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Abstract: In the polar region, it is difficult to discriminate between clouds and 

ground surface from satellite visible or infrared data, because of the high albedo and 

low surface temperature of snow and ice cover. In this paper, a method to classify 

clouds, sea ice and ground is proposed. This study is based upon analysis of the NOAA/ 

AVHRR infrared images in Antarctica. The algorithm consists of two major approaches: 

estimating image features and a classification algorithm. A decision tree classifier is 

designed to classify the region into one of three classes using six image features. Though 

sea ice and ground can be largely separated using only one feature, more than three 

features are necessary to separate clouds. 

1. Introduction 

Antarctic sea ice is one of the important factors that affect the polar climate and the 

global atmospheric system (GORDON and TAYLOR, 1975; MAYKUT and UNTERSTEINER, 1971; 

RosocK, 1983). Clouds in the Antarctic are also important because of their strong radia­

tive influence on the energy balance of the snow and ice surface (SALTZMAN and MORITZ, 

1980). Remote sensing observation from a meteorological satellite offers the best avail­

able means to understand polar surface conditions, because of their homogeneity over a 

wide area. 

However, in the polar region, cloud, snow and ice have almost the same albedo in 

the visible channel and the same brightness temperature in the infrared channel. There­

fore, it is difficult to distinguish among these regions using only the threshold of gray 

level of a satellite image (COAKLEY and BRETHERTON, 1982; DESBOIS et al., 1982). 

Y AMANoucm and KAWAGUCHI ( 1992) show that a method to detect clouds by the bright­

ness temperature difference of two channels is thoroughly effective in the sunlight sea­

son, but not perfect in all seasons and at all times. 

In this paper, techniques for classifying Antarctic satellite images into clouds, sea 

ice and ground using single channel data are proposed. The approaches can be divided 

into the following four steps: (1) Representative areas of clouds, sea ice and ground 

were selected subjectively. (2) Six types of features were computed in each selected 

area. (3) A decision tree classifier was designed to classify the region into one of three 

classes using the features. (4) Features of the whole area were calculated and classified 

using the decision tree classifier. Infrared channel data were used for developing a com­

plete classifying method that will be effective in all seasons and at all times. 
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2. Data 

AVHRR data received from the NOAA satellite have been processed primarily 
and stored at Syowa Station, Antarctica, since 1987 (Y AMANOUCHI et al., 1991 ). We 
obtained the image data of the area near Syowa Station from the National Institute of 
Polar Research. The area is composed of 512x512 pixels with spatial resolution 2.2 km. 
At each pixel location, the image brightness was quantified into 256 gray levels for com­
puter graphics display. 

3. Calculation of Features 

3.1. Subregion 
The satellite image area was divided into square areas. Features at each location (x, 

y) of the subregion were obtained from a (32x32)-pixel block area in a sample image as 
shown in Fig. 1. The subregion was moved to the next pixel location in the image and 
the calculation was repeated. This continued until all pixel locations were covered. 

512 pixel 

----- 512 pixel-----

321r1irr=: 
(x,y) 

Subregion 

Fig. 1. Square subregion area in sample image centered at (x, y) . 

3.2. Average and standard deviation of the brightness temperature of each pixel in a 
subregion 

Averaging of the brightness temperatures of the pixels is one of the most effective 
approaches to image segmentation, because usually a uniquely separated area is larger 
than any other feature. If each average value of subregions is grouped into two classes, 
the area may be classified into two regions. However, large parts of area are not classi­
fied in many cases. The standard deviation provides one measure of the variability, this 
value is much easier to compute than the fractal and texture. 

3.3. Fractal dimension 
Many natural surfaces look qualitatively the same at different scales. This self­

similar property means that extra detail appears at quantitatively the same rate over many 
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changes in scale or magnification. The fractal dimension gives a quantitative property 
of a surface (MANDELBROT et al., 1984 ). The gray leve] function in the region is defined 
by brightness temperature. The method relies on the assumption that regions of an im­
age having a particular structure wi11 usually produce a fractal gray level surface, with a 
particular value of the fractal dimension. It is difficult, however, to measure a fractal 
dimension strictly according to the definition. 

