Abstract

Vertical distribution of ozone at Japanese Antarctic station Syowa, $69^{\circ}00'S$, $39^{\circ}35'E$, was observed by means of carbon-iodine type chemical ozonesondes. Main purpose of this report is to give the results obtained by the soundings during the period from March 1966 to January 1967. Describing the data reduction method with some related problems, 28 vertical ozone distributions are given in ozonagrams and tables. A smoothed time-height cross section of ozone partial pressure is presented, with discussion on the seasonal characteristic ozone profiles and the ozone changes in each layer during the stratospheric sudden warming in 1966. Also, it is noted that the tropopauses are found 1–2 km above the level where ozone begins to increase upwards into the stratosphere.

1. Introduction

When the Japanese Antarctic station Syowa, 69°00'S, 39°35'E, was reopened, after four years of closure, in January 1966 by the 7th Japanese Antarctic Research Expedition team, observations of vertical distribution of ozone with ozonesondes were added to the total ozone measurements with a Dobson spectrophotometer. As observation by the optical ozonesonde is impossible during the polar night period, it is essential to use a chemical type ozonesonde. At the stage of preparation of the 7th JARE team, the titration type chemical ozonesonde (KOBAYASHI and TOYAMA, 1966a) was under development in Japan, and REGENER's chemiluminescence sondes and MAST's chemical sondes were already put to practical use in U.S.A. and other countries. But the titration type sondes required a troublesome treatment before each flight, and, so, another type of chemical ozonesonde was urgently developed. This new type of ozonesonde was a "carbon-iodine" type (KOBAYASHI and TOYAMA, 1966b) or named KC-type. After several test flights at Tateno Aerological Observatory in Japan, 49 sets of the sondes were transported to Syowa Station.

2. Outline of KC-65 Ozonesonde

The carbon-iodine ozonesonde was described in detail by KOBAYASHI and TOYAMA (1966b), but here the principle of ozone measurement and functions of the sonde are briefly given with Fig. 1.

Fig. 1. Block diagram of the carbon-iodine ozonesonde KC-65.

The air involving ozone is pumped into the potassium iodide solution in the reaction cell through a capillary tube, and then the ozone reacts with the solution and liberates free iodine.

```
In KI solution : 2KI \rightleftharpoons 2K^+ + 2I^-.
With ozone : 2I^- + O_3 + H_2O \rightarrow I_2 + O_2 + 2OH^-.
```

The free iodine is reduced back to iodide by contact with the platinum gauze electrode.

At Pt electrode : $I_2 + 2e \rightarrow 2I^-$.

On the other hand, the reaction at the activated carbon electrode produces electrons.

At Carbon electrode : $2OH^-+C \rightarrow CO+H_2O+2e$.

Accordingly, one ozone molecule produces a current of two electrons.

The reaction current *i* is amplified by a circuit and the output modulates the carrier frequency of 1680 MHz. The modulation frequency varies from 70 to 190 Hz depending on the change of the reaction current of 0 to 15μ A.

Besides the ozone detector mentioned above, there are two thermistors for the ambient temperature T_a and for the inside temperature T_c of the reaction cell. Through a switching system, each of signals *i*, T_a and T_c is transmitted for about 10 seconds one after another, and once every five cycles of the signals two standard marks 0 and *S* (about $8 \mu A$) for the reaction current are inserted in place of T_a and T_c respectively. Thus the sequence of the signals becomes as follows:

 $iOS, iT_aT_c, iT_aT_c, iT_aT_c, iT_aT_c, iOS, iT_aT_c, \dots$

Also, an aneroid barometer switch shorts the output circuits of i, T_a or T_c at 17 pressure values, which are calibrated beforehand, transmitting 0 ohm reference for the thermistors as well as the pressure signals.

The two thermistors and the transmitter are those of the same specifications as the routine rawinsonde RS II-64 used at Syowa. The ozonesonde including power supply is enclosed by a Styrofoam box, except the thermistor for air temperature, and the aneroid switch, and hence the temperature T_c inside the reaction cell is kept almost above 0°C even in the cold stratosphere in polar winter.

3. Data Reduction

3.1. Basic formulas

When the pumping rate of air is denoted by V_c (ml/min) and the ozone density by ρ_{sc} ($\mu g/m^s$), where the suffix c means the values in the pump and detector cell system, the number of ozone molecules reacting in the cell per second is expressed by

$$N = \frac{V_c}{60} \cdot \rho_{3c} \cdot 10^{-12} / (7.97 \times 10^{-23} \text{ g}),$$

where the denominator is the weight of one ozone molecule.

By the reaction described in Section 2, one ozone molecule produces a twoelectron current, therefore the reaction current $i (\mu A)$ is

$$i = 2eN \times 10^6$$
, $e = 1.602 \times 10^{-19}$ coulomb.
 $\rho_{3c} = 14.92 \times 10^3 \times i/V_c$. (1)

Now, denoting the volume of free air by V_a (ml/min), which is drawn into the pumping system per minute, the ambient temperature by T_a (°K), the temperature inside the reaction cell by T_c (°K), and the ozone density in the atmosphere by ρ_3 ,

$$V_a/T_a = V_c/T_c, \qquad \rho_3 V_a = \rho_{3c} V_c,$$

$$\therefore \quad \rho_3 = \rho_{3c} T_c/T_a = 14.92 \times 10^3 \times \frac{i}{V_c} \cdot \frac{T_c}{T_a}.$$
 (2)

3.2. Derived formulas

After the computation of ρ_3 , the following quantities are derived with the formulas given by GODSON (1962).

The ozone partial pressure $P_{\mathfrak{g}}(\mu mb)$ and the ozone mixing ratio $r_{\mathfrak{g}}(\mu g/g)$ are given by

$$P_{3} = 1.732 \times 10^{-3} \times T_{a}\rho_{3} = 25.84 \times i T_{c}/V_{c}, \qquad (3)$$

$$r_3 = 1.657 \ P_3/P, \tag{4}$$

where the denominator P(mb) is the ambient air pressure.

The integrated ozone amount $\Delta \Omega$ (matm-cm) between two altitude Z_1, Z_2 (km)

or P_1, P_2 (mb) is given by

$$\Delta \Omega = 0.04671 \int_{Z_1}^{Z_2} \rho_3 dZ, \qquad (Z_1 < Z_2), \qquad (5)$$

$$=0.4761 \int_{P_2}^{P_1} r_3 dP, \qquad (P_1 > P_2), \qquad (6)$$

$$= 0.7890 \, \int_{P_2}^{P_1} P_3 d \ln P = 1.8167 \int_{P_2}^{P_1} P_3 d \log P. \tag{7}$$

Note the difference between the two coefficients in eqs. (5) and (6).

In the eqs. (2) and (3), the reaction current i might be biased by a background current and the air flow rate V_c may change with the pumping efficiency at low pressures. These will be considered in the following sections.

