Proc. NIPR Symp. Polar Meteorol. Glaciol., 10, 150, 1996

OBSERVATIONS ON THE EVAPORATION-CONDENSATION PROCESS AND HEAT-BALANCE DURING THE AUSTRAL SUMMER AT THE SNOW SURFACE OF DOME FUJI STATION, EAST ANTARCTICA (ABSTRACT)

Takayuki Shiraiwa¹, Yuji Taguchi², Takashi Saito³, Hitoshi Shoji⁴, Kotaro Yokoyama⁵, Okitsugu Watanabe⁶, Hiroyuki Enomoto⁴, Yuji Kodama¹ and Yukari Takeuchi¹

> ¹Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060

²Japan Meteorological Agency, 3–4, Otemachi 1-chome, Chiyoda-ku, Tokyo 100
³Disaster Prevention Research Institute, Kyoto University, Gokasho, Uji 611
⁴Faculty of Engineering, Kitami Institute of Technology, 165, Koen-cho, Kitami 090
⁵Hokuriku National Agricultural Experiment Station, 2–1, Inada 1-chome, Joetsu 943-01
⁶National Institute of Polar Research, 9–10, Kaga 1-chome, Itabashi-ku, Tokyo 173

Observations on the evaporation-condensation process and heat-balance were conducted at Dome Fuji Station, the highest point of Queen Maud Land, East Antarctica, during the austral summer of 1994/1995. Evaporation and condensation at the snow surface were measured by weighing evaporation-pans filled with undisturbed snow twice a day; 0600 a.m. and 1800 p.m. Heat fluxes of net radiation (Q_n) and in the snow (Q_c) were measured by a net radiometer and a series of thermistor sensors installed in the snow, respectively.

The evaporation amounted, at its maximum, to approximately 10^{-1} kg m⁻² from 0600 a.m. to 1800 p.m., while the condensation was 2×10^{-2} kg m⁻² during the night from 1800 p.m. to 0600 a.m. As a result, evaporation dominated condensation during the two summer months of 1994/1995 at Dome Fuji Station.

If we calculate the latent heat flux (Q_1) on the basis of observations of the evaporation and condensation, and the residue of heat flux components is assigned to the sensible heat flux (Q_s) , the average amounts of each component during the two summer months were calculated to be 12 W m⁻² (Q_n) , -4 W m⁻² (Q_c) , -1 W m⁻² (Q_i) , -7 W m⁻² (Q_s) .

(Received December 25, 1995; Revised manuscript accepted May 20, 1996)