For convenience, we used a three-dimensional cube to measure the fractal surface's 
dimension by covering the surface with a minimal number of cubes. As shown in Fig. 
2a, a three-dimensional cube of edge r was used to measured the fractal dimension D by 
covering the image intensity surface cubes. If the total number of cubes which cover 
this surface is proportionally increased with decreasing scale r, then the fractal dimen­
sion related to the surface roughness of the brightness temperature can be obtained. 
This dimension can be obtained by plotting, on a log-log scale, the total number of cubes 
for edger against the length of edger. The resulting plot has slope-Das shown Fig. 2b. 
If a surface is a perfect fractal surface, then the fractal dimension will remain constant 
over all ranges of edge r. Generally, there are scale range limitations of fractal dimen-
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Fig. 2. ( a) Image intensity surface covered with cubes. If a cube of edge r is scaled down 

to both the x axis and y axis, then the roughness <�f the gray level surface I (  x, y) is 

proportionally increased. ( b) A plot of log ( ed,:e len,:th) versus log (total number 

of cubes) data. 
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sion on a real surface. Thus, a real surface will be fractal over some range of scales, 
rather than overall scales. Local fractal dimension is expressed using these limited ranges 
of scale (KANEKO, 1988). In this paper, local fractal dimension is calculated using con­
tinuous three edges r. 

3.4. Texture 
Texture is usually defined as some local property of an image, i.e. a measure of the 

relationship between the pixels in a neighborhood. There are many approaches to de­
scribe texture characteristics. One approach to texture feature extraction is based on the 
gray level co-occurrence matrix P(i, j) (HARALICK et al., 1973). This matrix denotes the 
probabilities of transition from one gray level to another between neighboring pixels in 
an image subregion of specified size. Each element of the gray level co-occurrence 
matrix is a measure of the probability of occurrence of two gray scale values separated 
by a given distance in a given direction. Generally, four angular matrices will be com­
puted for given pixel distances corresponding to the horizontal, vertical, and two diago­
nal directions of the image subregion whose gray levels are i and j, respectively. In 
many cases, only neighboring pixels are considered for these calculations. A total of 13 
scalar texture features derived from the four angular matrices were defined by HARALICK 

et al. (1973). These features are generally measures of the location and degree of con­
centration of pixel count in the matrix. The following equations show the two of these 
features. 

• N N 

I
P(i,j)

)
2 

um=LL-' 
i=lj=I R 

N N 

LL{if P(iJ)/R}-µx ·µy 

cor = _;=�11_·=_1 _ __ ____ _ 

where N is the number of gray levels, R is a renormalizing constant equal to the total 
number of pixel pairs in a subregion, andµ and cr are the mean and standard deviation of 
the distributions of gray scale values accumulated in the x and y directions. The uni is 
a measure of uniformity, achieving its lowest value when all elements of P are equal. 
The cor is a measure of the linear dependency of gray level obtained by correlation. 

4. Classification Algorithm 

4.1. Classifying process 
A flow chart of the classifying process is given in Fig. 3. Representative areas of 

clouds, sea ice and ground were selected subjectively using infrared imagery ( channel 
4). Average and standard deviation of gray level of each pixel, global and local fractal 
dimension, and uniformity and correlation of texture features of image data were com­
puted in each selected area. The whole area of visible imagery ( channel 1) was also 
classified manually to obtain supervised data for estimating the classification results. 
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Subjectively select representative area 
for each class 
( channel 4) 

Compute six image features 
for each selected area 

( channel 4) 

Design dec ision tree algorism 

Compute six features for whole area 
( channel 4) 

Objectively classify the area for stage n 
( channel 4) 

Next stage 1+--<­
n = n + 1 

Fig. 3. Flow chart of the classifying procedure. 

4.2. Training samples 

131 

In order to classify clouds, sea ice and ground, a representative area for each de­

sired class was selected using infrared imagery. More than one training area per class 

was used to include the range of variability. Six features of image data of the selected 

areas were computed for training samples. 