3.3. Pumping efficiency at low pressures

According to KOBAYASHI and TOYAMA (1966 a, b), the pumping rate V_c at ambient pressure P(mb) is expressed empirically by

$$\frac{V_c}{V_o} = 1 - K \left(\frac{1}{P} - \frac{1}{1000} \right), \tag{8}$$

where V_o is the flow rate at 1000 mb, and K is a constant. Denoting the pressure at which V_c becomes 0 by P_s ,

$$\frac{1}{K} = \frac{1}{P_s} - \frac{1}{1000} \doteq \frac{1}{P_s}, \qquad \therefore \quad K = P_s \tag{9}$$

because P_s is usually smaller than 10 mb. That is, K may be determined empirically by ambient pressure P_s where the bubbling in the reaction cell stops.

This kind of experiment was performed with a pump and reaction cell block of the KC-65 ozonesonde which was spared for two years after it was manufactured. Instead of the reaction solution, Apiezon oil was used, which

Fig. 2. Bubbling rate at low pressures, for the pump-reaction cell system of the KC-65 ozonesonde.

Data Reduction

hardly boils even under low pressures. The result is shown in Fig. 2, and the bubbling stops at 0.87 mb. Taking into account the density difference between Apiezon oil and the reaction solution, K becomes 1.8 or nearly 2 mb.

According to the tests made immediately after the production of the ozonesondes for the use at Syowa Station, three bubbles per second, in average, were found at 5 mb. This seems to show a better efficiency than the result in Fig. 2. But, before the flights are made at Syowa Station, half a year to more than one year has lapsed since the pumps of ozonesondes were lubricated. So, the value K=2 mb was used in the computation.

Fig. 3. Pumping efficiency at low pressures. V_0 and V_c are the flow rate at 1000 mb and Pmb respectively. Curves 1 and 2 are evaluated from eq. (8) for the cases of K=1 and K=2 mb respectively, and curve M is the flow-rate factors for MAST-BREWER sonde. Curve 2 was used in our computation.

KOMHYR and HARRIS (1965) reported the pump efficiency of MAST-BREWER ozonesonde. Their result is shown in Fig. 3, in comparison with the curves valuated by eq. (8) for the cases of K=1 and K=2 mb. Below 100 mb level in the atmosphere, the efficiency has no change practically. Above 5 mb level, the efficiency decreaces rapidly and may differ considerably with each pump.

3.4. Background current

Although the cause of background current is not known well, the current seems to depend on the degree of activity of the carbon electrode and on the time lapsed after the solution was poured into the detector cell.

The records of the background current at the beginning of bubbling before each flight showed $0.6\pm0.4 \,\mu\text{A}$ in the average. But this value seems too large, because the background current at the beginning of air bubbling increases abruptly about 2–10 times as much the value before the bubbling, and then the background current with bubbling decreases gradually until it reaches a constant value which may be the true background current. The following may serve as an evidence for estimating the constant value.

Ozone reaction currents during the descent after the balloon burst were usually of the same order as in ascent, but with some time lag due to the faster descent. In one case, the background current recorded before the flight was 0.68 μ A, but the current during the descent was almost constantly 0.2 μ A. This might be interpreted as the real background current bacause the rubber film of the broken balloon covered presumably the air inlet tube.

Therefore, in computation of ozone amounts with eq. (2) or (3), one-third of the background current recorded before each flight was subtracted from the reaction current recorded during the ascent.

4. Flight Preparation and Selection of Reliable Data

4.1. Pre-flight treatment

The potassium iodide solution for the reaction with ozone was composed of the following chemicals.

Na₂HPO₄	:	5 g
KH₂PO₄	:	5
KBr	:	100
KI	:	0.2
H₂O	:	500 m <i>l</i> .

The solution was used after more than one week from the time it was prepared.

Each ozonesonde was checked, a few days before the flight, about the amplifier, transmitter, sequence switch system and barometer, and one electrode of the reaction cell was deposited with active carbon paste, and then the solution was supplied into the cell.

Immediately before the flight, the polyethylene inlet tube was conditioned by exposing it to ozone-rich air for about half an hour, the gain of the amplifier was re-adjusted and calibrated, and finally the background current with bubbling was recorded, while the flow rate of air sampling V_o was measured (about 400 ml/min).

4.2. Flights

The weight of a KC-65 ozonesonde including water activated batteries was about 2.5 kg and the ozonesonde was ascended by a 2kg balloon with a net lift of about 3kg. The balloon was inflated outdoors because the hut for inflating a 600g balloon for routine sondes was not large enough for the 2kg balloon, hence flights of ozonesondes were limited only on days when the surface wind speed was less than 2 or 3 m/s. (This situation has been improved since a new larger balloon hut was constructed in 1967.)

Among the 49 ozonesondes transported to Syowa Station, 3 ozonesondes were rejected due to faults in electric circuits, 2 showed no ozone change during the flights and 4 failed to reach the 100 mb level. From the remaining 40 flights,

				Highe	est level	Dobson					Higho	est level	Dobson
No.		Date		Pres. (mb)	Height (gpm)	ratio	No.		Date		Pres. (mb)	Height (gpm)	ratio
1	1966	Mar.	17	19.7	26928	1.126	15	1966	Aug.	23	54.4	17936	
2		Apr.	12	27.3	23561		16			29	29.8	21088	
3			20	26. 2	23955		17		Sept.	6	30.4	21516	1.153
4			29	52.9	19338		18			19	15.5	25646	1.375
5]	May	11	41.0	21098		19			27	52.0	18435	1.375
6			19	30. 2	23033		20		Oct.	5	27.9	22356	1.165
7		June	2	22.0	24499		21			13	14.7	27149	1.158
8			6	48.6	19391		22			20	13.1	29302	1. 301
9			18	60.6	17619		23			24	16.6	26840	1.538*
10			30	62.0	17638		24			30	14.9	27474	1.336
11		July	5	60. 2	18065		25		Nov.	26	24.5	25681	1.453*
12			22	53.6	18218		26			29	23.1	26147	1.377
13		Aug.	5	33.6	20665		27		Dec.	12	29.0	24571	1.240
14			18	44.1	19180		28	1967	Jan.	11	23.9	26001	1.519*

Table 1		Oronesande.	soundin as	nt	Svouna	Mar	1966	to	Inn	1967	
I avic I	•	O Lonesonue	soundings	uı	Syowa,	man.	1500	10	Jun.	1507.	

* 1) 1966 Oct. 24: Measurement of flow rate was uncertain, but this was covered by the correction with the Dobson ratio.

2) 1966 Nov. 26: Record of ozone reaction current was interpolated for 120mb to 56mb.

3) 1967 Jan. 11: Flight was made on the 26th day after depositting carbon paste and supplying solution into the detector cell.

28 were selected as reliable soundings by the following criteria:

1) Maximum altitude reached should be higher than 70mb level,

2) "Dobson-ratio", which is explained in Section 4.3, should be less than 1.55. Table 1 summarizes the 28 flights selected by these criteria, with the highest level reached and the Dobson-ratio.

The 70mb level in the first criterion might be too low at middle and low latitudes. But in the polar region, the maximum density of ozone is found usually near 100mb, and the mean maximum level of soundings lowers to 50mb in the winter season. Thus the 70mb was chosen as one of the criteria.

