OBSERVATIONS ON THE EVAPORATION-CONDENSATION PROCESS AND HEAT-BALANCE DURING THE AUSTRAL SUMMER AT THE SNOW SURFACE OF DOME FUJI STATION, EAST ANTARCTICA (ABSTRACT)

Takayuki Shiraiwa ${ }^{1}$, Yuji Taguchi ${ }^{2}$, Takashi Saito ${ }^{3}$, Hitoshi Shoji ${ }^{4}$, Kotaro Yokoyama ${ }^{5}$, Okitsugu Watanabe ${ }^{6}$, Hiroyuki Enomoto ${ }^{4}$, Yuji Kodama ${ }^{1}$ and Yukari Takeuchi ${ }^{1}$
'Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060
${ }^{2}$ Japan Meteorological Agency, 3-4, Otemachi 1-chome, Chiyoda-ku, Tokyo 100 ${ }^{3}$ Disaster Prevention Research Institute, Kyoto University, Gokasho, Uji 611 ${ }^{4}$ Faculty of Engineering, Kitami Institute of Technology, 165, Koen-cho, Kitami 090 ${ }^{5}$ Hokuriku National Agricultural Experiment Station, 2-1, Inada 1-chome, Joetsu 943-01
${ }^{6}$ National Institute of Polar Research, 9-10, Kaga 1-chome, Itabashi-ku, Tokyo 173

Observations on the evaporation-condensation process and heat-balance were conducted at Dome Fuji Station, the highest point of Queen Maud Land, East Antarctica, during the austral summer of 1994/1995. Evaporation and condensation at the snow surface were measured by weighing evapora-tion-pans filled with undisturbed snow twice a day; 0600 a.m. and 1800 p.m. Heat fluxes of net radiation (Q_{n}) and in the snow (Q_{c}) were measured by a net radiometer and a series of thermistor sensors installed in the snow, respectively.
The evaporation amounted, at its maximum, to approximately $10^{-1} \mathrm{~kg} \mathrm{~m}^{-2}$ from 0600 a.m. to 1800 p.m., while the condensation was $2 \times 10^{-2} \mathrm{~kg} \mathrm{~m}^{-2}$ during the night from $1800 \mathrm{p} . \mathrm{m}$. to $0600 \mathrm{a} . \mathrm{m}$. As a result, evaporation dominated condensation during the two summer months of 1994/1995 at Dome Fuji Station.
If we calculate the latent heat flux $\left(Q_{1}\right)$ on the basis of observations of the evaporation and condensation, and the residue of heat flux components is assigned to the sensible heat flux (Q_{s}), the average amounts of each component during the two summer months were calculated to be $12 \mathrm{~W} \mathrm{~m}^{-2}\left(Q_{\mathrm{n}}\right),-4$ $\mathrm{W} \mathrm{m}^{-2}\left(Q_{\mathrm{c}}\right),-1 \mathrm{~W} \mathrm{~m}^{-2}\left(Q_{1}\right),-7 \mathrm{~W} \mathrm{~m}^{-2}\left(Q_{\mathrm{s}}\right)$.
(Received December 25, 1995; Revised manuscript accepted May 20, 1996)