4.3. Decision tree classifier 

The decision tree classifier is based on specified information of features in the im­

age. This classifier is an attempt to use a series of stages or layers, with certain classes 

being separated at some steps of each stage in a simple manner. The thresholds of each 

step are determined to be separated into some classes. The separation of the remaining 

classes using different features is determined in a similar fashion until all the classes 

have been isolated. In this paper, six features of satellite data were used to design the 

decision tree classifier for separating three classes, cloud, sea ice and ground. 
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Fig. 4. Three examples of intensity histograms that can be classified by two thresholds. 
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Fig. 5. Manually designed decision tree for the data in 11 steps from AVHRR image of NOAA satellite of thermal 

infrared channel 4. Tave: average, Std: standard deviation, fd.: fractal dimension, l.fd.2: local fractal 

dimension (r = 1, 2, 3), l.fd.5: local fractal dimension (r = 4, 5, 6), u: uniformity, c: correlation. 
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5. Results and Discussion 

First, six features for cloud, sea ice and ground in the satellite image were calcu­
lated using subjectively selected representative areas. These data were used to illustrate 
the design of a decision tree classifier. Figure 4 shows three examples of the histogram 
(step 1-3) and the manually-selected thresholds for three classes (cloud, sea ice and 
ground) with information from average and standard deviation of brightness tempera­
ture, and fractal dimension of the image. It can be seen that some part of the ground and 
many parts of sea ice could be separated from the others with average brightness tem­
perature (step 1 ). This operation formed the first stage in the classification. Remaining 
regions could be separated using the standard deviation of brightness temperature (step 
2 ). This operation therefore formed the second stage of the classification. Many parts 
of the ground could be separated using fractal dimension (step 3). Figure 5 shows the 

a b 

C d 

D cloud 

II ground 

II sea ice 

Fig. 6. Location and AVHRR image of NOAA satellite on April 8, 1989. (a) Location of the image used in 

analyzing. (b) Visible channel 1. (c) Thermal infrared channel 4. (d) Manually classified area for 

error estimation using channel 1. 
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Fig. 7. Classified satellite image of thermal infrared channel 4 from stage 1 to 6. 
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Fig. 8. The process of classification and its accuracy at each stage of the decision tree 

classifier. Stage 1 :  Average, Stage 2: Standard deviation, Stage 3: Fractal dimen ­
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final decision tree with the classes identified and features used at each stage. It is shown 
that each area was separated using one to seven features. Figure 6 shows the location of 
the image and channel 1 ,  4 and manuall y  classified image of NOAA AVHRR on April 8, 
1989. Figure 7 shows the classification results from stage 1 to 6 on thermal infrared 
channel 4 (Fig. 6c) using the decisi on tree classifier. Although the classified area was 
increased with increasing stage, the error rate was also increased. A part of ground and 
sea ice area were classified at stage 1 ,  another part of ground was classified at stage 3, 
and a part of cloud was classified at stage 4.  The other areas were classified in the same 
manner. Classified areas were varied in each stage. 

Figure 8 shows the process of classification and its estimation of each stage. About 
30% of the area was classified at stages 1 ,  3 and 4. Small areas were classi fied at stages 
2, 5 and 6. The accuracy for each stage was estimated by dividing the number of cor­
rectly classified pixels by total number of classified pixels in that stage. Error rate was 
increased with increasing classified area. Classified areas and error rates were increased 
with increasing number of stages. We can say that the number of stages is decided 
according to the purpose. 

Though sea ice and ground were largely separated from a few features, more than 
three features were necessary to separate clouds. These results indicate that the images 
contain more than one type of cloud (DESBOIS et al., 1 982 ;  EBERT, 1 987). 

6. Conclusion 

A method to segment an Antarctic satellite image using a single infrared channel of 
AVHRR is proposed. Average and standard deviation of gray level of each pixel, and 
fractal dimension and textural features of the image data, are used to determine the deci-
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sion tree of classification. Among these features, average is useful for extraction of the 
ground, and fractal dimension is useful for extraction of the ground and cloud. 

The decision tree classifier is effective in the case in which supervised data are 
obtained. It is a very flexible approach to separate different classes. One of the advan­
tages of this approach is to easily add another feature for increasing classified area. 
Another decision tree may also be designed, because the decision tree is data-depen­
dent. In general , simpler design is more efficient. 
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