4.3. Dobson-ratio

The "Dobson-ratio" is the ratio of a total ozone amount measured by a Dobson spectrophotometer to a total ozone obtained by an ozonesonde. The former should be the value at the time closest to the latter. The latter is estimated by extrapolation assuming a constant mixing ratio above the highest level reached by the sounding.

The second criterion in Section 4.2 was chosen by the following reason. In 9 cases, which reached a level higher than 30mb and were judged as complete performance by the records of the sounding, the mean Dobson-ratio was 1.25 and the standard deviation σ of the ratio was 0.10. None of our cases at Syowa showed the ratio lass than 1.0 (Table 1). The ratios on MAST-type ozonesonde, as other examples, were 1.10 ± 0.12 at Boulder, Colorado (HERING and DÜTSCH, 1965) and 1.26 ± 0.11 at Christchurch, New Zealand (Ozone data for the world, 1965). Therefore, if the ratio was larger than $1.55 (=1.25+3\sigma)$, it was judged that the performance of the sounding was failed by some unknown causes which might be lowering of the sensitivity of the detector, the pumping efficiency or others.

When the Dobson-ratio was less than 1.55, this ratio was multiplied by the raw ozonesonde data at each level in order to adjust the total ozone amount estimated to that obtained by the Dobson spectrophotometer. By this correction, the ozone loss due to the intake system, 2-3% according to KOBAYASHI and TOYAMA (1966 b), was also covered.

4.4. Winter data

For a period April through August, however, no Dobson value was obtained on account of the low solar altitudes or the polar night. Therefore, the raw ozonesonde data were not corrected.

This treatment might be supported by the fact that the mean total ozone amount measured by a Dobson spectrophotometer with the 'forcussed image method' was 309matm-cm in the same period at Roi Baudouin, 66°40'S, 24°19'E, the nearest station to Syowa (Fig. 5), and the total ozone amount estimated from the mean vertical distributon of the raw data of 15 soundings at Syowa for the winter period was 311, nearly corresponding to the former without correction.

But in these cases with no correction, the ozone loss due to the air intake

system was not corrected either, and the true ozone values might be a few percent larger.

4.5. Accuracy

According to KOBAYASHI and TOYAMA (1966b), the exponential response time of the detector cell is 15-30 seconds, and the observational error of ozone partial pressure P_3 is less than $10 \,\mu$ mb. If we assume an increase of $\Delta P_3 = +10 \,\mu$ mb at 10mb and all levels below and an increase of mixing ratio $\Delta r_3 = +1.657 \,\mu$ g/g (corresponding to $\Delta P_3 = +10 \,\mu$ mb at 10mb) above 10mb, then the increase of the total ozone would be 44 matm-cm, which corresponds to 10-15% of total ozone values.

5. Results

5.1. Data presentation

Ozone amounts were computed at the levels for every minute in each flight, with the eqs. (2), (3), (4) and (7), substituting V_c of eq. (8) with K=2.0, taking the background current into account (Section 3.4), and then multiplied by the Dobson ratio (except for flights with no Dobon value from April to August). Finally, ozone values at standard levels, which were chosen at smaller intervals above 100mb level, were interpolated from the values at every minute.

Ozone partial pressures thus computed and temperatures were tabulated in Annex, and those profiles were produced in ozonagrams (Figs. 10–19). The tropopause in each flight was chosen at the level where the temperature lapse rate becomes small somewhat abruptly, and it was marked with a small circle in the profiles of ozone and temperature.

Monthly means of ozone partial pressures at each standard level were calculated from the individual soundings in each month. But, in each of the months of March, December 1966 and January 1967, only one flight was made and the average of the three soundings altogether was taken as for summer season. These means were also tabulated in the Annex. Above 70mb level, some soundings terminated at lower levels than other cases, hence the mean values up to 25mb were estimated by extrapolation considering the upward tendency of ozone partial pressures and of mixing ratios.

5.2. Seasonal changes of ozone layer

The height-month cross-section of ozone partial pressure was constructed (Fig. 4), using bimonthly means calculated from each monthly mean. The mean tropopause in Fig. 4 was estimated from the monthly mean temperature profiles of routine soundings.

The layer of maximum partial pressure lies between 100 and 50mb, or roughly between 15 and 20km heights. In summer, except November, the layer of ozone maximum is higher than 60mb (20km), and in winter it is lowest at about 70-80mb (16km). This seasonal tendency is qualitatively the same as shown in the cross-sections of ozone densities reported by MACDOWALL and SMITH (1962) on Halley Bay (75°31'S, 26°44'W) and by WAYANT (1967) on the South Pole. The

 Fig. 4. Height-month cross-section of ozone partial pressures, at Syowa (69°00'S, 39°35'E), Mar. 1966 to Jan. 1967. OM: layer of ozone maximum. OS: layer of ozone secondary maximum and its trace. TR: tropopause level.

maximum values of ozone partial pressure increase from $130\,\mu\text{mb}$ in autumn to $180\,\mu\text{mb}$ in spring, and decrease after summer.

The tropopause is found at the level where the ozone partial pressure is about $20-30 \,\mu\text{mb}$, and highest in winter and lowest in summer. The upward increase of ozone partial pressure starts usually at 1-2km below the tropopause (Section 5.5).

The maximum ozone partial pressure in November to December, after the spring stratospheric warming with maximum total ozone, is about $200\,\mu$ mb and the level of it lowers to $100\,\text{mb}$ (16km) abruptly from the general tendency (Fig. 4). This lowering of the ozone maximum seems to continue to the tongue at 200 mb in January, broadening the ozone layer and giving a secondary maximum in the lower stratosphere. This secondary maximum appears intermittently until July, becoming weaker gradually.

Table 2 shows the yearly mean of fractional ozone amounts in several layers. Very roughly speaking, half of the total ozone amount exists below (or above) the 50mb level (20km in height).

Fig. 5 shows the seasonal change of total ozone amounts measured by the Dobson spectrophotometer at Syowa. For comparison and to know the winter

Table 2. Fractional ozone amount in each layer, yearly mean at Syowa.

Layer (mb)	Surf400	400-200	200-100	100-50	50–25	Above 25	Total
Ozone (matm-cm)	13	16	53	88	70	85	325
(%)	4	5	16	27	22	26	100

Fig. 5. Seasonal changes of total ozone amount at Syowa and Roi Baudouin.

Fig. 6. Seasonal changes of ozone amount in each layer of surface-400mb, 400-200mb, 200-100mb, 100-50mb, 50-25mb and above 25mb, at Syowa.

ozone amount, the total ozone at Roi Baudouin measured with the "forcussed method" was also shown.

