ICE CRYSTAL ORIENTATION DISTRIBUTIONS
 IN LARGE ICE MASSES (ABSTRACT)

Hitoshi Shosl', Atsushi Miyamoto ${ }^{2}$ and Hideki Narita ${ }^{2}$
'Department of Civil Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami 090
${ }^{2}$ Institute of Low Temperature Science, Hokkaido University,
Kita-19, Nishi-8, Kita-ku, Sapporo 060

Flow behavior of large ice sheets is affected mainly by c-axis orientation fabric, and the fabric formation is caused by the anisotropic characteristics in the plastic deformation property of ice crystal. There are three processes involved in fabric formation; i.e. crystal rotation (Azuma and HIGASH, 1985), recrystalization and polygonization.

Two types of crystal fabric development with depth have been observed in deep polar ice cores. Type A shows crystal fabric changes from a random distribution near the surface to vertical cluster development with depth under vertical compression and to a strong single maximum pattern near the bottom under simple shear deformation (Camp Century, Dye 3, GRIP and Byrd ice cores). Type B shows fabric changes from a random distribution near the surface to a large girdle development with depth, where the c-axis direction is almost perpendicular to the uniaxial tensile strain axis along the ice flow direction (Mizuho and Vostok ice cores). To estimate vertical compressive strain, ε and uniaxial tensile strain, γ, the following equations were assumed:

$$
\varepsilon=-\ln (y / H), \quad \gamma=-2 \ln (y / H)
$$

where y is height from the bottom and H is ice thickness.
For Type A cores, the c-axis lies mainly along the vertical core direction with depth and a single maximum fabric appears at depth for about $\varepsilon=150 \%$, except for Byrd core samples which shows single maximum fabric appearance for about $\varepsilon=80 \%$. For Type B cores, crystal fabrics developments with an increase in γ are quite similar to each other.

