Abstract 265

Proc. NIPR Symp. Polar Meteorol. Glaciol., 11, 265, 1997

NEW CONSTRAINT ON ESTIMATION OF THE ANTHROPOGENIC CO₂ BUDGET: RELATIONSHIP BETWEEN CONCENTRATION AND δ¹³C OF ATMOSPHERIC CO₂ DETERMINED FROM ICE CORE ANALYSIS (ABSTRACT)

Kikuo Kato and Kaori Komaki

Institute for Hydrospheric-Atmospheric Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-01

Studies on ice cores from Antarctica and Greenland revealed variations in the concentration and $\delta^{13}C$ of ancient atmospheric CO_2 . Since the Industrial Revolution, addition of anthropogenic CO_2 to the atmosphere has caused a significant increase in atmospheric CO_2 , accompanied by a decrease in $\delta^{13}C$ of atmospheric CO_2 . The relationship between them shows that the $\delta^{13}C$ value of CO_2 which remained in the atmosphere is significantly larger than -25% of that originated from coal burning and deforestation at mid-latitudes. So, we consider that the $\delta^{13}C$ value of CO_2 uptaken from the atmosphere should be small. Then we calculated the $\delta^{13}C$ value of CO_2 which remained in the atmosphere, obtaining a result of about -13%. We considered that this fact would be useful as a new constraint on the anthropogenic CO_2 budget.

On the other hand, IPCC 1994 reported the revised budget of anthropogenic CO₂ and emphasized that the problem of the missing sink of CO₂ was solved. So, as this budget is determined for carbon as an element (that is, ¹²C), we examined the budget reported by IPCC for ¹³C.

In the anthropogenic CO₂ budget in IPCC 1994, for the sources the δ^{13} C values of 5.5 Gt/yr of carbon which originates from emissions from fossil fuel burning, and 1.6 Gt/yr from emission from deforestation in the tropical region may be given as -27% and -30%, respectively. For the sinks, the δ^{13} C values of 3.2 Gt/yr of carbon which remains in the atmosphere, 0.5 Gt/yr in northern hemisphere forest regrowth and 1.4 Gt/yr in additional terrestrial sinks may be given as -13%, -25% and $-30\sim-25\%$, respectively. Therefore, as the result of calculation, δ^{13} C of 2.0 Gt/yr of carbon which is uptaken in the ocean became very small, $-54\sim-46\%$. This result cannot be explained by the observed fractionations for CO₂ exchange between the atmosphere and the ocean, photosynthesis and formation of carbonate.

This indicates that the anthropogenic CO₂ budget reported by IPCC 1994 still has some problem.

(Received January 16, 1997; Revised manuscript accepted January 27, 1997)