The changes of ozone amount in each layer are shown in Fig. 6, in which the ozone amount above the 25mb level is estimated by the assumption of constant mixing ratio. The dips in April in Fig. 6 correspond to such tendency as shown in Fig. 5. The ozone amounts at 200-100mb and 100-50mb levels increase through winter. The sharp increase of total ozone from September to November (Fig. 5) is due first to the ozone increase above 50mb, and then to the increase at 200-50mb levels (Fig. 6). This is shown more clearly in Table 3 and Fig. 7. That is, the ozone increase begins above the level of maximum ozone partial pressure in September to October, and then it shifts downwards to the lower stratosphere in October to November. In the same period, the temperature

	Sept. to Oct.	Oct. to Nov.	Nov. to Dec.	Dec. to Jan.
Above 25 mb	+23	+ 2	- 3	- 8
25 - 50	+15	- 2	- 4	-10
50 - 100	- 3	+13	- 9	-26
100 - 200	- 8	+31	-25	- 8
200 - 400	- 2	+ 7	+ 4	+ 9
400 - surf.	- 1	- 6	+ 1	- 4
Total	+24	+45	- 36	- 47

Table 3. Monthly increase of ozone (matm-cm) in each layer, at Syowa.

OZONAGRAM

Fig. 7. Monthly mean profiles of ozone partial pressure and temperature in spring at Syowa. Ozone increase during the stratospheric warming period begins above 60 mb level and then shifts downwards.

16

at 20mb increases from -70° C to -20° C (Fig. 7). In November to January, the ozone increase is limited around the tropopause height (Table 3 and Fig. 6). The major decrease of total ozone (Fig. 5) in November to January occurs first below the level of maximum ozone partial pressure and then above it (Table 3), gradually broadening the ozone layer through autumn.

5.3. Representative mean profiles of ozone and temperature

Fig. 8 presents the mean vertical profiles of ozone partial pressures and of temperatures for summer-autumn, winter and spring. The temperature profiles, which are averages of the routine radiosonde observations, show distinct contrasts with one another.

The summer-autumn temperature has a sharp negative lapse rate just above the tropopause and is nearly constant vertically (around -40° C) throughout the stratosphere. Corresponding to this, the summer-autumn ozone profile has a clear secondary maximum around 200mb.

The winter temperature decreases upwards even above the tropopause, and the tropopause is less significant. The level of maximum ozone partial pressure lowers to 70-80mb (16km) and the secondary maximum diminishes in the mean.

The spring temperature profile has a negative lapse rate throughout the stratosphere, but in the troposphere it is nearly the same as in winter. Ozone

Fig. 8. Mean profiles of ozone partial pressure and temperature at Syowa, for summer-autumn (Dec. to Mar.), winter (Apr. to Aug.) and spring (Sept. to Nov.).

Fig. 9. Mean profiles of ozone mixing ratio at Syowa, for summer-autumn (Dec. to Mar.), winter (Apr. to Aug.) and spring (Sept. to Nov.).

	Summer-Autumn Dec. to Mar.	Winter Apr. to Aug.	Spring Sept. to Nov.
25 – 50 mb	0.30	0. 37	0.39
50 - 100	0.66	0. 57	0.65
100 - 200	0.35	0.45	0.60
200 - 400	0.126	0.062	0.087
400 - 850	0.005	0.004	0.003

Table 4. Vertical gradient of ozone mixing ratio $(\mu g|g|km)$ at Syowa.

profile shows an increase in the entire stratosphere.

Fig. 9 is the vertical profiles of ozone mixing ratio for the different seasons. The mixing ratio in the stratosphere increases upwards steadily and the level of maximum mixing ratio does not appear up to 25mb (25km). But the vertical gradient of ozone mixing ratio, as shown in Table 4, has a maximum of $0.5-0.7 \mu g/g/km$ in the 50-100mb layer, above which it tends to decrease.

In the case of summer-autumn in Fig. 9, if the constant mixing ratio is assumed above the 25mb level, the total ozone becomes 326matm-cm, and if extrapolated to 7.5μ g/g at 10mb and the constant mixing ratio is assumed above 10mb, then the total is 334 matm-cm, the difference being 2.5% and smaller

than the sounding error (Section 4.5).

In the troposphere, the vertical gradient of ozone mixing ratio is about $0.003-0.005 \,\mu g/g/km$ (Table 4). Assuming that this gradient is ascribed only to vertical diffusion, the downward flux F of ozone is expressed as :

$$F = A \frac{dr_3}{dH} \tag{10}$$

where A is the Austausch coefficient and dH is the height difference. The ozone flux F is assumed to be $0.1 \,\mu g/m^2 s$, as taken by JUNGE (1962) according to REGENER's experiment (1957). Then the Austausch coefficient in the troposphere becomes :

A=250g/cm · s.

5.4. Individual profiles of ozone and temperature

This section describes characteristic features of the profiles of ozone partial pressure and temperature for individual soundings.

In April (Fig. 10), the ozone profiles had the secondary maxima around 200-300 mb, and the major maxima were rather small.

On May 11th (Fig. 11), the ozone profile had a trace of the secondary maximum around 300 mb, corresponding to the negative lapse rate of temperature above the tropopause, but on May 19th it ascended to 200 mb.

The ozone values of June 2nd (Fig. 12) was abnormally large, but this might correspond to the warm stratospheric temperature of about -60° C, while the mean for June was -70.1° C at 100mb.

Three other cases in June and the case on July 5th (Fig. 13) were the soundings during the polar night. Although the tropopauses were less determinable, the ozone partial pressures showed a distinct increase above the tropopauses, making weak secondary maxima around 200mb.

The two soundings in July (Fig. 13) showed very similar ozone values above the 150mb level, although the stratospheric temperatures were much different each other.

After July 22nd through August, September and October (Figs. 14-16), the ozone partial pressures in the lower stratosphere increased linearly upwards up to 100mb, except the case of August 18th when there was a dull secondary maximum corresponding to the sharp secondary tropopause at 150mb.

In September (Fig. 15), the soundings reached higher levels and an indication of stratospheric warming appeared from the upper stratosphere, but ozone increase which might be accompanied by the warming was not yet clearly shown.

The stratospheric sudden warming in 1966 commenced over the coastal stations in the Indian Ocean sector such as Roi Baudouin and Syowa, and the ozone soundings in October caught this phenomenon. The 50mb temperature increased from -62.1° C on October 14th to -33.9° C on October 20th, and the total ozone measured by the Dobson spectrophotometer increased from 337 to 454matm-cm in the same period. The soundings on October 13th and 20th (Fig. 16) showed remarkable increases of ozone and temperature above the 100mb

Figs. 10-19. Vertical profiles of ozone partial pressure and temperature of individual soundings. The number beside a profile indicates the date of the sounding, and the small circle shows the tropopause.

1º ig. 12.

Fig. 13.

level, but the profiles below 100mb on both days were not changed essentially.

On October 26th, the 50mb temperature dropped to -56.4° C and the total ozone to 333 matm-cm. In this period (Fig. 17), the ozone decrease occurred throughout the stratosphere. After that, the 50mb temperature and total ozone increased gradually to the maxima of about -25° C and 450 matm-cm in late November. In this period (Figs. 17–18), the warming and ozone increase continued in the lower stratosphere below 60mb.

After midsummer to autumn (Fig. 19), the profiles of ozone partial pressures were rather irregular with very large secondary maxima in the lower stratosphere.

