Proc. NIPR Symp. Polar Meteorol. Glaciol., 11, 246, 1997

## ICE CRYSTAL ORIENTATION DISTRIBUTIONS IN LARGE ICE MASSES (ABSTRACT)

## Hitoshi Shoji<sup>1</sup>, Atsushi MIYAMOTO<sup>2</sup> and Hideki NARITA<sup>2</sup>

## <sup>1</sup>Department of Civil Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami 090 <sup>2</sup>Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060

Flow behavior of large ice sheets is affected mainly by c-axis orientation fabric, and the fabric formation is caused by the anisotropic characteristics in the plastic deformation property of ice crystal. There are three processes involved in fabric formation; *i.e.* crystal rotation (AZUMA and HIGASHI, 1985), recrystalization and polygonization.

Two types of crystal fabric development with depth have been observed in deep polar ice cores. Type A shows crystal fabric changes from a random distribution near the surface to vertical cluster development with depth under vertical compression and to a strong single maximum pattern near the bottom under simple shear deformation (Camp Century, Dye 3, GRIP and Byrd ice cores). Type B shows fabric changes from a random distribution near the surface to a large girdle development with depth, where the c-axis direction is almost perpendicular to the uniaxial tensile strain axis along the ice flow direction (Mizuho and Vostok ice cores). To estimate vertical compressive strain,  $\varepsilon$  and uniaxial tensile strain,  $\gamma$ , the following equations were assumed:

$$\varepsilon = -\ln (y/H), \quad \gamma = -2 \ln (y/H),$$

where y is height from the bottom and H is ice thickness.

For Type A cores, the c-axis lies mainly along the vertical core direction with depth and a single maximum fabric appears at depth for about  $\varepsilon = 150\%$ , except for Byrd core samples which shows single maximum fabric appearance for about  $\varepsilon = 80\%$ . For Type B cores, crystal fabrics developments with an increase in  $\gamma$  are quite similar to each other.

(Received January, 20, 1997; Revised manuscript accepted January 29, 1997)