, 

and suppose that a is the characteristic size of a vortex; then it is obviously satisfied that 
y72 l/f= -k 2 ( l[f -( V0 - Uo)x)+ l[f + j3x, r< a, 

y72 l[f = /2 ( l[f -( V0 - Uo)X) + l[f + j3x, r � a. 
Using the boundary condition, lff-0, when r-co, from eq. (42b), we obtain: 

12=/3/( Vo-lfo). 
So eq. (42) can be written as: 

where 

v72 l[f = -( t2 /a2) lff - Q[ (5 2 + t2) /a2]x' r < a, 
v72 lff=(5 2 ;a2) l/f, r�a, 

5 2 / a2 = /2 + 1, 
t 2 /a2 = k2 - 1, 

Q= -1/( Vo-lfo). 

(42a) 
(42b) 

(43) 

(44a) 
(44b) 

(45a) 
(45b) 
(45c) 

For eqs. (45a-c), by use of its conditions of continuity of l[f and 0
0
� at r= a, many 

authors (PA VLENKO and WEILAND, 1980; T ANIUTI and HASEGA w A, 1982) have described the 
localized solution: 

l[f(r B)={AK1(5r/a) cose, r� a, ' B (r/a) cose + CJ1(tr/a) cos6, r� a, (46) 

where r= (e + x2)1-, 8 = arctg(�/x), J1 and K1 are the first order Bessel function and the 
first order second kind modified Bessel function respectively, and 

A= - aQ/ K1 (5 ), B = - aQ[ I+ 52 /t2], C = aQ[ (5 2 /t2)J1 (t)]. (47) 
In addition, constants 5 and t satisfy as well the following equation: 

K2 (5) / [ 5K1 (5)] = - J2(t) / [ tJ1 ( t)]. (48) 
Equation (46) with eqs. (47) and (48) describes a typical dipole vortex. Its five 

parameters a, u, Q, 5 ,  and t represent the size, speed, and intensity of a dipole vortex, and 
the varying rates inside and outside the vortex respectively. They are controlled by the 
four eqs. (45a-c) and (48), so one of them can take an arbitrary value. Therefore, eqs. (46) 
and (47) have a series of vortex solutions. 

Now let us discuss the features of such dipole vortices. To demonstrate them in a 
straightforward way, numerical calculations are also carried out to accompany the analysis. 
I) The intensity Q 

From eq. (45c), IQI= 1/IUo- Vo l, that is, the greater the difference between flow speed 
and vortex traveling speed ( or wave traveling speed) is, the weaker the vortex appears. 
When f3 = - 0.0 I, Uo- V0 varies from 0.2 to 5.2; it is found that the shape of vortex varies 
very little and the maximum of Q varies from 7.789 to 0.298 (see Fig. I). 
2) Parameter t 

The parameter t determines the varying rate inside a vortex. From eq. (48), for any 
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Fig. 1. Surface (A) and contour (B) plots of density disturbance varying with (a) u0 - V0 = 
0.2, (b) u0 V0= 1.2, (c) u0 - V0 =5.2 when /3= -0.01, t=J.923. 
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Fig. 2. Surface (A) and contour (BJ plots of density disturbance varying with (a) t= 3.923, 
(b) t= 7.067, (c) f= 19.635 when (3= -0.02, u0 - V0=5.2. 
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Fig. 3. Surface (A) and contour (BJ plots of density disturbance varying with (a) /3= 
0.004, (b) /3 = -0.04, (c) /3 =  0.4 when U0 - V0 = 0.2, t = 4.033. 

9 
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given s, there are innumerable values of t which satisfy the conditions. When taking /3 
= -0.02, Uo- V0 =5.2; the first, second and sixth roots of t in eq. (48) are used for 
calculations; the results in Fig. 2 show that the greater the value oft, the more complicated 
the structure inside the vortex. This means that, even with the same boundary layer 
conditions, there may simultaneously exist many vortices with very different inner structure. 
3) Parameter s 

This measures the variation rate outside a vortex. From eq. (43), parameter s is 
determined by j3 and ( Uo- Vo), that is, determined by boundary layer state conditions. 
The greater s is, the faster the disturbance decays outside a vortex. Numerical calculations 
in Fig. 3 demonstrate such a trend, and effects of parameter s to the intensity and inner 
structure of a vortex. 

Therefore, there may exist vortex structures (dipole vortex irregulatrities) caused by the 
density gradient and magnetic shear in the magnetospheric low latitude boundary layer, 
when the relation between p0(x) and B0(x) satisfies eq. (40). 

4. Conclusions 

Under the assumptions B0
= B0(x)J, V0

= Vo(x)z, p0= p0(x), and E\ = 0, a vortex 
equation set, (29), was derived from the MHD equations by using the perturbation method. 
They can be used as starting equations of small scale vortices in the magnetospheric low 
latitude boundary layer. 

It was proved that when only the density gradient and magnetic shear are taken into 
account, that is 

po = Po(x), B0 = (x), 
Vo =Constant, y*=O, 

and when destiny and stream disturbances ( W, lJf) are assumed as eq. (35a), its electrostatic 
vortices can be described by a generalized Hasegawa-Mirna eq. (37). Following the 
standard procedure, a dipole vortex solution was given to the generalized Hasegawa-Mirna 
eq. (37). It shows that when above conditions are satisfied, solitaty vortices may exist in 
the magnetospheric low latitude boundary layer. 

It should be pointed out here, however, that velocity shear always exists and is an 
important factor causing vortices in the magnetospheric boundary layer. It is expected 
that velocity shears modulate above dipole vortices. The modulation depth should be made 
clear in the future by numerical calculations. 
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