These ozone profiles and changes must be investigated more precisely particularly with wind data.

5.5. Ozone increase through tropopause level

As shown in the ozonagrams (Figs. 10-19), the upward increase of ozone partial pressure begins usually at a level below the tropopause which is indicated with a small circle. Here the author defines "ozone-pause" as the level at which the ozone partial pressure starts to increase upwards into the stratosphere. In practice, the ozone-pause is selected out of the data for every minute in each flight, as the level of minimum ozone partial pressure nearest to the tropopause.

$\mathcal{J}H(\mathrm{km})$	0.00 —0.49	0. 5. —0. 99	1.00 —1.49	1.50 —1.99	2.00 —2.49	2.50 —2.99	3. 00 —3. 49	Total
Number of cases	7	6	5	3	5	1	1	28

Table 5. Frequency distribution of ΔH =tropopause height-"ozone-pause" height, at Syowa.

The height differences between the tropopause and the ozone-pause are tabulated in Table 5. The upward increase of ozone layer starts always, at Syowa, below the tropopause. The height differences are mostly (93% of the cases) less than 2.5km, and the mean difference is 1.25km. This value is larger than the value (less than 0.5km except one case in 16 soundings at Halley Bay) reported by MACDOWALL and SMITH (1962).

Acknowledgments

The author expresses his sincere thanks to the people who supported this task. Dr. J. KOBAYASHI and Mr. Y. TOYAMA of Meteorological Research Institute, Japan Meteorological Agency, developed the carbon-iodine type ozonesonde and instructed the author in treatment of the sondes. At Syowa Station, two meteorologists, Mr. Z. SEINO and Mr. K. ISHIDA of J. M. A., and other members of the 7th Japanese Antarctic Research Expedition led by Dr. A. MUTO, collaborated in the ozonesonde flights and encouraged the author. Mr. Y. MORITA, the former chief of the Antarctic Observation Office, J. M. A., encouraged the task and Mr. T. SUZUKI and other staff of the Aerological Section, J. M. A., helped in the data reduction. This first success of the practical soundings using Japanese chemical ozonesondes owes to those mentioned above.

26

References

- GODSON, W. L. (1962): The representation and analysis of vertical distribution of ozone. Q. J. R. Met. Soc., 88, 220-232.
- HERING, W. S. and H. U. DÜTSCH (1965): Comparison of chemiluminescent and electrochemical ozonesonde observations. J. Geophys. Res., 70, 5483-5490.
- JUNGE, C. E. (1962): Global ozone budget and exchange between stratosphere and troposphere. Tellus, 14, 363-377.
- KOBAYASHI, J. and Y. TOYAMA (1966 a): On various methods of measuring the vertical distribution of atmospheric ozone (II), Titration type chemical ozonesonde. Pap. Met. Geophys., 17, 97-112.
- KOBAYASHI, J. and Y. TOYAMA (1966 b) : On various methods of measuring the vertical distribution of atmospheric ozone (III), Carbon-iodine type chemical ozonesonde. Pap. Met. Geophys., 17, 113-126.
- KOMHYR, W. D. and T. B. HARRIS (1965): Note on flow rate measurements made on MAST-BREWER ozone sensor pumps. Mon. Weath. Rev., 93, 267-268.
- MACDOWALL, J. and J. A. SMITH (1962): Ozone soundings. The Royal Society I. G. Y. Expedition, Halley Bay, 1955-1959. III. Seismology, Meteorology, 98-110.
- METEOROLOGICAL SERVICE OF CANADA (1965) : Ozone data for the world, 6 (5-6).
- REGENER, V. H. (1957): Vertical flux of atmospheric ozone. J. Geophys. Res., 62, 221-228.
- WEYANT, W. S. (1967) : Interpretation of ozone measurements at U.S. Antarctic stations, 1964. Polar Meteorology. Proceeding of the WMO/SCAR/ICPM Symposium on Polar Meteorology, Geneva, 5-9 Sept. 1966. WMO Tech. Note, 87, 29-36.

(Manuscript received January 20, 1969)

ANNEX

This annex gives the tables of ozone partial pressures and air temperatures at selected pressure levels for individual ozone soundings and for monthly or seasonal means during the period from March 1966 to January 1967 at Syowa Station (69°00'S, 39°35'E), Japanese Antarctic Station. The ozonesonde was KC-65, carbon-iodine type.

Explanation of the tables :

- DATE : 2 digits stand for each of year, month and day of observation (e. g. 660317 means March 17th, 1966).
- TIME : 2 digits stand for each of local standard hour (=GMT+3hours) and minute of balloon release (e. g. 1055 means 10h55m).
- TOTO3 : Total ozone amount (matm-cm) obtained by the Dobson spectrophotometer.
- DOBR : Dobson ratio (ratio of TOTO3 to the total ozone estimated from raw data of the ozone sounding).
- INTO3 : Integrated ozone amount (matm-cm) below the highest level of the sounding.
- P : Atmospheric pressure (mb).
- T : Air temperature (0.1°C), negative sign omitted and, if positive, plus sign added.
- P3 : Ozone partial pressure $(0.1 \,\mu\text{mb}$ for individual sounding and μmb for mean).

Special levels :

- SURF : Surface level, 15m above mean sea level.
- O3PSE : Ozone-pause, at which P3 starts to increase upwards into the stratosphere.
- TRPSE : Tropopause level.
- O3MAX : Level of maximum P3.
- MINP : Minimum pressure, that is, highest level of the sounding.

Each sign of the special levels is followed by the pressure value of P and, underneath, the velues of T and P3 at that level. The values of INTO3 and P3 were corrected by multiplying raw ozone data by the value of DOBR, except for winter data without Dobson value.

In the tables of monthly means, INTO3 is the <u>total ozone amount</u> estimated from the mean vertical distribution of ozone on the assumption that the mixing ratio is constant above 25mb level, and T is the monthly average of daily routine soundings. T in () is estimated from the ozone soundings in the month and P3 in () is extrapolated taking into account the upward tendencies of ozone partial pressure and mixing ratio of the individual soundings. Seasonal means were calculated from the monthly means.

28

DATE TIME TOTO3 DOBR INTO3	660317 1055 323 1.126 238.0	660412 1810 176. 7	660420 1756 158. 1	660429 1752 105. 7
Р	T P3	T P3	T P3	T P3
850 700 600 500 400	132248175239205234258187358165	$\begin{array}{ccccc} 190 & 266 \\ 263 & 230 \\ 316 & 200 \\ 387 & 198 \\ 456 & 306 \end{array}$	174 167 183 148 235 136 320 115 441 169	117 065 237 061 303 040 396 050 534 030
350 300 250 200 175	435139506122520341442589439597	486421493535450509488469484463	$\begin{array}{cccc} 505 & 086 \\ 571 & 076 \\ 573 & 349 \\ 511 & 299 \\ 504 & 416 \end{array}$	$\begin{array}{cccc} 562 & 052 \\ 553 & 068 \\ 535 & 107 \\ 535 & 139 \\ 533 & 340 \end{array}$
150 125 100 90 80	$\begin{array}{cccc} 429 & 681 \\ 436 & 720 \\ 444 & 1250 \\ 423 & 1669 \\ 428 & 1619 \end{array}$	495 394 518 413 562 630 572 781 577 968	$\begin{array}{cccc} 504 & 460 \\ 516 & 597 \\ 525 & 815 \\ 532 & 922 \\ 530 & 990 \end{array}$	527 595 547 818 549 1027 560 1337 577 1384
70 60 55 50 45	4311629410158341015764161317417979	$\begin{array}{cccc} 597 & 1238 \\ 600 & 1305 \\ 602 & 1192 \\ 611 & 1072 \\ 623 & 1113 \end{array}$	54810555731071578107058310905831070	594 1257 606 1114 614 1072
40 35 30 25 20	414791423948402100839312353851107	617 1012 625 1017 628 973	588 1080 606 1023 614 932	
17.5 15.0 12.5 10.0				
Special levels	SURF982. 4063243O3PSE274. 9547109TRPSE274. 9547109O3MAX92. 24231671MINP19. 73841077	SURF 981.4 116 213 O3PSE 435.1 440 141 TRPSE 309.5 500 524 O3MAX 64.6 598 1401 MINP 27.3 619 827	SURF985.7156154O3PSE309.3561071TRPSE290.2582081O3MAX42.45851099MINP26.2615859	SURF983. 803507403PSE366. 0567025TRPSE366. 0567025O3MAX84. 85681405MINP52. 96111086

DATE TIME TOTO3	660511 1816 	660519 1200 	660602 1833 	660606 1145
DOBR INTO3	168. 8	214.6	313.6	133.9
Р	T P3	T P3	T P3	T P3
850 700 600 500 400	$\begin{array}{ccccc} 170 & 092 \\ 252 & 128 \\ 325 & 114 \\ 399 & 078 \\ 497 & 159 \end{array}$	$\begin{array}{cccc} 157 & 147 \\ 272 & 170 \\ 297 & 187 \\ 338 & 242 \\ 427 & 130 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
350 300 250 200 175	520239514408485579477654487773	478089551068624076598313555391	521222552289576419568616570873	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
150 125 100 90 80	$\begin{array}{cccc} 490 & 956 \\ 503 & 1075 \\ 529 & 953 \\ 536 & 982 \\ 545 & 1101 \end{array}$	$\begin{array}{cccc} 569 & 605 \\ 560 & 1244 \\ 570 & 1343 \\ 563 & 1550 \\ 555 & 1646 \end{array}$	$\begin{array}{ccccc} 572 & 1213 \\ 571 & 1758 \\ 600 & 1983 \\ 607 & 1945 \\ 616 & 1923 \end{array}$	$\begin{array}{cccc} 626 & 453 \\ 640 & 856 \\ 656 & 1064 \\ 669 & 1270 \\ 681 & 1223 \end{array}$
70 60 55 50 45	$\begin{array}{ccccc} 570 & 1206 \\ 580 & 1274 \\ 591 & 1244 \\ 602 & 1145 \\ 614 & 1136 \end{array}$	$\begin{array}{cccc} 564 & 1562 \\ 547 & 1612 \\ 552 & 1692 \\ 533 & 1696 \\ 538 & 1679 \end{array}$	$\begin{array}{cccc} 624 & 1980 \\ 629 & 1945 \\ 625 & 1918 \\ 626 & 1862 \\ 633 & 1768 \end{array}$	$\begin{array}{cccc} 679 & 119\\ 684 & 121\\ 682 & 112\\ 686 & 119\\ \end{array}$
40 35 30 25 20		526 1681 516 1577	$\begin{array}{cccc} 635 & 1654 \\ 638 & 1468 \\ 625 & 1398 \\ 658 & 1251 \end{array}$	
17.5 15.0 12.5 10.0				
Special levels	SURF 985.3 132 121 O3PSE 497.0 402 075 TRPSE 323.6 524 313 O3MAX 64.8 577 1318 MINP 41.0 630 1172	SURF 995.3 128 060 O3PSE 293.3 561 067 TRPSE 236.5 639 072 O3MAX 88.1 562 1758 MINP 30.2 521 1317	SURF 983.3 149 332 O3PSE 447.8 452 156 TRPSE 268.5 572 317 O3MAX 66.0 625 2023 MINP 22.0 648 1230	SURF 993 207 30 O3PSE 316 578 12 TRPSE 294 597 15 O3MAX 93 663 12 MINP 44 690 110

			1	
DATE TIME TOTO3	660618 1759	660630 1752	660705 1753	660722 1807
DOBR INTO3	134.7	127.6	166. 4	159.6
Р	T P3	T P3	T P3	T P3
850 700 600 500 400	$\begin{array}{cccc} 179 & 172 \\ 260 & 176 \\ 328 & 146 \\ 424 & 129 \\ 526 & 144 \end{array}$	243 249 233 211 308 182 392 135 487 113	205 191 289 213 365 198 447 187 528 167	227 244 235 221 295 205 385 173 494 140
350 300 250 200 175	$\begin{array}{cccc} 579 & 130 \\ 617 & 168 \\ 641 & 180 \\ 640 & 473 \\ 646 & 467 \end{array}$	$\begin{array}{cccc} 546 & 092 \\ 604 & 082 \\ 659 & 139 \\ 665 & 408 \\ 671 & 478 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	554145615127693108778175749507
150 125 100 90 80	$\begin{array}{cccc} 671 & 735 \\ 690 & 969 \\ 720 & 1425 \\ 731 & 1314 \\ 750 & 1660 \end{array}$	$\begin{array}{cccc} 687 & 437 \\ 710 & 1110 \\ 743 & 1526 \\ 765 & 1236 \\ 783 & 1708 \end{array}$	$\begin{array}{cccc} 616 & 669 \\ 634 & 1398 \\ 653 & 1837 \\ 655 & 1753 \\ 656 & 1796 \end{array}$	7777327751154795168080218968121861
70 60 55 50 45	768 1701	805 1671	658 1759	824 1657 812 1527 818 1584
40 35 30 25 20				
17.5 15.0 12.5 10.0				
Special levels	SURF 970.4 159 200 O3PSE 269.7 634 115 TRPSE 225.2 648 303 O3MAX 74.7 759 1789 MINP 60.6 771 1577	SUR F 999.1 218 239 O3PSE 275.3 641 072 TRPSE 245.4 662 167 O3MAX 79.8 784 1710 MINP 62.0 821 1558	SURF994.7266141O3PSE441.9492157TRPSE316.5589218O3MAX87.86581886MINP60.26651629	SURF 998.4 207 238 O3PSE 246.8 698 106 TRPSE 199.0 780 177 O3MAX 85.6 809 1920 MINP 53.6 820 1619

DATE TIME TOTO3 DOBB	660805 1815 	660818 1755 	660823 1803 	660829 1812
INTO3	209. 8	159.6	138.2	214.9
Р	T P3	T P3	T P3	T P3
850 700 600 500 400	274252297222371207432175506175	$\begin{array}{cccccccc} 195 & 206 \\ 262 & 156 \\ 307 & 155 \\ 380 & 134 \\ 482 & 086 \end{array}$	$\begin{array}{cccc} 236 & 260 \\ 254 & 216 \\ 313 & 192 \\ 379 & 174 \\ 461 & 146 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
350 300 250 200 175	$\begin{array}{cccc} 544 & 183 \\ 601 & 150 \\ 653 & 217 \\ 686 & 427 \\ 696 & 596 \end{array}$	$\begin{array}{cccc} 546 & 070 \\ 615 & 056 \\ 686 & 063 \\ 720 & 292 \\ 724 & 503 \end{array}$	$\begin{array}{cccc} 535 & 132 \\ 620 & 102 \\ 685 & 078 \\ 772 & 100 \\ 787 & 201 \end{array}$	589161642110699119746492757661
150 125 100 90 80	7167957391355761174677217767851614	803539782953799141780315908161532	$\begin{array}{cccc} 782 & 542 \\ 796 & 798 \\ 795 & 1390 \\ 802 & 1668 \\ 806 & 1721 \end{array}$	7748297851126804138080116258201744
70 60 55 50 45	80116458181484822149982914308341380	$\begin{array}{ccccc} 824 & 1555 \\ 836 & 1460 \\ 840 & 1488 \\ 858 & 1458 \\ 854 & 1430 \end{array}$	807 1731 808 1669 814 1581	83017078341643835163183315088331321
40 35 30 25 20	841 1188 840 1085			844 1134 848 987 843 972
17.5 15.0 12.5 10.0				
Special levels	SURF 972.4 268 230 O3PSE 296.5 606 145 TRPSE 242.4 660 241 O3MAX 89.5 774 1783 MINP 33.6 835 1051	SURF 981.3 150 268 03PSE 253.7 682 062 TRPSE 220.7 723 110 03MAX 103.6 796 1646 MINP 44.1 853 1433	SURF 974.0 206 247 O3PSE 222.3 738 062 TRPSE 191.9 781 109 O3MAX 74.3 802 1757 MINP 54.4 814 1578	SURF 977.0 279 163 O3PSE 281. 666 095 TRPSE 205.0 747 442 O3MAX 75.0 823 1753 MINP 29.4 843 967

DATE TIME TOTO3 DOBR INTO3	660906 1153 332 1.153 245.9		660919 1144 314 1. 375 268. 4		660927 1759 350 1. 375 205. 7		661005 1758 342 1.165 249.6	
Р	Т	P3	Т	P3	Т	P 3	Т	Р3
850 700 600 500 400	255 236 307 398 516	128 148 139 119 108	186 227 284 363 461	524 458 408 397 330	161 265 336 423 495	315 273 205 193 203	212 256 301 385 489	334 271 220 192 166
350 300 250 200 175	582 627 663 696 701	111 121 216 530 771	525 578 668 772 798	293 245 240 180 346	552 618 657 703 729	198 233 219 491 700	550 624 684 757 756	141 108 119 251 474
150 125 100 90 80	713 746 751 752 755	1089 1458 1768 1925 1946	798 789 786 785 781	744 1115 1545 1607 1796	736 726 734 731 727	1129 1657 1952 1998 1934	743 731 726 724 717	930 1492 1754 1825 1835
70 60 55 50 45	764 769 767 773 764	1891 1811 1789 1710 1705	771 767 767 757 751	1805 1689 1586 1359 1231	736 753 738	1983 1976 1892	703 696 699 685 666	1812 1769 1628 1415 1666
40 35 30 25 20	756 752	1577 1191	732 707 686 658 621	1116 1076 973 838 729			657 649 611	1574 1430 1299
17.5 15.0 12.5 10.0			592	671				
Special levels	SURF 265 03PSE 595 TRPSE 617 03MAX 753 MINP 742	978. 4 005 340. 2 106 316. 9 112 87. 2 1964 30. 4 1092	SURF 135 O3PSE 775 TRPSE 798 O3MAX 783 MINP 558	974. 7 537 198. 2 178 185. 0 179 77. 1 1863 15. 5 579	SURF 105 O3PSE 679 TRPSE 726 O3MAX 741 MINP 741	969. 9 311 233. 9 211 181. 4 677 65. 0 2012 52. 0 1829	SURF 147 O3PSE 728 TRPSE 758 O3MAX 693 MINP 601	983. 4 358 226. 3 098 212. 4 103 66. 0 1917 27. 9 117. 1

DATE TIME TOTO3 DOBR INTO3	661013 1129 344 1. 158 290. 3	661020 1755 454 1. 301 372. 8	661024 1753 392 1. 538 293. 1	661030 1752 350 1. 336 286. 2
Р	T P3	T P3	T P3	T P3
850 700 600 500 400	$\begin{array}{ccccc} 151 & 407 \\ 228 & 361 \\ 280 & 320 \\ 367 & 270 \\ 474 & 208 \end{array}$	$\begin{array}{ccccccc} 182 & 160 \\ 229 & 142 \\ 278 & 141 \\ 356 & 127 \\ 451 & 107 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 140 & 244 \\ 204 & 279 \\ 280 & 164 \\ 354 & 177 \\ 435 & 156 \end{array}$
350 300 250 200 175	$\begin{array}{cccc} 529 & 190 \\ 584 & 190 \\ 630 & 199 \\ 644 & 455 \\ 650 & 641 \end{array}$	$\begin{array}{cccc} 496 & 123 \\ 562 & 083 \\ 608 & 194 \\ 648 & 410 \\ 637 & 711 \end{array}$	$\begin{array}{cccc} 531 & 157 \\ 597 & 140 \\ 629 & 193 \\ 646 & 316 \\ 642 & 447 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
150 125 100 90 80	$\begin{array}{cccc} 656 & 851 \\ 640 & 1262 \\ 635 & 1541 \\ 630 & 1648 \\ 625 & 1632 \end{array}$	$\begin{array}{cccc} 625 & 914 \\ 606 & 1297 \\ 566 & 1824 \\ 543 & 2054 \\ 506 & 2158 \end{array}$	$\begin{array}{cccc} 633 & 631 \\ 612 & 917 \\ 610 & 1170 \\ 598 & 1241 \\ 567 & 1361 \end{array}$	$\begin{array}{cccc} 660 & 688 \\ 649 & 1100 \\ 630 & 1551 \\ 626 & 1592 \\ 628 & 1625 \end{array}$
70 60 55 50 45	$\begin{array}{cccc} 624 & 1698 \\ 604 & 1701 \\ 588 & 1710 \\ 574 & 1707 \\ 565 & 1643 \end{array}$	47919244272180398226236121083151913	$\begin{array}{cccc} 545 & 1785 \\ 526 & 2017 \\ 517 & 2009 \\ 515 & 1956 \\ 498 & 1763 \end{array}$	$\begin{array}{cccc} 605 & 1834 \\ 591 & 1899 \\ 595 & 1918 \\ 584 & 1848 \\ 563 & 1645 \end{array}$
40 35 30 25 20	558153754813365281175499929472809	29419802712178274202427217622391479	48517584731536458140241312813481228	552162353113445251202507994410956
17.5 15.0 12.5 10.0	444 779 414 694	230 1319 222 1162	280 1257	370 879 324 814
Special levels	SURF960. 3146436O3PSE287. 0598187TRPSE247. 0633200O3MAX45. 75681719MINP14. 7414681	SURF974. 1123144O3PSE301. 3561082TRPSE202. 4650378O3MAX55. 13992264MINP13. 12521029	SURF968. 6096473O3PSE299. 8597140TRPSE230. 7644236O3MAX55. 55172026MINP16. 62751253	SURF994. 1135156O3PSE223. 8624142TRPSE209. 0658150O3MAX54. 95951919MINP14. 9324808

Annex

DATE	661126		661129		661212		670111	
TIME	1149		1815		1159		1725	
TOTO3	421		388		366		330	
DOBR	1. 453		1. 377		1.240		1.519	
INTO3	305. 6		304. 3		262.0		240.6	
Р	Т	P3	Т	P 3	Т	P3	Т	Р3
850	102	173	082	214	044	209	049	135
700	197	137	154	192	147	177	148	109
600	278	134	209	181	187	159	215	098
500	356	115	282	165	294	149	298	099
400	470	087	383	157	393	136	351	158
350	533	108	452	134	456	144	441	107
300	567	246	526	102	505	264	478	360
250	557	564	615	091	521	508	464	869
200	533	989	574	731	473	782	431	973
175	522	1160	555	733	448	702	420	991
150	479	1522	521	1293	445	651	416	894
125	431	1859	451	1853	422	1203	406	860
100	389	2038	378	2293	387	1953	391	916
90	357	2008	369	2262	383	1946	401	1063
80	318	1921	329	2230	383	1685	390	1374
70	309	1814	310	2191	364	1804	380	1458
60	298	1680	316	2228	363	1935	374	1559
55	299	1618	309	1758	360	1905	355	1631
50	291	1634	303	1680	347	1813	360	1514
45	259	1478	291	1695	337	1785	364	1305
40 35 30 25 20	245 251 254 239	1553 1540 1314 1476	289 284 278 284	1533 1416 1255 1051	337 334 319	1473 1319 1356	344 339 338 315	1263 1306 1192 1141
17.5 15.0 12.5 10.0								
Special levels	SURF	989. 8	SURF	994. 1	SURF	987. 8	SURF	987. 9
	002	156	016	258	008	208	009	119
	O3PSE	400. 7	03PSE	269. 4	O3PSE	368. 8	O3PSE	358. 5
	469	086	578	091	431	138	430	093
	TRPSE	292. 2	TRPSE	232. 8	TRPSE	265. 1	TRPSE	310. 4
	569	311	629	185	530	402	478	232
	O3MAX	102. 7	03MAX	72. 5	O3MAX	87. 2	O3MAX	54. 4
	392	2042	315	2441	381	1960	352	1642
	MINP	24. 5	MINP	23. 1	MINP	29. 0	MINP	23. 9
	240	1463	289	1061	315	1319	312	1133

DATE TIME TOTO3	Mean Apr.	for 1966	Mean May	for 1966	Mean June	for 1966	Mean July	for 1966
DOBR INTO3	235		 296		313		 316	
Р	Т	Р3	Т	Р3	Т	Р3	Т	P3
850 700 600 500 400	144 218 279 359 448	17 15 13 12 17	154 223 284 363 460	13 15 15 16 15	211 268 336 416 512	25 21 18 16 14	218 254 321 399 497	22 22 20 18 16
350 300 250 200 175	501 550 538 507 504	19 23 32 30 41	514 557 570 561 559	17 24 33 48 58	564 613 641 640 644	14 17 25 47 57	555 613 672 715 720	17 19 25 42 65
150 125 100 90 80	509 519 532	48 61 83 101 111	558 570 582	79 116 115 127 138	653 676 701	71 117 150 144 163	732 745 769	70 128 176 183 183
70 60 55 50 45	558 568	119 116 111 108 109	607 624	139 144 147 143 141	740 746	164 158 153 153 (147)	799 796	171 158 (153 (148 (139
40 35 30 25 20	572 547	105 102 95 (83)	640 672	(140) (132) (115) (97)	756 766	(137) (127) (115) (100)	807 	(130 (120 (109 (94
17.5 15.0 12.5 10.0								

DATE TIME TOTO3 DOBR INTO3	Mear. Aug. 293	n for 1966	Mean Sept. 326 339	for 1966	Mean Oct. 1 363 363	for 966	Mean Nov. 400 408	n for 1966
Р	Т	P3	Т	P 3	Т	P3	Т	P3
850 700 600 500 400	235 284 305 416 514	25 19 19 17 15	175 238 302 384 486	32 29 25 24 21	183 244 303 383 479	32 29 24 21 17	124 198 257 334 437	19 17 16 14 13
350 300 250 200 175	585 631 691 734 747	14 11 12 33 49	547 612 675 725 735	20 20 23 40 61	535 596 650 675 677	16 17 17 36 58	497 556 593 584 567	12 18 33 86 95
150 125 100 90 80	758 773 789	68 106 149 167 165	741 745 756	99 141 176 184 189	671 663 646	80 121 157 167 172	544 517 476	141 186 217 214 208
70 60 55 50 45	809 808	166 156 155 147 138	762 759	189 183 176 (164) (153)	614 569	181 191 191 181 171	417 387	208 196 (188) (180) (170)
40 35 30 25 20	813 788	(126) (116) (103) (90)	752 767 712	(140) (127) (110) (95) 	537 (479) (390)	169 157 142 119 112	363 301 215	(162) (152) (139) 127
17.5 15.0 12.5 10.0					-	106 (95)	-	

Vertical Ozone Distribution at Syowa Ssation, Antarctica

•

DATE TIME TOTO3 DOBR INTO3	Mean for Mar., Dec. 1966 and Jan. 1967		Mean fo AprAu	or g. 1966	Mean for Sept.–Nov. 1966		
Р	T*	P3	Т	Р3	Т	P3	
850 700 600 500 400	095 175 235 304 398	20 18 16 15 16	192 249 305 391 486	20 18 17 16 15	161 227 287 367 467	28 25 22 20 17	
350 300 250 200 175	452 492 484 445 434	13 25 57 78 76	544 593 622 631 635	16 19 25 40 54	526 588 639 661 660	16 18 24 54 71	
150 125 100 90 80	431 425 418	74 93 137 156 156	642 657 675	67 106 135 144 152	652 642 626	107 149 183 188 190	
70 60 55 50 45	404 396	163 170 170 (162) (152)	703 708	152 146 144 140 135	598 572	193 190 185 175 165	
40 35 30 25 20	389 362 326	(143) (132) 119 (103) 	717 693	128 119 107 93	551 516 439	157 145 130 114	
17. 5 15. 0 12. 5 10. 0							

* Mean including Feb. 1966.